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Abstract 

In this study, we use B-spline functions to solve the linear and nonlinear special systems of differential 
equations associated with the category of obstacle, unilateral, and contact problems. The problem can easily 
convert to an optimal control problem. Then a convergent approximate solution is constructed such that the 
exact boundary conditions are satisfied. The numerical examples and computational results illustrate and 
guarantee a higher accuracy for this technique. 
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1. Introduction  

Variational inequality theory has become an effective 
and powerful tool for studying obstacle and unilateral 
problems arising in mathematical and engineering sci- 
ences. This theory has developed into an interesting 
branch of applicable mathematics, which contains a 
wealth of new ideas for inspiration and motivation to do 
research. It has been shown by Kikuchi and Oden [1] that 
the problem of equilibrium of elastic bodies in contact 
with a right foundation can be studied in the framework 
of variational inequality theory. Various numerical me- 
thods are being developed and applied to find the nume- 
rical solutions of the obstacle problems including finite 
difference techniques and spline based methods. In 
principle, these methods cannot be applied directly to 
solve the obstacle problems. However, if the obstacle 
function is known, one can characterize the obstacle 
problem by a sequence of boundary value problems 
without constraints via the variational inequality and a 
penalty function. The computational advantage of this 
approach is its simple applicability for solving diffe- 
rential equations. Such type of penalty function methods 
have been used quite effectively by Noor and Tirmizi [2], 
as a basis for obtaining numerical solutions for some 
obstacle problems. 

The aim of this paper is to consider the use of 
quadratic B-spline functions and least square method to 
develop a numerical method for obtaining smooth appro- 

ximations for the solution and its derivatives of the 
general form of a system of second order boundary value 
problem of the type.  
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3 . Here,  ( i ), are 
given continuous functions, and the parameters 1
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2  are real finite constants. Linear form of such type of 
systems arise in the study of one dimensional obstacle, 
unilateral, moving and free boundary value problems, 
[1,3-10] and the references therein. In general, it is not 
possible to obtain the analytic form of the solution of 
(1)-(2) for arbitary choices of i ( ,  ,  ) g t u u , (  

), so we resort to some numerical methods for ob- 
taining an approximate solution of (1)-(2). 
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In 1981, Villaggio [11] used the classical Rayleigh- 
Ritz method for solving a special form of (1), namely,  
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3
4
 . Later, Noor and Khalifa [12] have solved problem 

(3)-(4) using collocation method with cubic splines as 
basis functions. Similar conclusions were pointed out by 
Noor and Tirmizi [2], Al-Said [13] and Al-Said et al. 
[14], where second and fourth order finite difference and 
spline methods were used to solve a special linear form 
of problem (1), namely,  

2 3

2 3

              ( ),

 and 
( ) =

( ) ( ) ( ) ,

       

f t

a t a a t b
u t

g t u t f t r

a t a


       
  

    (5) 

1( ) =u a   and 2( ) =u b  .         (6) 

where, the functions ( )f t  and ( )g t  are continuous on 
[ a , b ] and [ , 3 ], respectively and the continuity 
conditions of  and  at 2  and 3  is assumed, 
and  is a real finite constants parameter. On the other 
hand, Al-Said [3,15,16] has developed and analyzed 
quadratic and cubic spline methods for solving (5)-(6) 
and compared his numerical results with other available 
results given in [2,12]. It was shown in [16] that the 
cubic spline method gives much better results than those 
produced by other methods (including the fourth order 
Nemerov method). 

2a
u

a
u a a

r

In 2003, Khan and Aziz [17] have solved problem 
(1)-(2) using parametric cubic spline technique and have 
shown that the their method gives approximations which 
are better than that produced by Al-Said method [16]. 
Then in 2005, Siraj-ul-Islam, Aslam Noor, Tirmizi and 
Azam Khan [18] have established and analyzed optimal 
smooth approximations for systems of second order 
boundary value problems of the form (5)-(6) with qua- 
dratic non-polynomial splines. Also in 2006, similar 
methods were pointed out by Siraj-ul-Islam and Tirmizi 
[19] who developed a class of methods based on cubic 
non-polynomial splines for problem (5)-(6). The ob- 
tained results in [18,19] are very encouraging and non- 
-polynomial spline methods perform better than other 
existing methods [2,3,12-17] of the same order. Owing to 
importance of problem (5)-(6) in physics, the existence 
and uniqueness of solution to this problems has been 
related with one dimensional second order obstacle 
boundary value problems. Moreover, existence and uni- 
queness theorem for obstacle problems has been studied 
by variational inequalities theory and demonstrate by 
Friedman [5] and also by Kinderlehrer and Stampacchia 
[7], see, for more examples [1,6,10]. But in general form 
(1)-(2), it has been no very discussion. 

In this paper, we shall solve the general problem 
numerically (1)-(2) by scaling functions ,  for 

 and ( ). Our pre- 
sentation finds a sequence of functions  of the form  

( )k i t
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which satisfy the exact boundary conditions. Also, up to 
an error k , the function  satisfies the differential 
equation, where 

kv
0k   as . k 

2. Statement of the Method  

Consider, the general system of differential equations of 
the type  
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with the general boundary conditions  

[ ( )] =i iU u t  ,          (8) = 1,  2i

and the continuity conditions of  and  at 2a  and 

3 , where i  and i  are second-order linear and 
boundary operators, respectively, and ’s are operators 
defined in the forms  
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where, ij , ij  and i  are real constants. Since, least 
square mehtod for system of the differential Equations 
(7)-(8) lead to complicated large scale and can not ensure 
existence and uniqueness of solution to this problems. 
Therefore, we will be study the system of two-point 
second-order boundary value problems of the type  
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1( ) =u a   and 2( ) =u b  ,  

and the continuity conditions of  and  at 2a  and 

3 . Let  ( ) be con- 
tinuous functions. We convert the problem to an optimal 
control problem  

u u
2,  a 2

1: [ , ]i i ig a b   R R = 1,  3i
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and two-point boundary conditions  

1( ) =u a   and 2( ) =u b  .  

The actual solution of (1)-(2) is a function v  such 
that  
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For all > 0 , the method finds an approximate 
solution v  satisfying  

3
2
2 ([ , ])1=1
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The sketch of the method is delineated as follows: 
Consider uniform quadratic B-spline function [20,21] 

(Figure 1).  
2
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develop the numerical method for approximating solu- 
tion of a system of differential Equations (1)-(2). For a 
fix natural number , we divided the interval [ , 

] into ( ) equal subinterval using the control 
points,  
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where the coefficients  are determined from the 
conditions  

{ }ic
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      
3 2

2 ([ , ])1=1

,  ,  min k i k k L a ac i iii

v t g t v t v t


    

The minimization problem is equivalent to the 
following nonlinear system:  

 

Figure 1. Uniform quadratic B-spline function.  
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3. Convergence Analysis  

In this section, we analyzed new method in the special 
case of system of one-order boundary value problems of 
the type (1) with boundary condition 1( ) =u a  . How- 
ever, consider the optimal control problem  
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Figure 2. Uniform linear B-spline function (hat function).  
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Ahmadinia and G. B. Loghmani [21] shows that under 
reasonable conditions,  converges to  as 
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([ ,  ])u C a b
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*( )L u*( )kL u
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Theorem. Let f  in (12) have the property that for 
all > 0  there exists > 0  such that | ( ,  ,  )f t u v   

1 1( ,  ,  u v ) |<f t  , whenever 1| |<u u   and 1| |<v v  
 . Let  be a exact solution of the 
problem: (10)-(11). Assume  is continuous on [ , 

]. The following assertions are true.  
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Proof. see [21].  
The above theorem shows that for all > 0  there 

exists an approximate solution  for the optimal 
control problem (10)-(11) such that the difference 
between the value of  and the value  is at 
most 

*
ku

*( )kL u *(L u )
 . 

Following the steps of the proof of above theorem we 
obtain the following corollary.  

Corollary 1. All derivatives of the approximate 
solution converges to the related derivatives of the exact 
solution. 

Remark 1. If the problem involves the higher 
derivative u

B
, we will use the uniform quadratic spline 

function 2  in (9). Here, 2  is a left continuous step 
function. In this method, dB  is ed when the regularity 
of dB  is mini al. That is, if the problem involves u

B
 us

m   
only, the dBn   ( 1d  ) st be chosen to be a step 
function; if it involves u

mu
  and u , then d B  ( d 2 ) 
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ust b




]

m e chosen to be a step function, etc. 

4. Applications  

To illustrate the application of the method developed in 
the previous sections, we suggested penalty functions 
technique for solving one dimension obstacle problems 
and deduction of existence and uniqueness solution of a 
systems (1)-(2). So, we consider the following second 
order obstacle boundary value problem about finding  
such that  

u
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u t f t
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 (18) 

where f  is a given continuous force acting on the 
beam and ( )t  is the elastic obstacle. Problem (18) 
describes the equilibrium configuration of an elastic 
beam, pulled at the ends and lying over an elastic 
obstacle. We study problem (18) in the framework of 
variational inequality approach. To do so, we define the 
set  as  K

 1
0K =  ( ) :  on  v H v      

1 ( )H 

, 

which is a closed convex set in 0 , where 1
0 ( )H   

is a Sobolev space, which is in fact a Hilbert space. For 
the definitions of the spaces , see [1,29]. Here, 

 can be the following form  

1
0 ( )H

1
0 ( )H 

1 1
0

0
( ) = ( ) : ( ) = 0 ( ) = 0lim lim

t t
H z H z t z t

 
      

where  is the space of absolutely continuous 
functions on the interval [0, 

1( )H 
 ] such that their first and 

second derivatives belonging to . It can be easily 
shown that the energy functional associated with the 
obstacle problem (18), for all  is  

2 ( )L 

Kv
2

20 0
[ ] = ( ) ( ) 2 ( ) ( )

      = ( ,  ) 2 < ,  >

d v
I v v t dt f t v

dt
a v v f v

 




  t dt
.   (19) 

where  
2 2

2 20
( ,  ) = ( )( )

d u d v
a u v dt

dt dt



         (20) 

and  

0
< ,  >= ( ) ( )f v f t v t




( ,a u

dt .         (21) 

Also it can be easily shown that  defined by 
(20) is bilinear, symmetric and positive (in fact, coercive 
[5,7]) and the functional 

 )v

f  defined by (21) is a linear 
continuous functional. It is well known [1,5,7,29] that 
the minimum  of the functional u [ ]I v  defined by (19) 

on the closed convex set  in  can be cha- 
racterized by the variational inequality  

K

 v

1
0 ( )H 

( ,  ) < , >a u v u f u    for all .  (22) Kv

Thus, we conclude that the obstacle problem (18) is 
equivalent to solving the variational inequality problem 
(22). This equivalence has been used to study the 
existence of a unique solution of (18), [1,4,5]. Now using 
the idea of Lewy and Stampacchia [8], problem (22) can 
be written as  

{ } )u u (u = f      , 0 < t <  ,   (23) 

(0) = =( )u u  0 .  

where   is the obstacle function and ( )z  is a 
discontinuous function so that well known as the Penalty 
function defined by  

1,

0,

0,

0.
( ) =

<

z
z

z






 

and   is the given obstacle function defined by  

1,

,

1,

t

0 ,
4
3

( ) = 1 ,
4 4
3

.
4

t

t

t



  


   




        (24) 

   

Equation (23) describes the equilibrium configuration 
of an obstacle string pulled at the ends and lying over 
elastic step of constant height 1 and unit rigidity. Sinec 
obstacle function   is known, so it is possible to solve 
the problem in the interval [0, ]. From Equations 
(23)-(24), we obtain the following system of differential 
equations:  



3
0  and , 4 4=

1, 3
,

4 4

t tf
u

u f
t

 
,           



  (25) 

with the boundary conditions  

(0) = ) = 0(u u  ,            (26) 

and the condition of continuity of  and u u  at =
4

t


 

and 
3

4


 . 

5. Numerical Results and Discussion  

In this section, we consider second linear and nonlinear 
problems will be tested by using the method discussed 
above. The B-spline solutions of Equations (1)-(2) was 
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obtained using a linear combination 
13 2 1*

= 2
( ) =

k

k i
u t

 

  

, and the minimization problem was solved by 

Maple 12. The least square errors (LSE) in the analytical 
solutions for test problem 1, 2 and 3 were calculated and 
are depicted in Tables 1-3. 

*
, ( )i k ic  t

Test problem 1 ([3,17-19], Example 1). 
Consider the linear system of differential Equations 
(25)-(26) when , takes the following form:  ( ) = 0f t

3
0, 0  and ,

4 4=
3

1, ,
4 4

t t
u

u t

            


   (27) 

with boundary condition (26). The analytical solution for 
this problem is given by  

1

4
( ) = , 0 ,

4

t
u t t


 

 


 

2

1

4cosh( ) 321 ,
4 4( ) =

4( ) 3
,   ,

4

t
t

u t
t

t





   
 


  

  


,
   (28) 

where 1 := 4coth( )
4

 
  and 2 1:= sinh( )

4
  

. 

The problem (27) was solved using the mehtod 
described in Section 2 and 3 with a variety of  values 
with respect to . The observed least square errors 
(LSE) are depicted in Table 1. We use the method and 
obtain this results;  

h
3k 

Approximate solution  for :  *
ku = 3k

*
3 3, 2 3, 1

3,0 3,1 3,2

3,3 3,4 3,5

3,6 3,7 3,8

3,9

( ) 0.05662 ( ) 0.05662 ( )

0.16985 ( ) 0.28308 ( ) 0.39629 ( )

0.46765 ( ) 0.50213 ( ) 0.50213 ( )

0.46765 ( ) 0.39629 ( ) 0.28308 ( )

0.16985 ( ) (0.56617

u t t t

t t

t t

t t

t e

    

     

     

     

    3,10

3,11

1) ( )

( 0.56617 1 ) ( )

t

e t



   

t

t

t

t

t

t

.  

Approximate solution  for :  *
ku = 4k

*
4 4, 2 4, 1

4,0 4,1

4,2 4,3 4,4

4,5 4,6 4,7

4,8 4,9

( ) = 0.02832 ( ) 0.02832 ( )

(0.84974 1) ( ) 0.14162 ( )

0.19827 ( ) 0.25492 ( ) 0.31157 ( )

0.36821 ( ) 0.41400 ( ) 0.44972 ( )

0.47599 ( ) 0.49325 ( ) 0.501

u t t t

e t t

t t

t t

t t

    

    

     

     

     4,10

4,11 4,12 4,13

81 ( )

0.50181 ( ) 0.49325 ( ) 0.47599 ( )

t

t t



     

 

Table 1. Least square error (LSE) for Test problem 1. 

* ( )( ) j

ku LES ( )= 3k LES ( ) = 4k LES ( ) = 5k LES ( )= 6k

= 0j 1.6575 7e  1.6575 7e   5.6080 10e   1.1997 10e 

= 1j 2.4876 6e  1.5748 7e   9.8946 9e   8.4401 10e 

= 2j 5.0502 4e  1.2968 4e   3.2325 5e   8.0904 6e 

4,14 4,15 4,16

4,17 4,18 4,19

4,20 4,21

3,22 3,23

0.44972 ( ) 0.41400 ( ) 0.31157 ( )

0.25492 ( ) 0.19827 ( ) 0.14162 ( )

0.36821 ( ) (0.84974 1) ( )

(0.28325 1 ) ( ) ( 0.28325 1 ) ( )

t t

t t

t e t

e t e t

     

     

    

      

t

t
.  

The approximate solution can also be obtained for 
5,  6k  .  

We would like to emphasize that the present method 
has the advantage of the ability of approximating the 
derivatives of u  and u  on [ , ] where as other 
parametric spline and finite difference methods [2,17] do 
not have this ability. Mach as, cubic spline method [3] 
has the ability of approximating the first derivative, but it 
hasn't the ability of approximating the second derivatives 

a b

such that the our method can be approximating both of 
first and second derivatives.  

Test problem 2. 
Consider the system of differential Equations (25)-(26) 
when , takes the following form:  ( ) = 2f t

3
2, 0   and  ,

4 4=
3

1, ,
4 4

t t
u

u t

          


 
  (29) 

with boundary condition (25). The analytical solution for 
this problem is given by  

2

2

2

2

2

( 16)sinh( )
4 ,

4 2

                0 ,
4

( 16)
1 cosh( ),

4 2( ) =
3

          ,
4 4

( 16)sinh( )
4 ( )

4 2

               ( 3 ),
2

t t

t

t
u t

t

t t

t







     
   

     
   

     



   


        
   
 

 
  



 (30) 
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3
( ) = ,

4
u t t

   


 

where := sinh( ) 4cosh( )
4 4

  
  . 

The problem (29) was solved using the mehtod 
described in Section 2 and 3 with a variety of  values 
with respect to . The observed least square errors 
(LSE) are depicted in Table 2. We use the method and 
obtain this results; 

h
3k 

Approximate solution  for :  *
ku = 3k

*
3 3, 2 3, 1

3,0 3,1 3,2

3,3 3,4 3,5

3,6 3,7 3,8

3,9 3,

( ) = 0.22731 ( ) 0.22731 ( )

0.54485 ( ) 0.72531 ( ) 0.76869 ( )

0.79603 ( ) 0.80924 ( ) 0.80924 ( )

0.79603 ( ) 0.76869 ( ) 0.72531 ( )

0.54485 ( ) 0.22731

u t t t

t t

t t

t t

t

    

     

     

     

    10 3,11( ) 0.22731 ( )t  

t

t

t

t

.  

The approximate solution can also be obtained for 
.  4,  5,  6k 

Test problem 3 ([29], Example).  
Consider the system of differential equation:  

1
0, 0

4
1

1,
4 4
3

0, 1
4

t

u u t

t

  

    



 

3
         (31) 

with boundary conditions,  

(0) = (0) = (1) 0u u u   .  

The analytical solution for this problem is given by  

2
1

2
2

2
3 4

5 6

1
, 12 0 ,

4               1
1 3

( )   ,3 3
4 4cos sin ,

2 2 3
1 ,

1 ( 2) , 4

t

a t
t

a e

u t t
e a t a t

t
a t t a






 
 

  
 

 
    




  (32) 

We can find the constants ,  by 

solving a system of linear equations constructed by 
applying the conitinuity conditions of , 

ia 1,  2, ,6i  

u u , u at 
1

4
t   and 

3

4
t  . 

We consider , , 0.24391ia  0.17847ia   ia   
, , , 0.81893 0.30266ia   0.24213ia   ia   

.  0.65376

Table 2. Least square error (LSE) for test problem 2.  

* ( )( ) j

ku LES ( = 3k ) LES ( = 4k ) LES ( = 5k ) LES ( = 6k )

= 0j 2.4377 8e  1.5765 9e   4.9304 1e   1.3667 10e 
= 1j 3.6519 7e  2.313  3 8e  1.5552  9e  6.3775 01e 
= 2j 7.4138 5e  1.8891 5e   4.7577 6e   1.1897 6e 

Table 3. Least square error (L E) for test p oblem 3. S r

* ( )( j

ku ) LES ( = 3k ) LES ( = 4k ) LES ( = 5k ) LES ( = 6k )

= 0 3.3013 13ej  2.0636 14e   1.2931 15e   7.9937 1e 7
= 1j 4.0337 12e  2.5158 3  1e  1e  1e1.5714 4  9.8027 6

= 2j 2.4877 10e  1.5545 11e  9.7153 13e  6.0670 14e  
= 3j 1.0822 6e  2.7041 7e   6.7593 8e   1.6897 8e 

 
using the mehtod described in Section 2 and 3 with a 
variety of  values with respect to . The 

et

ociated with the three examples 
discussed above were performed by using Maple 12. 
Co
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h 3k 
observed least square errors (LSE) are given in Table 3. 
We use the m hod and obtain this results. 

6. Conclusions  

The computations ass

mparing the obtained results with other works [3,13, 
16-19], this method was clearly reliable if compared with 
grid points techniques where solution is defined at grid 
points only. Moreover the method yields a good result 
even for small k .  
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