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Abstract 
 
Using the finite element method (FEM) in two dimensions and the CST MICROWAVE STUDIO® (CST 
MWS) Transient Solver, the electromagnetic (EM) analysis and the design of a novel compact ultra wide-
band (UWB) bandpass filter using rectangular coaxial cables with square inner conductors, convenient for 
high power applications, are presented. The design of the UWB BP filter is based on the use of impedance 
steps and coupled-line sections. The center frequency around 6.85 GHz was selected, the bandwidth is be-
tween 3 - 10 GHz, the insertion-loss amounts to around 0.35 dB and the return loss is found higher than 10 
dB in a large frequency range 4 - 9.5 GHz. The simulated results of stopband performances are better than 15 
dB for a frequency range up to 11 GHz. For the selected center frequency and on a substrate with a dielectric 
constant of 2.03, the rectangular coaxial cables BPF with square inner conductors is only 6.7 × 8.9 × 33.4 
mm in size. 
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1. Introduction 
 
Since the Federal Communications Commission (FCC) 
released the unlicensed use of ultra-wideband (UWB: 3.1 
to 10.6 GHz) wireless systems in February 2002 [1], 
many researchers have started exploring various UWB 
components, devices, and systems [2,3]. As one of the 
key circuit blocks in the whole system, the UWB band- 
pass filter (BPF) has been studied through the use of the 
matured filter theory [4] and other techniques [5,6]. 

On the basis of impedance steps and coupled-line sec- 
tions as inverter circuits, several works were interested in 
the design of planar broadband filters with low loss, 
compact size, high suppression of spurious responses, 
and improved stopband performances [7,8]. 

In this work, we propose a novel and a simple compact 
ultra wideband (UWB) bandpass filter using rectangular 
coaxial cables with square inner conductors, convenient 

for high power applications. The filter can be easily de-
signed and fabricated using FeeFEM environment [9], 
CST MICROWAVE STUDIO® (CST MWS) Transient 
Solver [10] or other commercial EM software. The de- 
sign of the UWB filter is based on the use of impedance 
steps and coupled-line sections. The center frequency 
around 6.85 GHz was selected, the bandwidth is between 
3-10 GHz, the insertion-loss amounts to around 0.35 dB 
and the return loss is found higher than 10 dB in a large 
frequency range (4 - 9.5) GHz. The simulated results of 
stopband performances are better than 15 dB for a fre- 
quency range up to 11 GHz. For the selected center fre- 
quency and on a substrate with a dielectric constant of 
2.03, the rectangular coaxial cable BPF with square inner 
conductors is only 6.7 × 8.9 × 33.4 mm in size. What 
follows are the analysis and the design of this compact 
UWB filter using both FEM method under FeeFEM en- 
vironment and CST MWS Transient Solver. 
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2. Rectangular Coaxial Cables 
 
Coupled rectangular coaxial cables can provide signal 
coupling in a compact form for any characteristic im- 
pedance systems. They were used previously in [11] to 
build a directional coupler. This kind of coupler has ex- 
cellent performance in terms of high directivity, low 
VSWR, good isolation, excellent electromagnetic inter- 
ference (EMI) shielding, high power handling capability, 
and low cost due to the use of commercial semirigid rec- 
tangular coaxial cables and elimination of a mechanical 
housing. 

Figure 1 shows the cross-section of a rectangular co- 
axial coupled line with square inner conductors. The ca- 
ble is assumed to be lossless with an inner squared con- 
ductor of side (2a1) and an outer rectangular conductor of 
height (2a2) and width (2(a2 + h)). Dielectric material 
with dielectric constant (r) fills the inside of the cable. A 
portion of each cable is cut out and two of these cut ca- 
bles are joined to form the coupled line. The cut depth is 
represented by (h) on the cross section as shown in Fig- 
ure 1. 
 
3. Numerical Resolution 
 
The electrical properties of the lossless and homogene- 
ous symmetrical coupler presented in Figure 1 can be 
described in terms of its primary parameters [L] and [C], 
and its secondary parameters k, Z0e and Z0o [12,13].  
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The inductance matrix [L] contains the self-induct- 
ances on the diagonal (L11 = L22 are the proper induct- 
ances) and the mutual inductances (L12 = L21) between 
the two coupled lines. 

Matrix [C] accounts for the capacitative effects be-
tween the two coupled lines, characterizing the electric 
field energy storage in the coupler. (C11 = C22) are the 
proper capacitances and (C12 = C21) is the coupling ca-
pacitance. 
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Figure 1. Cross section of the rectangular coaxial coupled 
line with square inner conductors. 
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is the coupling coefficient and (Z0e, Z0o) are respectively 
the even- and the odd-modes characteristic impedances 
of the coupler. 

On the other hand, the isolated line of Figure 2 is de- 
scribed in terms of its inductance and capacitance per 
unit length (L and C) and in term of its characteristic 
impedance Z0. 

In reference 14, we successfully realized a numerical 
tool under FreeFEM environment, used to analyze elec- 
tromagnetic (EM) parameters for rectangular coaxial 
couplers with square inner conductors. This numerical 
tool can be easily adapted to study any other TEM or 
quasi-TEM structure [15]. Also, we proposed rigorous 
analytical expressions for the primary parameters (in- 
ductance [L] and capacitance [C] matrices) and the im- 
pedances (Z0e, Z0o) of the even- and odd-modes for rec- 
tangular coaxial couplers with square inner conductors 
[14]. The analytical expressions are convenient for all 
coupled rectangular coaxial couplers having square inner 
conductors with a wide range of cut depths and an outer 
to inner conductor ratio between 1.4 and 10. We pro- 
posed others analytical expressions in order to calculate 
the EM parameters of squared coaxial lines [16]. All our 
analytical expressions were deduced from rigorous 
analyses by the FEM and MoM methods under respect- 
tively FreeFEM and LINPAR [17] environments. Using 
these analytical expressions, an analysis can be readily 
implemented in modern CAE software tools for the de- 
sign of microwave and wireless components. 
 
4. UWB Filter Using Rectangular Coaxial 

Cables 
 
Assuming 50-Ω external feeding lines, Figures 3(a) and 
3(b) show respectively the 3D schematic representation 
and the longitudinal section of the proposed UWB BPF. 
An isolated rectangular coaxial line with one square inner 
conductor in the middle and a rectangular coaxial coupled 
line with square inner conductors at the two ends [18]. 
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Figure 2. Cross section of the rectangular coaxial line with 
one square inner conductor. 
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To achieve the specified UWB bandpass, the three 
sections of this filter are arranged with the lengths of 
about one quarter-, one half-, and one quarter-wave- 
length, i.e., /4, /2 and /4 [18], as marked in Figure 
3(b). 
 
5. EM Analyses and Design 
 
As part of the study, we were interested in the design of 
the 50 -UWB bandpass filter having an inner conductor 
of side (2a1 = 2 mm), an outer conductor of side (2a2 = 
6.7 mm) and a dielectric constant of 2.03, we have varied 
the cut depth (h) from (a1) to (a2) in order to assure for 
the rectangular coaxial coupler a coupling coefficient 
less than 5 dB (Figure 4). 

A coupling coefficient of 2.4 dB was obtained using 
our previous works based on FEM for a cut depth (h) of 
1.1 mm, yielding a characteristic impedance of approxi- 
mately 0 0e oZ Z  = 26.24 Ω and the following pri- 
mary EM parameters: 
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Figure 3. Longitudinal section of the proposed UWB BPF 
using rectangular coaxial cables with square inner conduc-
tors. 

For a length of one quarter-wavelength, i.e., l = /4 
and in order to verify if the designed coupler has a cou-
pling coefficient less than 5 dB in the frequency range 
[3.1 - 10.6] GHz, we plotted the resulting coupling coef-
ficient of the rectangular coaxial coupler of Figure 4 
versus frequency as shown in Figure 5, using MATPAR 
software [19]. From this figure, it appears clearly that the 
coupling coefficient (S12) and the isolation (S14) vary 
respectively between 4 - 5.5 dB and 11.4 - 11.5 dB in the 
frequency band [3.1 - 10.6] GHz. In the same frequency 
band the minimum directivity of the coupler  14 12S S  
is approximately 6 dB. 

For the middle line of the UWB BPF represented in 
Figure 6, the outer conductor parameters, the cut depth 
(h) and the dielectric constant were kept constants (i.e. a2 
= 3.35 mm, h = 1.1 mm and r = 2.03) and the inner 
conductor side (2a1) was varied as needed in order to get 
a characteristic impedance (Z0) of 19  for the middle 
line. This value of (Z0) was obtained for (a1 = 2.1 mm), 
yielding an inductance and a capacitance per unit length 

respectively of 90.75 nH/m and 248.55 pF/m [14]. 
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Figure 4. Rectangular coaxial coupler with square inner 
conductors. 
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Figure 5. Scattering parameters of the rectangular coaxial 
coupler presented in Figure 4. 
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cables with square inner conductors, are in very reason-
able agreement with those using planar structures. The 
plotted wideband also accorded the FCC-defined UWB 
for high power applications. 

 V/m V/m 

For the simulated UWB filter using CST, the inser-
tion-loss amounts to around 0.35 dB and the return loss 
is found higher than 10 dB in a large frequency band (4 - 
9.5) GHz. The simulated results of stopband perform-
ances are better than 15 dB for a frequency range up to 
11 GHz. 

 
For this type of UWB bandpass filter using rectangular 

coaxial cables with square inner conductors, there are no 
numerical or experimental results in the scientific litera-
ture. In order to check our results obtained by the CST 
MWS Transient Solver we were obliged, for the same 
geometrical and physical parameters of our filter, to 
make simulations using our previous works and estimate 
the resulting scattering parameters of the designed UWB 
filter using MATPAR software. The results coefficients 
(S11) and (S12) as functions of frequency for the proposed 
UWB BP filter structure are provided in Figure 9. The 
Figures 8 and 9 show that the responses obtained by the 
two numerical models (CST and MATPAR) are in a 
good agreement. 

Figure 6. CST simulation of the middle line of the proposed 
UWB BPF. 

 
We applied the CST MWS Transient Solver in the aim 

of checking the predicted electrical performance of our 
proposed and designed UWB BPF using rectangular co-
axial cables of Figure 3. The designed filter is charac-
terized by the features marked in Figure 7. 

In the frequency range [1 - 11] GHz, Figure 8 provides 
plots of the resulting scattering parameters obtained of the 
proposed and designed UWB BPF. It can be seen that the 
simulated responses, obtained by the CST MWS Tran- 
sient Solver, of the UWB filter using rectangular coaxial  
 

 

Figure 7. Longitudinal section view of the designed UWB BPF. 
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Figure 8. Scattering parameters of the designed 50 Ω-UWB BPF obtained by the CST MWS Transient Solver. 
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Figure 9. Scattering parameters of the designed 50 Ω UWB BPF obtained by MATPAR software. 

 
6. Conclusions 
 
A novel and a simple compact ultra wideband bandpass 
filter using rectangular coaxial cables with square inner 
conductors, convenient for high power applications, is 
presented, analyzed and designed. The design of the 
UWB filter is based on the use of impedance steps and 
coupled-line sections. 

The designed rectangular coaxial cable bandpass filter 
is only 6.7 × 8.9 × 33.4 mm in size and can be easily 
designed and fabricated using CST MICROWAVE 
STUDIO® Transient Solver or other commercial EM 
software. The bandwidth of the designed filter is between 
3 - 10 GHz, the insertion-loss amounts to around 0.35 dB 
and the return loss is higher than 10 dB in a large fre-
quency range. The simulated results of stopband per-
formances are better than 15 dB for a frequency range up 
to 11 GHz. 
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