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Abstract 

Third order nonlinear ordinary differential equation, subject to appropriate boundary conditions, arising in 
fluid mechanics is solved exactly using more suggestive schemes-Dirichlet series and method of stretching 
variables. These methods have advantages over pure numerical methods in obtaining derived quantities ac-
curately for various values of the parameters involved at a stretch and are valid in a much larger domain 
compared with classical numerical schemes. 
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1. Introduction 

In this article we consider the effect of blowing and suc-
tion along a vertical flat plate on free convection in air or 
water which are of significant interest in recent years. 
Earliest study on this topic was by Eichhorn (1960) who 
investigated the effects of both wall temperature and the 
blowing or suction velocity with prescribed power func-
tions of distance from the leading edge. Eichhorn (1960) 
shows that the similarity solutions for the problem are 
possible if the exponents in the prescribed power func-
tions are related in a particular manner. Sparrow and 
Celss (1961) show a perturbation method for analyzing 
more general problem with arbitrary values of exponents 
and these results were confirmed by Mabuchi (1960) by 
an integral method. 

Our aim here is to present qualitative features of the 
physical problems of interest. Majority of the problems 
considered here are from fluid dynamics. The residual 
warm water discharged from a geothermal power plant is 
disposed of through subsurface re-injection wells which 
can be idealized as vertical plane surface in porous me-
dium. The buoyancy flow past bodies immersed in a 
saturated porous medium have been studied by Cheng 
(1977, 1977). Merkin (1978) investigated the effect of 

uniform mass flux on the free convection boundary layer 
on a vertical wall in a saturated porous medium. Cheng 
and Minkowycz (1977) have studied similarity solution 
for the case of wall temperature and suction velocity 
varying as powers of x, the longitudinal distance. In all 
cases, the numerical solutions have been given for se-
lected values of parameters involved. 

The third order nonlinear ordinary differential equa-
tions over an infinite interval with suction/injection pa-
rameter wf  appear in various branches of physics and 
engineering and are of special interest. In very few cases, 
they have analytical solution. Sakiadias (1961) investi-
gated the boundary layer flow on continuous solid sur-
face with a constant speed. Erickson et al. (1966) have 
studied the problem of moving surface with suction or 
injection. Since the surface is flexible the filament may 
be stretched during the course of ejection and so only the 
surface velocity deviates without being uniform. Samuel 
and Hall (1973), who investigated, the similarity solution 
for laminar boundary layer on a continuous moving po-
rous surface, obtain a series with exponential terms as 
their solutions. The heat and mass transfer on stretching 
sheet with suction or blowing was investigated by Gupta 
and Gupta (1977). Ackroyed (1978) obtains the series 
solution of steady two dimensional laminar boundary 
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layer flows in fluids of constant density and constant 
viscosity. The stretching sheet may be considered either 
as an impermeable or permeable. The two dimensional 
steady boundary layer flow in a permeable surface with 
stretching velocity in a quiescent fluid in the presence of 
suction or injection and obtain exact solution for specific 
parameters and express the smallest entrainment velocity 
corresponding to a vanishing skin friction in a closed 
form was studied (Magyari and Keller, 2000). 

For specific type of boundary conditions i.e ( )f     
 Dirichlet series solution is more efficient and pro-

vides a uniformly valid solution throughout the boundary 
layer flow caused by saturated porous medium at high 
Raleigh numbers. Kravchenko and Yablonskii (1965) 
were the first to use Dirichlet series for the solution of 
third order nonlinear boundary value problem over infi-
nite range. A general discussion of the convergence of 
the Dirichlet series may be found in (Riesz, 1957). The 
accuracy as well as uniqueness of the solution can be 
confirmed using other powerful semi-numerical schemes. 
Semi-numerical methods in this category require intro-
duction of new variables, thus converting third order 
equations into second order equations, whose solution 
may be obtained by using power series. We also find the 
approximate analytical solution by the method of 
stretching variables. Sachdev et al. (2005) have analyzed 
various problems from fluid dynamics of stretching sheet 
using this approach and analyzed governing equations, 
solution obtained are more accurate compared with ear-
lier numerical findings. 

0

The paper is organized as follows: In Section 2 the 
mathematical formulation of the proposed problem with 
relevant boundary conditions is given, its exact solution 
for 1A   and  is also presented. Section 3 is 
devoted to semi-numerical method for the solution of the 
problem using Dirichlet series and in Section 4 the 
method of stretching variables is used. In Section 5 de-
tailed results obtained by the novel procedures explained 
here are compared with the corresponding numerical 
solutions. 

1B  

2. Mathematical Formulation 

Case I: The boundary layer equations of momentum and 
energy corresponding to flow past a vertical plate em-
bedded in a saturated porous medium can be reduced to 
the form (Cheng, 1977)  

0f                      (1) 

1
0

2
f f

       
 

 

w

          (2) 

where the plate temperature and suction or injection ve-
locity are given by 

 and  n
wT T Ax v ax

             (3) 

where  1 /2n     
The relevant boundary conditions are  

at 0 :  1, 

as :  0, 0
wf f

f

 
 
  

   
           (4) 

and wf  is the non-dimensional form which is positive 
for the withdrawal of fluid (suction) and negative for the 
discharge of fluid (injection). 

Eliminating   from (1) and (2), we get  

21
0

2
f ff f

       
 

         (5) 

and the boundary conditions become 

 0 wf f , ,      (6)  0 1f     0f   

Case II: The momentum equation for the vapour 
boundary layer derived by (Ackryod, 1978) is 

23 2f ff f   0                (7) 

with the boundary conditions 

 0 wf f ,  0 1f   ,       (8)   0f   

This problem describes the vapour boundary layer in-
duced by the falling motion of the condensate layer on a 
cold vertical plate. The vapour is at saturation tempera-
ture and far from the plate at rest. Koh et al (1961) who 
first investigated the problem have shown that the con-
densate motion is restrained somewhat by the shear 
stress produced in the vapour boundary layer.  

Case III: We also consider the self-similar two-di-
mensional steady boundary layer flow induced by a per-
meable surface stretching with velocity 

 w wu U x
 

in quiescent fluid in the presence of suc-

tion or injection with velocity  
 1

2 
m

wv x a x


 . For  

 
and  by (Magyari and Keller, 2000)  0wf  1m  

2 0f ff f     , where 
2

1

m

m
 


     (9) 

satisfying boundary conditions   
 0 wf f ,  0 1f   ,        (10)   0f   

The equation describing the above boundary value 
problems can be put conveniently in more general third 
order nonlinear differential equation of the type 

2 0f Aff f      '
d

d
        (11) 

satisfying boundary conditions are 

 0 wf f ,  0f  1  and     (12)   0f   

where A ,  are constants, B A  is always positive and 
B may be positive or negative.  
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Under the transformation    
1/2

1
f F

A
    

 
 and 

1/2= A   Equation (11) becomes 

       2 0

 where 

F F F F

B

A

    



   



，

        


    (13) 

and the boundary conditions (12) become 

  1/2
wF A f  , ,    (14)  0 1F     0F   

For the particular case with 1A   and  (1B  1  ) 
integrating (13) twice with respect to  , using 

 0 wf f   , and subjected to the boundary conditions 
(14), we get 

2
21

1
2 2 w

F
F f                (15) 

the Equation (15) is a Riccati type equation, whose solu-
tion is given as 

     
   

( /2) ( /2)

( /2) ( /2)

w w

w w

f e f e
F

f e f e

   

   

 
 

 





   
  

   
  (16) 

where 22 wf   . For  Equation (13) be-
comes 

0wf 
   22tanh /F    

3. Dirichlet Series Approach 

We seek Dirichlet series solution for Equation (11) sat-
isfying  in the form (Kravchenko and 
Yablonskii, 1965)  

  0f   

1

i i
i

i

f b a
A

e  






              (17) 

where 0   and 1a  . Substituting (17) into (11), 
we get 
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



 
 

 

 



 

 



 

 



 

 





    (18) 

For , we have 1 1 . We assume 1i  0b a b a   1 1b   
and  is any arbitrary parameter. We rewrite (18) for 
recurrence relation to obtain coefficients as 

a

 
1

2
2

1

1
 

( 1)

i

i
k

b Ak Bk i k
i i






  
 k i kb b      (19) 

for . If 2,  3,  4,i   1a   and 1 1b  , then the se-
ries (17) converges absolutely for any 0   and 
   , where 

ln
0

a
 


 

    
 

             (20) 

and 0   is a sufficiently small number depending on 
 and a  . The series (17) converges absolutely and 

uniformly on the half axis    .  
The series (17) contains two free parameters namely a 

and  . These unknown parameters are determined from 
the remaining boundary conditions (12) at 0   

1

(0) i
i

i
wf b a f

A

 




           (21) 

and           2

1

(0) ( ) 1i
i

i

f i b




 a           (22) 

The solution of transcendental Equations (21) and (22) 
yield constants  and a  . The solution of these tran-
scendental equations is equivalent to the unconstrained 
minimization of the functional 

2 2
2

1 1

( ) 1i i
i w i

i i

b a f i b a
A

  
 

 

             
     (23) 

We use Powell’s method of conjugate directions 
(Press et al 1987) which is one of the most efficient 
techniques for solving unconstrained optimization prob-
lems. This helps in fixing the unknowns  and a   
uniquely for different values of the parameters A ,  
and w

B
f . Alternatively, Newton method is also used to 

determine the unknown parameters accurately for dif-
ferent value of wf . 

For the shear stress at the surface for the problem (11) 
it is given by  

2

1

(0) ( )i
i

i

F b a i 




              (24) 

4. Method of Stretching Variables 

Most of the boundary value problems over infinite inter-
vals are not amenable in obtaining analytical solution. In 
such situations, it is possible to obtain approximate solu-
tion of these problems. As the governing equation is 
sometimes too difficult to solve exactly, one has to ap-
proach the approximate analysis. Many approximate 
methods are ad-hoc and often provide solutions for major 
engineering problems and physical insight into the prob-
lems. The approximate solution considered here to these 
problems, are based on the idea of stretching the vari-
ables of the flow problems. We have to choose suitable 
trial velocity profile f   satisfying the boundary condi-
tions automatically and later integrate f   which will 
satisfy the remaining boundary conditions. Substitution 
his resulting function into the given equation gives the  t        
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Table 1. Comparison of the values of  for  f 0 0   of Equation (5) obtained by the dirichlet series method, method of 

stretching variable and pure numerical method for different values of . wf

Dirichlet series 
wf  

a     0f   
Numerical  0f   Method of stretching

–4 
–3 
–2 
–1 

–0.8 
–0.6 
–0.4 
–0.2 

0 
0.2 
0.4 
0.6 
0.8 
1 
2 
3 
4 

--- 
--- 
--- 

–5.81754 
–4.98883 
–4.26616 
–3.63959 
–3.09976 
–2.63759 
–2.24441 
–1.91159 
–1.63128 
–1.39596 
–1.19881 
–0.59957 
–0.33854 
–0.21181 

--- 
--- 
--- 

0.68320 
0.70035 
0.72103 
0.74565 
0.77457 
0.80806 
0.84637 
0.88943 
0.93732 
0.98986 
1.04683 
1.38705 
1.79089 
2.23011 

--- 
--- 
--- 

–0.20404 
–0.24291 
–0.28633 
–0.33431 
–0.38682 
–0.44375 
–0.50499 
–0.57006 
–0.63888 
–0.71111 
–0.78640 
–1.19824 
–1.64747 
–2.11606 

–0.00305 
–0.01823 
–0.097213 
–0.20404 
–0.24291 
–0.28633 
–0.33431 
–0.38682 
–0.44375 
–0.50490 
–0.57004 
–0.63888 
–0.71110 
–0.78640 
–1.19824 
–1.64747 
–2.11606 

–0.08012 
–0.10391 
–0.14549 
–0.22871 
–0.25461 
–0.28493 
–0.32032 
–0.36129 
–0.40825 
–0.46129 
–0.52032 
–0.58493 
–0.65461 
–0.72871 
–1.14549 
–1.60391 
–2.08012 

Table 2. Comparison of the values of  for  f 0 1 / 3   of Equation (5) obtained by the Dirichlet series method, Method 

of stretching variable and pure numerical method for different values of wf . 

Dirichlet series 
wf  

A     0f   
Numerical  0f   Method of stretching 

–4 
–3 
–2 
–1 

–0.8 
–0.6 
–0.4 
–0.2 

0 
0.2 
0.4 
0.6 
0.8 
1 
2 
3 
4 

--- 
--- 

–7.86898 
–3.96721 
–3.37044 
–2.85267 
–2.40691 
–2.02624 
–1.70376 
–1.43260 
–1.20609 
–1.01785 
–0.86197 
–0.73313 
–0.35388 
–0.19604 
–0.12140 

--- 
--- 

0.56238 
0.64512 
0.67926 
0.71814 
0.76225 
0.81201 
0.86775 
0.92965 
0.99773 
1.07187 
1.15179 
1.23715 
1.72986 
2.29516 
2.89895 

--- 
--- 

–0.24571 
–0.39700 
–0.44153 
–0.49164 
–0.54760 
–0.60957 
–0.67765 
–0.75172 
–0.83161 
–0.91701 
–1.00753 
–1.10272 
–1.63357 
–2.22255 
–2.84146 

–0.12499 
–0.16640 
–0.24372 
–0.39700 
–0.44153 
–0.49164 
–0.54759 
–0.60958 
–0.67765 
–0.75172 
–0.83161 
–0.91701 
–1.00753 
–1.10274 
–1.63357 
–2.22255 
–2.84145 

–0.15738 
–0.20185 
–2.27614 
–0.41202 
–0.45136 
–0.49602 
–0.54654 
–0.60333 
–0.66667 
–0.73667 
–0.81320 
–0.89602 
–0.98469 
–1.07869 
–1.60948 
–2.20185 
–2.82405 

 
residual of the form  ,R    which is called defect 
function. Using least squares method, the residual of the 
defect function can be minimized. For details see (Afzal, 
1982; Ariel, 1994; Mamaloukas, 2002). 

where  is an amplification factor. In view of (27), 
the system (25-26) are transformed to the form  

0a 

 2 2 0
w

H A f H H BH       , '
d

d
    (28) 

Using the transformation wf f F   into the system 
(11), we get with the boundary conditions 

(0) 0H  , (0) 1H   ,      (29) ( ) 0H     2 0,wF A f F F BF       '
d

d
     (25) 

We choose velocity profile for general A, B and fw  
to be of the form  and the boundary conditions become 

 0 0F  ,  0 1F   ,       (26)   0F    exp( )H                  (30) 
We introduce a stretching parameter   for both F and 
  in the form 

which satisfies the derivative conditions in (29) at 0   
and    . Integrating (30) with respect to   be-
ween the limits 0 to ( ) ( )H F    and              (27)   using conditions (29), we get  t           
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Table 3. Comparison of the values of  for  f 0 1   of Equation (5) obtained by the Dirichlet series method, method of 

stretching variable and pure numerical method for different values of wf . 

Dirichlet series 
wf  

a     0f   
Numerical  0f   Method of stretching

–4 
–3 
–2 
–1 

–0.8 
–0.6 
–0.4 
–0.2 

0 
0.2 
0.4 
0.6 
0.8 
1 
2 
3 
4 

–17.94427 
–10.90833 
–5.82843 
–2.61803 
–2.18163 
–1.80642 
–1.48792 
–1.22099 
–1.00000 
–0.81900 
–0.67208 
–0.55358 
–0.45837 
–0.38197 
–0.17157 
–0.09167 
–0.05573 

0.23607 
0.30278 
0.41421 
0.61803 
0.67703 
0.74403 
0.81980 
0.90499 
1.00000 
1.10499 
1.21980 
1.34403 
1.47703 
1.61803 
2.41421 
3.30277 
4.23607 

–0.23607 
–0.30278 
–0.41421 
–0.61803 
–0.67703 
–0.74403 
–0.81980 
–0.90499 
–1.00000 
–1.10499 
–1.21980 
–1.34403 
–1.47703 
–1.61803 
–2.41421 
–3.30277 
–4.23607 

–0.2360 
–0.3027 
–0.4142 
–0.6180 
–0.6770 
–0.7440 
–0.8198 
–0.9049 
–1.0000 
–1.104 
–1.219 
–1.344 
–1.477 
–1.618 
–2.414 
–3.302 
–4.236 

–0.23607 
–0.30277 
–0.41421 
–0.61803 
–0.67703 
–0.74403 
–0.81980 
–0.90499 
–1.00000 
–1.10499 
–1.21980 
–1.34403 
–1.47703 
–1.61803 
–2.41421 
–3.30278 
–4.23607 

Table 4. Comparison of the values of  obtained by the Dirichlet series method, Method of stretching variable and 

pure numerical method for different values of 

 f 0

wf . 

Dirichlet series 
wf  

a     0f   
Numerical  0f   Method of stretching

3 
2 
1 
0 

–0.2 
–0.4 
–0.6 
–0.8 
–1.0 

–0.01157 
–0.02420 
–0.07161 
–0.36212 
0.51828 
–0.73429 
–1.02209 
–1.37560 
–1.65643 

9.32272 
6.46670 
3.80275 
1.80184 
1.55188 
1.35370 
1.20031 
1.10092 
1.13688 

–9.269193 
–6.389695 
–3.672835 
–1.540735 
–1.256436 
–1.026515 
–0.847661 
–0.744998 
–0.590908 

–9.269193 
–6.389695 
–3.672835 
–1.540735 
–1.256433 
–1.026417 
–0.845381 
–0.745377 
–0.597831 

–9.25219 
–6.36650 
–3.64087 
–1.52753 
–1.25671 
–1.04114 
–0.87295 
–0.74251 
–0.64087 

 
1 exp( )H    .             (31) 

Substituting (31) into (28) we get the residual defect 
function  ,R     

   
   

2( , ) exp 2 exp

1 exp 1 w

R B

A f

    

 

  

  

 
  (32) 

By using the least squares method for minimization of 
error and using Euler-Lagrange equation which is sim-
plified to minimization of error in the form  

 2

0

, dR   





   0 .          (33) 

Substituting (32) into Equation (33) and solving for 
 , we get 

2 21
3 4 8 3

2 3
w wAf A B A f       

     (34) 

Thus, the final form of the solution becomes 

 1
1 expwf f 


      .        (35) 

The expression (35) gives the solution of Equation (9) 
for all A ,  and wB f . It is striking that the Equation 
(35) also admits analytical solutions for 1A  , 1B    
and w 0f  ; 1f e   , for 1A  , 1B   and 

w 0f  ; 2 ta / 2nh( )f  . It is of interest to note 
that, the former exact solution may also be recovered 
from the method of stretching variable. 
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Table 5. Comparison of the values of  obtained by the Dirichlet series method, Method of stretching variable and 

pure numerical method for different values of 

 f 0

  and wf . 

Dirichlet series 
  wf  

a     0f   
Numerical   0f  Method of stretching

2 
1.0 
0.5 
0.0 

–0.33757 
–0.51732 
–0.81027 

1.58166 
1.22111 
0.90564 

–1.84998 
–1.54028 
–1.28181 

–1.84989 
–1.54047 
–1.28215 

–1.88444 
–1.56498 
–1.29099 

1 
1.0 
0.5 
0.0 

–0.38197 
–0.60961 
–1.00000 

1.61803 
1.28078 
0.99999 

–1.61803 
–1.28078 
–1.00000 

–1.61803 
–1.28078 
–1.00000 

–1.61803 
–1.28078 
–1.00000 

–1 
1.0 
0.5 
0.0 

–0.53591 
–1.00705 
–1.30794 

1.73207 
1.51099 
1.61320 

–1.00002 
–0.50747 
–0.41993 

–1.00009 
–0.50845 

--- 

--- 
--- 
--- 

–2 
1.0 
0.5 
0.0 

–0.91332 
–0.88355 
–0.83355 

2.12093 
1.72753 
1.42219 

–0.37867 
–0.23406 
–0.15829 

--- 
--- 
--- 

--- 
--- 
--- 

 
5. Numerical Results 

In the present paper, we have given exact analytic solu-
tion of nonlinear boundary value problem (11) and (12) 
in the form of Dirichlet series (17) and approximate so-
lution by using method of stretching variable (11). The 
calculated values of representing the shear stress 
at the surface associated with different parameters 

 0f 
A , 

 and wB f  for different sets of values of  and a   
are given in Tables 1-5. 

The problem explained in (5) corresponds to 
1

2
A


 , B  

 
and for different values of wf . An 

analytic solution in terms of series is obtained using 
Dirichlet series method and also by an approximate solu-
tion method of stretching variable. Comparison of the 
solution obtained is made with existing numerical solu-

tion by (Cheng, 1977) for 
1

0,  , 1
3

   and these are 

given in Table 1-3. An excellent agreement between the 
present computation and numerical values is achieved.  
Also, the exact analytical solution for 1A   and 1B   
have been recovered. 

The problem mentioned in (7) corresponds to 3A   
and  and different values of w2B   f . The results 
obtained using Dirichlet series and method of stretching 
variables is given in Table 4. These results agree very 
well with the pure numerical solutions.  

 The problem (9) corresponds to 1A   and 
2

1

m
B

m
  


. For specific values of 

1
0,  

3
  and 

1

2
 , for which exact analytic solution of the problem 

subjected to the boundary conditions (12) is given by 
(Magyari and Keller, 2000). For  corresponds to 1m 

1A  , 1B      for different wf , an excellent 

agreement between Dirichlet series and method of 
stretching variable with exact solution is achieved and 

these are given in Table 3. Also, for 
1

3
m   which cor-

responds to 1A  , 1B    , we recover an exact 

analytical solution (16).  

6. Conclusions  

In this article, a class of nonlinear ordinary differential 
uations with relevant boundary conditions arising in 
boundary layer theory has been solved using Dirichlet 
series and method of stretching variables. These two 
methods give a simple and efficient way to solve the 
boundary value problems, particularly, when   0f    . 
All the results thus obtained have been compared with 
that of direct numerical solution and are rather remark-
able.  
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