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Abstract 
A new scalar projection method presented for simulating incompressible flows with variable den-
sity is proposed. It reverses conventional projection algorithm by computing first the irrotational 
component of the velocity and then the pressure. The first phase of the projection is purely kine-
matics. The predicted velocity field is subjected to a discrete Hodge-Helmholtz decomposition. The 
second phase of upgrade of pressure from the density uses Stokes’ theorem to explicitly compute 
the pressure. If all or part of the boundary conditions is then fixed on the divergence free physical 
field, the system required to be solved for the scalar potential of velocity becomes a Poisson equa-
tion with constant coefficients fitted with Dirichlet conditions. 
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1. Introduction 
Solving the equations of incompressible fluid flows requires ensuring the coupling of the equation of motion and 
that of the incompressibility constraint. This coupling can be implicit in a kind of “exact” approach by including 
the constraint in the linear system as for the method of the augmented Lagrangian [1]. It proves very efficient 
and robust; however, it involves the use of efficient preconditionners associated to iterative solvers and large li-
near systems due to the coupling of all velocity components [2]. Another class of methods is to split the resolu-
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tion of the equation of motion for the application of the incompressibility constraint together with the formula-
tion of an equation for pressure [3]. One important aspect is immediately apparent to the first authors who have 
developed numerical algorithms around finite volume methods, i.e., the spatial location of pressure and velocity 
unknowns. For collocated variables, instabilities appear and interpolations are needed to mitigate and remove 
these fluctuations of velocity and pressure [4]. Harlow and Welch in 1965 had introduced the notion of stag-
gered variables [5] initially for two-phase flows. This strategy, called the Marker and Cell Method, ensures the 
coupling, direct or not, of the pressure and velocity fields without disturbance.  

Since many authors have developed time splitting or prediction-correction methods called projection that in-
volve treating the solving of motion equations and their incompressibility constraint sequentially. Many algo-
rithms allow obtaining convergence orders in time ranging from range ( )1/2O t∆  to ( )2O t∆ . These orders also 
depend on the boundary conditions imposed. Some reviews can be found on these techniques including the 
comprehensive of Guermond et al. [6]. The more recent use of these techniques for the simulation of two-phase 
flows leads to ill-conditioned linear systems especially for strong density contrasts. Indeed solving a Poisson 
equation with strongly varying coefficients is very costly in terms of number of iterations of iterative solvers 
such as conjugate gradient. The direct solvers are efficient in two-dimensional space but are unusable in three- 
dimensional simulations for large numbers of degrees of freedom. Some authors address the problem on an al-
gebraic point of view by specific preconditioning or by the resolution of a saddle point [7]-[10]. Other ways are 
sought for example by Guermond et al. [11] [12] extracting the density of the Poisson equation. This approach is 
effective mainly for small density ratios. It can be used with some caution for flows involving open boundary 
conditions [13]. The recent fast pressure-correction method of Dodd and Ferrante [14] is also based on the fac-
torization of the density in the projection step by using of the minimum density between two separated fluids 
with the introduction of a pressure source term in the Poisson equation. This method has been validated against 
standard capillary test cases and it was utilized to simulate the interaction between a homogeneous isotropic 
turbulence and 6260 spherical particles. Works based on a vector approach of the resolution of the projection 
step [15] [16] are particularly effective for the simulation of two-phase flows with large density contrasts. How-
ever, it requires the solving of large linear systems induced by the coupling of all velocity components in the 
projection. In the same field, parallel works centered on the discrete Helmholtz-Hodge decomposition bring po-
tential solutions to use it for solving partial differential equations such as Navier-Stokes equations [17] [18]. 
Other potential applications of this decomposition are numerous. They are detailed in the review of Bhatia et al. 
[19]. 

The approach proposed here is based entirely on the mechanics of discrete media [20]. This formulation of the 
momentum conservation equation results in a set of equations that is different from the standard Navier-Stokes 
equations. Its constitution resumes from the fundamental law of dynamics, Newton’s second law, and on a vi-
sion of differential geometry. Thus a discrete equation of motion is obtained in the form of a natural decomposi-
tion of Helmholtz-Hodge in irrotational and solenoidal parts. This approach has led to a purely vectorial version 
of the projection method where at the end of this second step the boundary conditions of the problem are satis-
fied [21]. The present work is devoted to a scalar version of vectorial projection where irrotational components 
of the velocity are sought by a Helmholtz-Hodge decomposition of the scalar potential of velocity. A detailed 
presentation of the projection algorithm is first given and several illustrative examples of flows with varying 
densities are provided for discussion. 

2. Kinematics Scalar Projection (KSP) Method 
The resolution of the equation of motion in an incompressible formulation associated with the boundary condi-
tions of the physical problem is the objective of projection methodologies. These motion equations can be the 
Navier-Stokes equations or the equations coming from the discrete mechanics [20]. For flows at constant density 
and at constant viscosity, both formulations are equivalent whereas it is not the case for variable fluid properties 
encountered in two-phase flows for example. As this choice is regardless for the scalar projection method under 
consideration here, the Navier-Stokes equations of motion for an incompressible flow are resumed 
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where V is the velocity, t the time, p the pressure, ρ the density and μ the dynamic viscosity. The boundary of 
the physical domain Ω is noted Σ. By decomposing the material derivative of velocity and discretizing equations 
at first order in time (a second order is easily obtained with the present method by using a second order Taylor 
expansion in time), a prediction step can be formulated for the intermediate velocity *V : 
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with np  the pressure at time n t∆ , t∆  the time step and ΨΣV  the solenoidal component of the desired ve-
locity on the boundary Σ , that is 1n+V  for a time discretization for which 1nt +  represents the time at the end 
of the prediction and projection steps of the time splitting approach. Two-phase flows with variable density en-
compass a wide variety of different physical situations. For example, a liquid-particle gas flow does not present 
the same difficulties as a hydraulic jump flow even if the density ratio is the same. In the second case, this is the 
difference in density associated with the gravity that generates the flow motions. In many cases, the algorithms 
described in the introduction section are sufficient to simulate the physical behavior of the problem. The Helm-
holtz-Hodge decomposition of the predicted velocity field is sufficient to maintain the balance between the ef-
fects of gravity and the dynamic effects even if the field ΦV  is not exactly an irrotational field. This is the case 
for example for the natural convection presented in Section 3.2. In the absence of the incompressibility con-
straint in the equation of motion in the prediction step, the divergence of *V  is not zero and only the normal 
velocity component is respected at the boundaries. The predicted field Φ Ψ= +*V V V  includes both solenoidal 
and irrotational contributions. The divergence free component *V  is known on Σ thanks to the physical boun-
dary condition to impose. However, the projection step does not allow maintaining it as it is related to a scalar 
equation. The scalar projection step consists in searching the irrotational component Φ = ∇ΦV  and then obtain 
the divergence free component by difference with *V . One of the Helmholtz-Hodge decomposition methods of 
the velocity = ∇Φ +∇×*V Ψ  into its two divergence and rotational free components amounts to applying the 
divergence operator to *V  and ∇Φ  that are equal since the divergence of the rotational is zero. It can be 
demonstrated [6] that null flux conditions on the scalar potential have to be associated to the Poisson equation 

2

0 on

∇ Φ =∇⋅

∇Φ ⋅ = Σ

*V

n
                                    (3) 

for Dirichlet boundary conditions on *V . Other types of boundary conditions can be also considered as dis-
cussed for example in [6] [13] [22]. In fact it can be built as many irrotational fields as boundary conditions ap-
plied to the system. However, there is little chance of finding a solenoidal field that satisfies the boundary condi-
tions of the physical problem. This step is purely kinematics and does not result from any numerical time split-
ting. It does not involve either the density which is perfectly legitimate. The flow may be a variable density or 
two-phase immiscible flow, there is no physical reason or mathematical argument that leads to associate the 
density in the scalar potential velocity Φ. The dynamic part of the projection step contrariwise brings up the 
density for the pressure p. The following of the section specifically returns to the link between the scalar poten-
tial of velocity and pressure. 

The first equation of system (2) is a prediction step. It can be solved with the physical boundary conditions of 
the problem. Its solution *V  does not satisfy the divergence free constraint. Indeed, the solving of this predic-
tion step with a scalar potential np  not adapted to the boundary conditions of incompressibility and unknown 
at the solving time of the prediction step introduces a non-zero irrotational component that has to be removed by 
means of Helmholtz-Hodge decomposition. The second equation of (1) cannot be solved directly as the actual 
component ΦV  of the actual field has to be deduced from the difference between the fields *V  and n 1+

ΨV  
obtained after the decomposition of the field *V . It can be observed that 1n+

Φ Φ=V V  derives from a potential
Φ = ∇ΦV . The second equation of (1) can in this way be directly and explicitly integrated [16]. The scalar po-

tential of the velocity is obtained by a projection on a divergence free field by solving (3). If we discard the iner-
tial and viscous terms and consider the momentum equation expected to be solved and the prediction step really 
solved, we have 
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By subtraction of these two equations, we obtain: 
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We also have 
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By combining (5) and (6), an equation linking the pressure increment 1n np p p+′ = −  and the irrotational ve-
locity component can be written: 
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∆
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                                      (7) 

By using (3) and (7), we finally get the KSP projection step 
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The pressure increment is obtained by considering the Stokes theorem 
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According to (8) and (9), 
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Equation (10) is correct only if 
t

ρ Φ

∆
V  is a gradient. On a discrete point of view, ρ is constant over each mesh 

edge and Δt is also constant, so that 
t t t

ρρ ρΦ ∇Φ Φ = = ∇ ∆ ∆ ∆ 
V  is clearly a gradient and expression (10) always  

holds, even for multi-phase flows, as soon as a fluid-fluid interface is part of mesh edges as in unstructured or 
ALE approaches. Finally, the update of the velocity and pressure fields is given by expressions: 

1 1 d

n 1 n 1

b
n n

b a
a

p p l
t
ρ

+ +
Ψ Φ

+ +
Φ

 = = −

 ′ ′= + ⋅ ∆

∫

*V V V V

V t
                              (11) 

where a and b correspond to vertices, endpoints of the edges Γ forming the computational mesh where the den-
sity is constant. This last relation corresponds to the application of one of the forms of the Stokes theorem which 
allows updating the potential geometrically if the velocity field is irrotational, which is the case. In the particular 
situation where the segment Γ is intersected at point c by an interface separating fluids of densities ρ1 and ρ2, i.e. 
front tracking, volume of fluid or level set representation of multiphase flows [23] [24], the Stokes formula be-
comes: 
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As for the velocity, it stays continuous and constant along all the segment. Point c will be determined thanks 
to an interface tracking method of VOF, Front-Tracking or Level-Set type [23] [24]. 

The pressure at time n + 1 is then 1n np p p+ ′= + . Practically, we start integrating the pressure increment 
from an arbitrary mesh point for which ρ is known (belonging to one phase or another) and by stating 0p′ =  at 
this point. This procedure is valid on structured or unstructured grids. The algorithm finally obtained is very 
simple to implement: 
• Prediction step: solving of the first equation of system (2) to obtain .*V  
• Projection step: decomposition of the field *V  in a gradient of the potential Φ and a rotational part by using 

system (3). 
• Estimate of the irrotational component Φ = ∇ΦV  and of the solenoidal component by using the difference 

1 .n+
Ψ Φ= −*V V V  

• Update of the velocity and pressure by considering (11)-(12). 
The solution at the next time step 1nt +  consists of the pressure and divergence free velocity. It does not meet 

the imposed tangential physical boundary conditions as do the other projection methods. A boundary layer is so 
created that disappears during the time iterations with the imposition of the physical boundary conditions in the 
two stages of prediction and correction. The thermodynamic pressure p is in fact utilized only to evaluate the 
properties of the fluids such as the density and the viscosity. For multi-phase flows at constant densities, the 
Bernoulli pressure is well adapted in this case. The present KSP algorithm, also called DSP by [21] in the frame- 
work of discrete mechanics equations, inverts the calculation steps for pressure and velocity compared to stan-
dard projection approaches. For classical projections methods, the pressure is first estimated as the solution of a 
Poisson equation with variable coefficients and the velocity is then explicitly obtained. In the KSP method, the 
velocity is first decomposed by a purely kinematics process and the pressure is then updated by the explicit ap-
plication of the Stokes theorem. The solving of a Poisson equation with variable coefficients is a difficult task 
whose complexity increases with density ratios, especially with large grids on massively parallel computers, 
whereas the KSP method is not sensible to these density variations. 

When high density gradients are associated to large magnitude source terms, it can be necessary to perform a 
preliminary Helmholtz-Hodge decomposition of source terms s acting in the momentum equations, before the 
time evolution loop begins. In this way, the initial condition for pressure at mechanical equilibrium is then built 
as 

0 0 0.sp pΦ−∇ + = −∇ +∇Φ =s                               (13) 

The initial condition is given by 0
sp = Φ . The source term s sΦ Ψ= + = ∇Φ +∇×s s s Ψ . The contribution 

sΨ = ∇×s Ψ  does not directly induce a pressure. However, it generates the motion through the increase of the 
solenoidal velocity field. As a consequence, Ψs  has to be kept in the momentum equations instead of s when 
the treatment of pressure initial condition (13) is implemented. On the contrary, a source term deduced from a 
gradient field does not involve any flow motion. In this configuration, it is directly integrated inside the pressure 
gradient to form a new pressure field. The decomposition of the initial source term s is achieved by using a 
Poisson equation similar to (3) so as to obtain sΦ : 

2

0 on
s

s

∇ Φ =∇⋅

∇Φ ⋅ = Σ

s
n

                                  (14) 

Prior decomposition of the source term eliminates the adverse effects induced by exchanges between the 
pressure effects and all the other effects (viscous, inertial) that cause unwanted local and instant acceleration that 
affects the quality of the two-phase behavior. This KSP version suitable for very constrained two-phase flows, 
i.e. including surface tension effects for example, requires an additional projection step and the computing of the 
solution of a Poisson equation with constant coefficients. However, it allows building a very robust algorithm. 
The efficiency of solvers with constant coefficient Poisson equations offsets the additional cost of the resolution 
of an additional equation with respect to the conventional methods of projection. In general, the introduction of a 
significant source term in the Navier-Stokes equations generates difficulties due to the destabilization of the 
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vector field by the scalar potential that it contains whereas the latter do not participate to the movement itself. 

3. Illustration Test Cases 
3.1. Static Equilibrium between Two Fluids under Gravity Effects 
The considered problem is very simple, it consists of a square cavity of unit height filled with two immiscible 
fluids whose densities are ρ1 and ρ2. It is assumed that the two fluids are initially separated and the heavy fluid 1 
occupies the lower half of the cavity. The stationary solution is simple: the velocity V is zero and the pressure 
field satisfies ( ) ( )0 yp y p y yρ= + ⋅g e . The initial pressure field is zero. The walls of the cavity are assumed 
impermeable and adherent, 0Ψ =V . 

Details of the different steps of the time splitting algorithm on this problem are the following. In the absence 
of initial velocity, the velocity field derived from the prediction step (2) is   y t g⋅ = −∆V e . If this field is diver-
gence free within the cavity, this is not the case near horizontal walls due to boundary conditions. Assuming in-
compressibility, these variations of divergence restore a linear distribution of the scalar potential of the velocity 
along the vertical axis. The numerical solution of Φ obtained up to a constant by solving the Poisson Equation (3) 
is represented by its evolution along y as 

   t g yΦ = −∆                                      (15) 

The irrotational velocity field is y y tgΦ ⋅ = ∇Φ ⋅ = −∆V e e . The difference 0Φ− =*V V  is the requested ve-
locity such that 1 0n+

Ψ Φ= = − =*V V V V . The pressure update by the Stokes theorem is then 

( )1
0

np p y gyρ+ = −                                  (16) 

where 0p  is the reference pressure chosen in an arbitrary manner. At the end of the two stages the theoretical 
solution is obtained exactly up to computer accuracy. This is the sought two-phase hydrostatic equilibrium.  

Figure 1 represents the opposite of the evolution of the pressure along y for two density ratios 1

2

4ρ
ρ

=  and

61

2

10ρ
ρ

= . In the present case, the two fluids have constant densities and each pressure point is in a fluid or in  

the other, the density is absent from differential operators and appears only for the increase of the pressure. The 
first phase for determining the potential Φ is independent of the density variations and the projection phase be-
ing explicit and local, the solution will always be accurate. All two phase incompressible flows can be simulated 
with the KSP method with the same efficiency. 
 

 
Figure 1. Test case of static equilibrium of two fluids 
of different densities. The opposite to the pressure −p is 

plotted. In red, 1

2

4ρ
ρ

=  and in blue 61

2

10ρ
ρ

= . The 

spatial approximation is N = 8 grid cells. The solution 
obtained in one time iteration is exact to almost com-
puter accuracy, i.e. up to 10−15 relative error. 
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3.2. Natural Convection in a Differentially Heated Cavity 
Flows with variable density can be very different in nature, flows involving several immiscible phases, flows 
with phase changes, etc. Flows with continuously varying density which can be approached in the context of the 
incompressible approximation belong to this class. Natural convection is an example especially when the tem-
perature differences are important and when the Boussinesq approximation is no longer valid. The example be-
low aims to show that the proposed methodology allows finding accurately the solution adopted by many au-
thors after multiple comparisons. This is the case of a cavity filled with air subjected to a horizontal temperature 
gradient in a gravity field. Natural convection induced by density variations is quantized by the Rayleigh num-
ber and the Prandtl number. The selected configuration correspond to a value of the Rayleigh number such that 
Ra = 105 and Prandtl number Pr = 0.71 and it admits a stationary solution. Nusselt number that characterizes the 
heat transfer between the two isothermal walls is the main result of the problem. The reference solution is ob-
tained by a finite volume method on a Cartesian staggered mesh with augmented Lagrangian technique [25] [26] 
to ensure incompressibility constraint. The spatial order of convergence of the Nusselt being strictly equal to $2$, 
it is possible, using Richardson extrapolation [27], to derive the reference value of Nusselt for a number of mesh 
cells N in one direction such that N →+∞ . Results are presented in Table 1. A very good agreement is found 
between Richardson extrapolation and KSP method. 

The present test case is almost trivial but it has the advantage of providing a reference for flows with low va-
riable density in an incompressible formulation. Furthermore, the Nusselt number is very sensitive to the nu-
merical methodology. It allows anyway finding precisely a well-known solution with an original method. 

3.3. Sloshing in a 2D Tank 
With the addition of specific source terms, the system (1) can model many phenomena according to external ac-
tions such as gravity, capillary forces or rotation. In the case of a constant and uniform force of gravity, surface 
gravity waves of different nature can grow and maintain over large time constants at a fluid/fluid interface. This 
is the case of solitary waves or swells. In the present test case, a liquid sloshing in a cavity partially filled of gas 
is considered. First order involved mechanisms are inertia and gravity. Both although formally compressible 
fluids give rise to a motion that can be considered as incompressible at large time, so that the KSP method can 
be applied. Consider a cavity of length L and height H that contains a fluid of density ρ2 and viscosity μ2 topped 
with a fluid of density ρ1 and viscosity μ1. The interface between the two immiscible phases is slightly disturbed 
in a sinusoidal manner such that its initial height ( )h x  is given by 

( ) ( )2 cos πh x H A x L= +                                (17) 

with H = 0.1, L = 0.1 and A = H/100 in linear regime and A = H/3 in non-linear regime. Under the effect of grav-
ity, the interface oscillates around an equilibrium position, i.e. a horizontal reference line. At equilibrium, the 
lower fluid occupies a height H/2. 

Figure 2 shows the time history of vertical interface position during time in linear regime. The amplitude of 
the initial perturbation permits to stay within the framework of [28]. As viscous effects only damp the amplitude 
of the wave, inviscid simulations are performed, i.e. μ1 = μ1 = 0 and the diffusion term of momentum disappears 
from the equation of motion. The evolution in time is thus conditioned by the competition between the inertia of 
the fluid determined by the term ρ ⋅∇V V  and gravity source term ρg . The latter term is not derived from a 
scalar potential and Hodge-Helmholtz decomposition of sρ= = ∇Φ +∇×ss g Ψ  highlights two non-zero con-
tributions thereof. The irrotational part modifies the scalar pressure potential P0 which includes the static gravi-
tational effects and the vector potential changes the mechanical equilibrium. Coupling with inertia causes the  
 

Table 1. Natural convection in a differentially heated cavity for a 
Raleigh number of 105. The reference Nusselt number is obtained by 
Richardson extrapolation [27]. The value of the KSP method corres-
pond to solution on a 10242 Cartesian mesh. 

 Reference N →+∞  KSP N = 1024 

Nusselt 4.521638 4.521614 
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Figure 2. Sloshing of a sinusoidal wave in a 2D tank in linear 
mode—Time history of vertical interface position at x = 0. 

 
sloshing movement whose frequency may be calculated by the linear theory. If the initial disturbance of the in-
terface is defined by Fourier modes, i in the longitudinal direction and j for transverse modes, the linear theory 
allows expressing the frequency [29]: 

2 2 2 2

2 2 2 2
1 π π

2π
i j i jf g th H
L l L l

 
 = + +
 
 

                          (18) 

where l is the width of the domain along y. In two-dimensions, j = 0 and l = 1. We also define the pulsation ω 
and period T: 

2π2π .f
T

ω = =                                     (19) 

The expression of the theoretical frequency (18) was established from a linear stability theory for a fluid den-
sity ρ2 in the absence of fluid located above. When the densities ρ1 and ρ2 are close, it is necessary to introduce a 
correction [28] which gives the relationship: 

2 2 2 2
2 1

2 2 2 2
2 1

1 π π .
2π

i j i jf g th H
L l L l

ρ ρ
ρ ρ

 −
 = + +
 +  

                      (20) 

Selected fluids are water and air and the corresponding densities are ρ2 = 1000 kg∙m−3 and ρ1 = 1.1728 kg∙m−3. 
Only the first 2D mode is tested, i.e. i = 1 and j = 1. The time step is equal to 10−3 s which achieves sufficient 
accuracy on the frequency of oscillations. Figure 2 shows the periodic changes in the height of the fluid 2 on 
one edge of the field x = 0. Gravitational forces introduce a downward movement of the area where the free sur-
face is the highest. In the absence of viscous forces, the oscillatory motion is governed by the confrontation be-
tween gravity and inertia. It is observed that the oscillations persist for a long time without significant attenua-
tion. It is also to be noted that the wave attenuation is even lower as the time step decreases. 

The present problem is used to test the entire methodology: the equation of motion, KSP time splitting algo-
rithm, time and space discretization, interface tracking, etc. To quantify the errors introduced by the different 
modeling and discretization steps, frequency numerically obtained is compared with the theoretical frequency 
formulated by relation (18). Table 2 rather presents the period of the oscillations. There is a very good agree-
ment between simulations and theory. This test validates the KSP approach in the presence of source terms such 
as gravity. 

This example also serves to show that the formulation conserves kinetic energy when the viscous effects are 
neglected. Although in this case no transfer of momentum by viscosity is possible, that does not mean that the 
curl of the velocity field is zero. To finish with, the non-linear mode is illustrated in Figure 3. It is observed that 
non-linear interface deformations are nicely handled by the KSP method with vertical interface oscillations be-
ing submitted to irregular sinusoidal modes. 
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Figure 3. Sloshing of a sinusoidal wave in a 2D tank in non 
linear mode—initial interface shape (top left), interface solu-
tion after 20 s (top right) and time history of vertical interface 
position for x = 0 m (bottom). 

 
Table 2. Sloshing periods in a square cavity for the first li-
near mode. 

 Theory Simulation 

Period 0.3742 0.3748 

3.4. Rotating Flow 
The present test case corresponds to a solid rotating flow in a cylindrical cavity of radius R. The steady rotation-
al velocity 0Ω  is constant and the tangential component of absolute velocity is 0a v rθ θ θ= = ΩV e e . The cavity 
is filled with two fluids of density ρ1 and ρ2 and the interface is initially located at 2r R= . The viscosity has 
no influence at least in the absence of differential motion relative to the plug flow. The flow motion can be 
treated in the moving frame relative to Oz axis. In the present configuration, the relative velocity V is chosen 
equal to zero in the whole domain. According to the momentum equations, the equation for pressure is given by 

pρΩ×Ω× = −∇r                                     (21) 

with Ω = ∇×V . The pressure can be calculated analytically and can then be compared with the numerical solu-
tion: 

( )
2

2
02

rp r pρ= Ω +                                    (22) 

where p0 is a selected constant chosen equal to zero on the axis. Since the density is not constant in the whole 
area, the pressure field will be calculated in the two fluid sub-domains on an analytical point of view. The KSP 
method is now applied from a zero velocity field V = 0 and a zero pressure field p = 0. Equations (2) applied to 
the problem gives the prediction velocity *V  which is not divergence free. This is a centrifugal velocity 
oriented outward as 

* 2
0   .t r= ∆ ΩV                                       (23) 

From that predicted velocity field, it is possible to apply the projection phase (3) for obtaining the scalar po-
tential Φ of the velocity. However, in the present test case *V  is a gradient field from the potential Φ  defined 
in a constant, * = ∇ΦV  that satisfies 

2
0 .tΦ = ∆ Ω                                        (24) 



J.-P. Caltagirone, S. Vincent 
 

 
180 

As the theoretical solution is a polynomial of order two, it is expected that the numerical solution will be ac-
curate. Indeed, all polynomial of order lower or equal to two can be represented exactly by a spatial discretiza-
tion scheme of order equal to two. Solving the Poisson Equation (3) actually gives the expected result, as re-
ported in Figure 4. As the projection is purely kinematics, the correction velocity Φ = ∇ΦV  is completely con-
tinuous and has no discontinuities at the interface between the two fluids. The numerical solution obtained with 
KSP at the end of the two stages is zero. The pressure is obtained from the Stokes formula (11) taking care to 
calculate the integral by piece if a segment Γ of a given mesh cell is intersected by the interface. Here the inter-
face is known analytically and it is simple to specify the position of the intersection point on the segment. Not 
only the divergence of 1n+V  but also the velocity field itself are zero with the KSP method, in agreement with 
the expected analytical solution. This is not the case with standard projection methods that generate rotation ve-
locity components that are non-physical. The solution to this problem was obtained with the KSP algorithm ac-
curately regardless of the mesh type, i.e. structured or unstructured, in one time iteration consisting of a predic-
tion step and a kinematics correcting step. 

With classical scalar projection (SP) methods, the velocity is calculated from the pressure correction as  
1 *n p

t
ρ+ ′= − ∇
∆

V V . For flows with variable density, the divergence of this velocity is zero but its curl is not 

zero anymore. Indeed, if p′∇  is a gradient, p
t
ρ ′∇
∆

 is not. This is not consistent with what is obtained by us-

ing the prediction *V  in KSP and its scalar potential Φ. For KSP, 1 *n+ = +∇ΦV V . As a consequence, the di-
vergence and also the curl of 1n+V  is zero for the rotation flow as expected theoretically. In the case where the 
velocities are large, this residual curl of SP is merged with that of the flow, but for low flow rates or for equili-
brium situations like the case shown in this section, it is necessary that 1n+V  is also a gradient field (rotation or 
example of a static drop under capillary effect) in order to satisfy equilibrium state. In all other two-phase cases, 
the SP numerical technology generates an artefact such as some spurious rotational and associated velocities. 

4. Conclusion and Discussions 
The kinematics KSP projection method for solving the equation of incompressible fluid motion essentially 
solves various problems of incompressible flows, including flows with significant density variations. Unlike 
conventional methods where the pressure is first calculated from a Poisson equation with variable coefficients, 
the irrotational velocity is calculated first in KSP. The scalar potential of velocity is then obtained by solving a 
Poisson problem with constant coefficients that is insensitive to density variations. The scalar potential of the 
amount of acceleration, i.e. the pressure, is obtained thanks to the Stokes’ theorem by introducing at this stage 
the local density. In terms of accuracy in time and space, the results are very close to those of the conventional 
projection methodology for flows at variable density. However, the large variations in density introduce local 
consistency defects in standard projection methods due to interpolation of density at the location of each com-
ponent of the velocity. The pressure undergoes non-physical variations that can lead to unstable or non-physical 
behaviors. The KSP method allows finding consistency between the pressure and the local density. This method  
 

 
Figure 4. Comparison between the scalar projection (SP) and the kinematic scalar projection (KSP) 
on a triangular unstructured mesh. From left to right are represented the rotationnal of velocity for 
classical scalar projection (SP) with 0.1∇× ±V , the rotationnal of velocity KSP method with 

1510−∇× ±V , the scalar potential Φ and the pressure p given by the KSP method. The divergence of 
the velocity is zero to almost computer error for both methods. The inner radius of the circle (black 
line) is R = 0.5 m and the densities are ρ1 = 1 kg∙m−3 inside the circle and ρ2 = 4 kg∙m−3 outside of it. 
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can be interpreted as a simple splitting of the motion equation of the continuum mechanics previously discre-
tized in time. It is based on an original formulation of the law for fluid dynamics written as a discrete Helm-
holtz-Hodge decomposition. 

The proposed KSP time splitting approach satisfies the following properties: 
• The continuous media properties of differential operators, i.e. 0∇×∇Φ =  and 0∇⋅∇× =Ψ , are satisfied 

to almost computer error. 
• The space convergence order is 2 with a centered scheme and the time convergence order can be 1 or 2 de-

pending on the order of the Taylor expansion used for the time derivative of the momentum conservation 
equations. 

• The numerical solution is exact whatever the mesh for all theoretical solution of order equal or less than 2. 
• KSP as SP are a prediction-correction method whose artifacts are well known, i.e. artificial boundary layers 

are generated by the projection step near the boundaries. Their magnitude decreases during time iterations. 
• Unlike conventional projection methods, the resolution steps for pressure and velocity are reversed. The 

scalar potential of the velocity Φ is first obtained and then the physical potential, i.e. the pressure, is updated 
explicitly and accurately. 

• The Poisson equation for velocity potential is at constant coefficients and the velocity potential does not de-
pend on density. 

• The solving of the linear system is easy and allows the use of existing efficient parallel solvers. 
As a conclusion, the KSP method is, among those existing in the literature, the easiest method to implement 

since it consists in solving a Poisson equation with constant coefficients. 
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