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Abstract 
 
In this paper, we developed a new approach of an analytical model to calculate the radial and transversal 
components of the acceleration due to the effects of Earth’s albedo. Its effects on the orbital motion of an 
artificial satellite are introduced. It is assumed that the satellite’s horizon is illuminated and the sun lies on 
the equator. The magnitudes of those components are obtained and their effects on orbital evolution have 
been tested for different satellites elements. The perturbations in orbital elements due to Earth’s albedo have 
been obtained using Lagrange Planetary equation in Gaussian form, in particular the case of LAGEOS satel-
lite, have been found using this new analytical formalism. 
 
Keywords: Satellite Dynamics, Non-Gravitational Forces, Albedo Effect, Orbital Perturbations, Lagrange 
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1. Introduction 

Satellite orbital dynamics is primarily influenced by the 
earth gravitational field, but there are several other fac-
tors which affect orbital motion and must be taken into 
account in order to prevent escape from the desired orbit 
and collision with another satellite or space debris in the 
neighboring orbit. The precise knowledge of the position 
and velocities of an artificial satellite is essential to the 
current technologies involving geodetic, communications 
satellites and GPS system as in Jaggi [1]. 

Such precisions require accurate models of perturbing 
gravitational and non-gravitational accelerations which 
affect the motion of an Earth satellite. 

Gravitational perturbations are dominating the force 
spectrum for most earth orbits. They are caused by 
non-uniform mass distribution inside the Earth, ocean, 
atmosphere, Earth tides, and by third body attraction 
(Sun, Moon, planets). These perturbations can be mod-
eled with a high level of confidence as all of them are 
conservative causing mainly periodic changes in the orbit 
energy). A complementary class of orbit perturbation is 
denoted as non-gravitational. This class comprises aero-
dynamic forces, direct and indirect radiation pressure 
effects, thermal radiation, and charged particle drag. 
Models of these non gravitational forces are affected by 

uncertainties in the molecule-surface and photon-surface 
interaction processes, in molecule and photon flux mod-
els, and in the solar and geomagnetic activity levels and 
their effect on the thermosphere an ionosphere. Some of 
these perturbations cause a secular, time-proportional 
decrease of the orbital energy, and hence in the orbital 
altitude. For low-Earth orbits (LEO), these altitude de-
cays must be compensated by periodic maintenance ma-
neuver. 

Earth’s albedo effect is one of the most interesting 
non-gravitational forces, which have significant effects 
on the orbital motion. Albedo is the fraction of solar en-
ergy reflected diffusely from the planet back into space 
([2]). It is the measure of the reflectivity of the planet’s 
surface. 

Therefore, the Earth albedo can be defined as the frac-
tion of incident solar radiation returned to the space from 
the Earth’s surface as in Marconi [3] 

     

 

radiation reflected back to the space
Albedo

incident radiation
  

A detailed review of Earth’s albedo as constant or 
variable with the changing of the latitude is performed by 
Green [4] and Sehnal [5]. Sehnal considered the Earth’s 
albedo as the potential function of the Earth. 

The Earth’s albedo was considered as constant in the 
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analysis for the reflected radiation pressure in many lit-
eratures for example see [6-9]. Moreover [10-14] have 
taken into account a constant albedo. 

Therefore, in this paper we are interested in an accu-
rate analytical model of the acceleration due to the 
Earth’s albedo which will be introduce in section 2. In 
section 3 we will study the effects of the albedo forces on 
the orbital motion of Earth’s satellite. 

2. The Perturbing Acceleration 

As in [4], the albedo function can be written as: 

  
0 0

sin cos sin
n

m
n nm nm

n m

P m     


 

      (1) 

where sinm
nP   is the associated Legendre polyno-

mial,   is the latitude of an arbitrary element of area 
on the Earth’s surface,   is the geocentric longitude of 
that element, and nm nm,    are constants to be deter-
mined. Using the measures data of the satellites yields to 
no reliable dependence on the Earth’s albedo on the lon-
gitude  , so that the Earth’s albedo be written as: 

0
0

sinm
m

m

P   




                 (2) 

where m  are constants, to be determined using satel-
lites’ observation. 

A polynomial fitting of second degree in cos  is 
used, 0 2

2cos     , where   being the Earth’s 
albedo constants, 0 and 2 to be determined. The data 
together with the polynomial approximation were pro-
vided by [4]; these were done by taking the measure-
ments of the Earth’s albedo by Tiros 7 satellite. The re-
sults are given for the four seasons of the year. 

In the present work we shall use 
20.62997 0.40893cos            (3) 

To illustrate how albedo affects the satellite orbits, see 
Figure 1 at which the Earth’s center at O, the OX axis is 
directed towards the sun. We denote the OX axis by the 
vector  . Moreover, the satellite will be at a point S at 
any moment,  is the position vector of the satellite 
from O,  represents an arbitrary small element of 
area on the Earth’s surface, and its position vector is

R

dE
r

R . 
The angle 1 2AOA  is   and the angle 2 3A OA  is  , 

Vis the angle between the sun and , and  is per-
pendicular to the  plane. In fact, we have three 
cases: 

r OZ
OXY

1) The satellite’s horizon lies completely in the illu-
minated hemisphere, the required condition for the al-
bedo effects on the satellite is 90   ˚ . 

2) The satellite’s horizon lies partially in the illumi-
nated hemisphere and partially in the darkened hemi 

 

Figure 1. The coordinate system with the Earth’s center O, 
the satellite S, and the sun lies on the OXY plane. 
 
sphere and the condition for the albedo effects on the 
satellite is 90      ˚ . 

3) The satellite’s horizon lies completely in the dark-
ened hemisphere and in this case 90   ˚  

In the present work, the accuracy of computing the al-
bedo acceleration in the case of constant albedo is in-
creased by using powers of 1 r  till  5

1 r , while the 
previous works used powers of 1 r  till  4

1 r  only. 
Therefore, the equations of the radial and transverse 

components of the reflected radiation pressure are given by 

 

 

* 2

4

1
= N cos cos cos cos

1
1 cos cos d d

N 1
cos cos cos cos d d

r
G D

3

G D

a ζ D G +θ G D
r

r
G D G D

ρ r

a ζ D G+θ G D G D
r r

  
 

       
  

   
 

 

 *
T =

 

where 2πN = kA mr , k is the solar constant, and 
 A m  is the area to mass ratio of the satellite, and G 
changes from   to   and  changes from D   
to  , and  cos s1 co  cosG  (see Figures 2 
and 3). Also we have; 

2
0 0 cos     , 

where   is the variable albedo coefficient and 0  is 
the constant albedo coefficient, and the normal compo-
nent of the Earth’s albedo is 

 2 1
cos cos cos cos d d

N

G D

a

N r
D G G D G

r r
 



 

      
  

 



D
 

(4) 
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Figure 2. Shows the angels θ, H, G, and D. 
 

 

Figure 3. A coordinate system to express φ in terms of G, D, 
and θ with the δS and aS for the satellite. 
 

The above equations will be solved when the Earth’s 
albedo is variable and depend on the latitude  . Then, 
from the spherical triangle ZNE in Figure 3, it is con-
venient to use the formula: 

   
 

2 2 2 2
1 1 1

2 2
1

sin 1 sin 1 sin 2 sin

cos sin

A D A A D G

A D G

 



    

 
 

where 1 sin sinSA   , put 

2 2
1 1 2 1 1 31 , 1 ,B A B A A B     2

1A  

and 

1 2 1 2 2 2 3 2, ,B B B B B     3B

T

N

, also we have 

ra a  r
 

 (variable albedo) +  (constant albedo), ar

a aT


 (variable albedo) +  (constant albedo), aT

a a N  (variable albedo) +  (constant albedo). aN
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ar may be written as: 

1 2a C C C  r , where 
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To evaluate , we have 1C
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where cos cos cosH G D , and 
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where 1 1
cos

cosr G
  . 

Two more integrals are required, which are 







9 2

6 8

10 3

5 7

sin
cos d 128 64cos 48cos

315

                      40cos 35cos ,

and

63 sin
cos d 315cos 210cos

256 1280

                      168cos 144cos 128cos

D
D D D D

D D

D D
D D D D

D D

  

 

  

  





4

8 D

 

Finally arranging the terms w. r. to. 1 r  , this yields: 
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Evaluating , 2C

   2 2

2

4

sin cos d sin 2

1
cos cos cos

1
1 cos cos d

G D

C NB G G G D

D G D
r

r
G D D

r

 

 

 



 

 

  

  
 

      
  

 

 

Finally, we can see that 2 0C   
Evaluating  3C

   2 4
3 3

4

sin cos d cos

1 1
cos cos 1 cos cos d

G D

C NB G G G D

r
G D G D D

r r

 

 

 



 

 

  

         
   

 
 

this yields: 
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Then, the radial component  can be written as: ar
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Finally can be taken the form: ar
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and 

3 0 2 2 0,   0.40893,   0.62997.         
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So, the variable Earth’s albedo  
20.62997 0.40893cos   . 

Similarly, the final form of the parameter  is given 
by 
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3. Perturbation in Orbital Elements Due to 
Earth’s Albedo 

Using Lagrange Planetary equations in Gaussian form: 
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bedo as the following: 

, 

And according to the components of the acceleration 
of the albedo force  we find out the perturbation 
in the orbital elements due to the effects of Earth’s al-

albedoa

2π
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1
d

2πf
a a    f

2π
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1
d

2πf
e e   f
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1
d

2πf
f     

4. Numerical Realization 

Depending on latitude  and for constant albedo as in 
[14], we shall consider 0s   from the right ascension, 
of the satellite and a 0N  constant albedo. Also we 
study the case of 

for
0s  , 

ate
after that 0a N , so we have 

the declination of t llite and puhe s tting  M k A m  
= 5.23 × 10–5 cm2/sec, and the Earth’s radius 1R  . 

Using these conditions and value of the eters, param
w

onsidered as two com-
po

e obtained the following results 
1) The acceleration albedoa  is c
nents only (radial a ansverse), which albedoand tr   

2 2
r T

a a   . 
2) Figure 4 illustrates the change in the acceleration 

albedo  with different values of r  ( r  change from 1.04 
 R) and 

a
R to 7   which is the angle between the Sun’s 
position and the adius vector of the satellite ( r   change 
from 0 to π), with  M k A m  = 5.23 × 10–5 cm2/sec, 
where R is the equa f the Earth 

3) Figures 5-7 represent the variation of t
torial radius 

he accelera-
tio

o

n albedoa versus   for the following satellites: a) 

GFO semi m r axis = 7162 km, b) LAGEOS1 
with semi major axis = 12160 km, and c) ETALON1 
with semi major axis = 255000 km, the figures shows the 
magnitude of the acceleration is increased in LOE and 
decreased in MEO, but in the case of LAGEOS1 satellite,  
 

 with ajo

 

Figure 4. The variation of the acceleration  with realbedoa -
spect to r and θ (rad). 

Copyright © 2011 SciRes.                                                                                  AM 



Y. A. ABDEL-AZIZ  ET  AL. 806
 

 

 

Figure 5. The variation of the acceleration with re albedoa -
spect to θ (rad) for GFO satellite. 
 

 

Figure 6. The variation of the acceleration  with realbedoa -
spect to θ (rad) for Lageos1 satellite. 
 

 

Figure 7. The variation of the acceleration with re

e acceleration have a significant variation with respect 

 albedoa -
spect to θ (rad) for Etalon1 satellite. 
 
th
to the angle  . 

4) Figures 8 an d 13 represent the variation in the or-
bital elements (semi major axis, eccentricity and the ar-
gument of perigee) versus the angle   for LAGEOS1 
and STARLETTE (semi major axis = 7334.092) satel-
lites. Figures 8 and 9 show that the variation in the semi 

major axises due to albedo force for LAGEOS and 
STARLETTE satellites is in order (10–9) which is a sig-
nificant effects. Also, Figures 10 and 11 show the varia-
tion in the eccentricity due to albedo force for LAGEOS 
and STARLETTE satellites is in order (10–14, 10–13) 
which means the albedo force can affect the eccentricity. 
Moreover, Figures 12 and 13 show the variation in the 
argument of perigee due to albedo force for LAGEOS 
and STARLETTE satellites is in order (10–10, 10–11) 
which means the albedo force can have a significant ef-
fects on the argument of perigee. 
 

 

Figure 8. The Albedo perturbation in semi-major axis for 
Lageos1 satellite. 
 

 
 

igure 9. The Albedo perturbation in semi-major axis for F
Starlet satellite. 
 

 
 Figure 10. The Albedo perturbation in eccentricity fo

Lageos1 satellite. 
r 
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Figure 11. The Albedo perturbation in eccentricity for Star-
let satellite. 
 

 

Figure 12. The Albedo perturbation in argument of perigee 
for Lageos1 satellite. 
 

 

Figure 13. The Albedo perturbation in argument of perigee 
for Starlet satellite. 

n, , arising from the effect of 
 radiatio

5. Conclusions 

The net acceleratio  albedoa
the diffusion of reflected n on the satellites, de-
creases with the distance between the Earth and the sat-
ellites. This acceleration is in the order of 10–9 for the 
satellites in low earth orbit which means that this force 
decreases when r  increases. We could conclude that 
this force is in the same order of the air drag force, radia-
tion pressure and the effect of Sun and Moon on the sat-
ellite. This is the reason for including the albedo force on 
the orbital elements of the satellite. However, in our 

cases we could conclude that the best representation of 
the Earth’s albedo function is to consider the Earth’s 
albedo as a function of latitude  , which inters the 
equation of motion of the satellite. We found out that the 
Albedo force have a significant effects on the orbital 
elements of the satellites. 
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