

b-chromatic Number of
$$M[C_n], M[P_n], M[F_{1,n}]$$
 and $M[W_n]$

Duraisamy Vijayalakshmi¹, Kandasamy Thilagavathi², Narayanan Roopesh³

¹Department of Maths CA, Kongunadu Arts & Science College, Coimbatore, India ²Department of Mathematics, Kongunadu Arts & Science College, Coimbatore, India ³Department of Mathematics, Indus College of Engineering, Coimbatore, India E-mail: vijikasc@gmail.com, ktmaths@yahoo.com, roopeshsha@gmail.com Received April 2, 2011, revised May 2, 2011, accepted May 15, 2011

Abstract

In this paper, we discuss about the b-colouring and b-chromatic number for middle graph of Cycle, Path, Fan graph and Wheel graph denoted as $M[C_n]$, $M[P_n]$, $M[F_{1,n}]$ and $M[W_n]$.

Keywords: Chromatic Number, b-chromatic, b-colouring, Middle Graph

1. Introduction

Let *G* be a finite undirected graph with no loops and multiple edges. A coloring (*i.e.*, proper coloring) of a graph G = (V,E) is an assignment of colors to the vertices of *G*, such that any two adjacent vertices have different colors. A coloring is called a b-coloring [1], if for each color *i* there exists a vertex x_i of color *i* such that every color $j \neq i$, there exists a vertex y_j of color *j* adjacent to x_i , such a vertex x_i is called a dominating vertex for the colour class *i* or color dominating vertex which is known as b-chromatic vertex.

The b-chromatic number of a graph G, denoted by $\varphi(G)$ is the largest positive integer k such that G has a b-colouring by k colors. The b-chromatic number of a graph was introduced by R.W. Irwing and manlove [2] in the year 1999 by considering proper colorings that are minimal with respect to a partial order defined on the set of all partitions of V(G). They proved that determining $\varphi(G)$ [3] is NP-hard for general graphs, but polynomial for trees.

Let G be a graph with vertex set V(G) and the edge set E(G). The middle graph [4,5] of G, denoted by M(G) is defined as follows. The vertex set of M(G) is defined as follows. The vertex set of $M(G) \cup E(G)$. Two vertices x, y in the vertex set of M(G) are adjacent in M(G) in case one of the following holds;

1) x, y are in E(G) and x, y are adjacent in G

2) x is in V(G), y is in E(G), and x, y are incident in G.

2. b-chromatic Number of Middle Graph of Cycle

2.1. Definition of Cycle

A Cycle is a circuit in which no vertex except the first (which is also the last) appears more than once. A cycle with n vertices is denoted by Cn.

2.2. Theorem

For any $n \ge 3$, $\varphi[M(Cn)] = n$. **Proof**

Let C_n be a cycle of length n with the vertices V_1, V_2, \cdots, V_n . By the definition of middle graph the edge V_{ij} for $1 \le i \le n$, $1 \le j \le n$ of the cycle C_n is subdivided by the vertex V'_m for $m = 1, 2, \cdots, n$. Here the vertices V'_1, V'_2, \cdots, V'_n , V_i induces a clique of order n.

Now assign a proper colouring to these vertices as follows. Consider a colour class $C = \{c_1, c_2, c_3, \dots, c_n\}$. Assign the color c_i to the vertex V'_m for $i = 1, 2, \dots, n$. Here $M(C_n)$ contains a clique of order n, so for proper colouring we require maximum n colours to colour the vertices of V'_m , which produces a b-chromatic coloring. Next we assign a colouring to the vertices V_i for $i = 1, 2, \dots, n$. Suppose if we assign any new colour c_{n+1} to the vertex $V_i \forall i = 1, 2, \dots, n$, it will not produce a b-chromatic colouring because none of the vertices v_i does not realizes its own colours. Therefore the only possibility is to assign an existing colors to the vertices v_i .

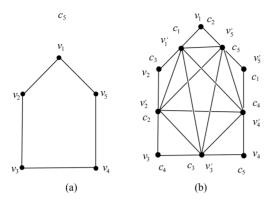


Figure 1. (a) $[C_5]$; (b) $\varphi\{M(C_5)\} = 5$.

Hence by colouring procedure the above said colouring is maximal and b-chromatic.

$$\therefore \varphi \left[M \left(C_n \right) \right] = n \quad \text{for } n \ge 3$$

Eg: $\varphi \left[M \left(C_5 \right) \right] = 5$

3. b-chromatic Number of Middle Graph of Path

3.1. Definition of Path

A Path is a sequence of consecutive edges in a graph and the length of the path is the number of edges traversed. A path with n vertices is denoted as P_n .

3.2. Theorem

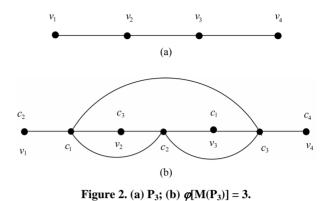
For any $n \ge 2$, $\varphi[M[P_n]] = n$

Proof:

Let P_n be any path of length n - 1 with vertices $v_1, v_2, ..., v_n$. By the definition of middle graph each edge of v_{ij} for $1 \le i \le n$, $1 \le j \le n$ of the path graph P_n is subdivided by the vertex v'_m in $M[P_n]$ and the vertices $v'_1, v'_2, ..., v'_m$ along with $v_1, v_2, ..., v_n$ induces a clique of order n in $M[P_n]$.

i.e.,
$$V[M(P_n)] = \{v_i | 1 \le i \le n\} \cup \{v_m | 1 \le m \le n\}$$

Now consider a proper colouring to $M[P_n]$ as follows. Consider the colour class $C = \{c_1, c_2, \dots, c_n\}$. Assign the color c_i to the vertices v'_m for $i = 1, 2, \dots, n$. Here $M[P_n]$ contains a clique of order n. So for proper colouring it require *n* distinct colours which results in b-chromatic coloring. Next we assign the coloring to the vertices v_i for $i = 1, 2, \dots, n$. Suppose if we assign the colour c_{n+1} to the vertex $v_i \forall i = \dots n$ which does not produces b-coloring. Hence we should assign only an existing colours to the vertices v_1, v_2, \dots, v_n . Hence by coloring procedure it is the maximal and b-chromatic coloring.



 $\therefore \varphi \Big[M \big(p_n \big) \Big] = n \quad \text{for } n \ge 2 .$

Eg:
$$\varphi \left[M(p_3) \right] = 3$$

4. b-chromatic Number of Midlle Graph of Fan Graph

4.1. Definition of Fan Graph

A fan graph $F_{m,n}$ is defined as the graph join $\overline{K_m} + P_n$, where $\overline{K_m}$ is the empty graph on nodes and P_n is the path on *n* nodes.

4.2. Theorem

$$\varphi \left[M \left(F_{1,n} \right) \right] = n+1 \quad \text{for } n \ge 2$$

Proof

Let (x,y) be the bipartition of $F_{m,n}$ with |x| = m and |y| = n. Let V be the only vertex of x and $y = \{v, v_2, \dots, v_n\}$. By the definition of Middle graph each edge vv_i for $i = 1, 2, 3, \dots, n$ of $F_{1,n}$ is subdivided by the vertex v'_m in M[F_{1,n}] and the vertices v'_1, v'_2, \dots, v'_m , v induces a clique of order n + 1 in $M[F_{1,n}]$.

$$i.e., \quad \mathbf{V}\left[M\left(F_{1,n}\right)\right] = \left\{v_i / 1 \le i \le n\right\} \cup \left\{v_m' / 1 \le m \le n\right\} \cup V \ .$$

Now assign a proper colouring to these vertices as follows. Consider a colour class $C = \{c_1, c_2, \dots, c_{n+1}\}$. First assign the colour c_1, c_2, \dots, c_n to the vertices v'_m for $m = 1, 2, \dots, n$. Here M[F_{1,n}] contains a clique of order n. So for proper colouring we require n distinct colours which results as b-chromatic colouring. Next assign the colour c_{n+1} to the vertex v and c_{n+2}, c_{n+2}, \dots to the vertices v_1, v_2, \dots, v_n . Here the vertex v realizes its own colors but the vertices v_1, v_2, \dots, v_n does not realizes its own colors, so we cannot assign any new colours to the vertices v'_i for $i = 1, 2, \dots, n$. Therefore by assigning only existing colors to the v_i produces a b-chromatic coloring. Hence by coloring procedure the above said col-

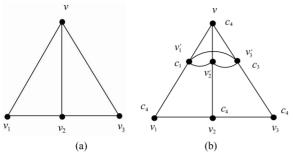


Figure 3. (a) $[F_{1,3}]$; (b) $\varphi[M(F_{1,3})] = 4$.

oring is maximal.

$$\therefore \varphi \Big[M \left(F_{1,n} \right) \Big] = n+1 \quad \text{for } n \ge 2 .$$

Eg: $\varphi \Big[M \left(F_{1,3} \right) \Big] = 4$

5. b-chromatic Number of Middle Graph of Wheel Graph

5.1. Definition of Wheel Graph

A graph W_n of order n which contains a cycle of order n - 1, and for which every graph vertex in the cycle is connected to one other graph vertex (which is known as hub). The edges of a wheel which include the hub are spokes.

5.2. Theorem

For any n > 4, $\varphi[M(W_n)] = n$ **Proof**

Let v_1, v_2, \dots, v_n be the vertices taken in anticlock wise direction in the wheel graph w_n , where v_n is the hub. In $M(w_n)$, by the definition of middle graph the edge incident with v_i together with vertex v_i induces a clique of *n* vertices in $M(w_n)$. Let v'_m be the clique in $M(w_n)$ for $i = 1, 2, \dots, n$.

Now consider a proper colouring to these vertices as follows. Consider the color class $C = \{c_1, c_2, \dots, c_n\}$. First assign the color c_1, c_2, \dots, c_n to the vertex v'_m for $i = 1, 2, \dots, n$. By the above statement that $M(w_n)$ contains a clique of order n, so we need only n colors to colour the vertices. Next we assign the color c_{n+1} to the hub. Here the vertices v'_1, v'_2, \dots, v'_n and the hub v_n realizes its colors, which produces a b-chromatic coloring. Next if we assign any new color to the vertices v_i for i =1, 2, $\dots, n - 1$, it will not produce a b-chromatic coloring. So we should assign the existing colors c_{n+1} to the vertices v_i for $i = 1, 2, \dots, n-2$ and c_1 to the verter v_{n-1} . Hence by coloring procedure it is the maximum and b-chromatic coloring.

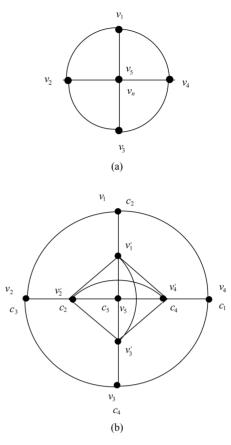


Figure 4. (a) $[w_5]$; (b) $\varphi[M(w_5)] = 5$.

$$\therefore \varphi \Big[M (w_n) \Big] = n \text{ for } n \ge 4.$$

Eg: $\varphi \Big[M (w_5) \Big] = 5$

6. References

- S. Corteel, M. Valencia-Pabon, J.-C. Vera, "On Aproximating the b-chromatic Number," *Discrete Applied Mathematics*, Vol. 146, No. 1, 2005, pp. 106-110. doi:10.1016/j.dam.2004.09.006
- [2] R. W. Irving and D. F. Manlove, "The b-chromatic Number of a Graph," *Discrete Applied Mathematics*, Vol. 91, No. 1, 1999, pp. 127-141. doi:10.1016/S0166-218X(98)00146-2
- [3] M. Kouider, "b-chromatic Number of a Graph," Subgraphs and Degrees Rappor interne LRI 1392.
- [4] V. J. Vernold, M. Venkatachalam and A. M. M. Akbar "A Note on Achromatic coloring of star graph families," *Filomat*, Vol. 23, No. 3, 2009, pp. 251-255. doi:10.2298/FIL0903251V
- [5] K. Thilagavathi and N. Roopesh, "Generalization of Achromatic Colouring of Central Graphs", *Electronic Notes in Discrete Mathematics*, Vol. 33, 2009, pp. 147-152. doi:10.1016/j.endm.2009.03.021
- [6] V. J. Vernold and A. M.M. Akbar, "On Harmonious Col-

oring of Middle Graph of C(Cn),C(K1,n) and C(Pn)," *Note di Matematica*, Vol. 29, No. 2, 2009, pp. 201-211.

- [7] H. Hajiabolhassan, "On the b-chromatic Number of Kneser Graphs," *Discrete Applied Mathematics*, Vol. 158, No. 3, 2010, pp. 232-234.
 doi:10.1016/j.dam.2009.09.023
- [8] B. Effantin, "The b-chromatic Number of-power Graphs

of Complete Caterpillars," *The Journal of Discrete Mathematical Sciences & Cryptography*, Vol. 8, 2005, pp. 483-502.

[9] C. T. Hoang and M. Kouider, "On the B-Dominating Colouring of Graphs," *Discrete Applied Mathematics*, Vol. 152, No.1-3, 2005, pp. 176-186. <u>doi:10.1016/j.dam.2005.04.001</u>