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Abstract 

We present a general formula to generate the family of odd-point ternary approximating subdivision schemes 
with a shape parameter for describing curves. The influence of parameter to the limit curves and the suffi-
cient conditions of the continuities from 0C  to 5C  of 3- and 5-point schemes are discussed. Our family of 
3-point and 5-point ternary schemes has higher order of derivative continuity than the family of 3-point and 
5-point schemes presented by [16]. Moreover, a 3-point ternary cubic B-spline is special case of our family 
of 3-point ternary scheme. The visual quality of schemes with examples is also demonstrated. 

Keywords: Approximating Subdivision Scheme, Derivative Continuity, Smoothness Convergence, Shape  
Parameters, Laurent Polynomial 

1. Introduction  

Subdivision schemes are important and powerful tools 
for generation of smooth curves and surfaces from a set 
of control points by means of iterative refinement. Their 
popularity is due to the facts that subdivision algorithms 
are easy to implement and suitable for computer applica-
tions. If the limit curve/surface approximate the initial 
control polygon and that after subdivision, the newly 
generated control points are not in the limit curve/ sur-
face, the scheme is said to be approximating. It is called 
interpolating if after subdivision, the control points of the 
original control polygon and the new generated control 
points are interpolated on the limit curve/surface. 

Beccari et al. [1] introduced an interpolating 4-point 
2C  ternary non-stationary subdivision scheme with ten-

sion control. Hassan and Dodgson [2] presented ternary 
and three-point univariate subdivision schemes. Khan 
and Mustafa [3] offered ternary six-point interpolating 
subdivision scheme. Ko et al. [4] presented a ternary 
4-point approximating subdivision scheme. Dyn [5] gave 
the analysis of interpolatory subdivision schemes by the 
formalism of Laurent polynomials. [6,7] and [8] also 
introduced the analysis of the scheme by Laurent poly-
nomials methods. Sabin [9] has presented eigenanalysis 
and artifacts of subdivision curves and surfaces. Levin 
[10] has presented the polynomial generation and quasi 
interpolation in stationary non-uniform subdivision sche- 
mes. Hormann et al. [11] introduced a family of subdivi-
sion schemes with cubic precision. Dyn et al. [12] have 

presented polynomial reproduction by symmetric sche- 
mes. 

Since higher arity schemes have very nice properties 
(i.e. high smoothness, high approximation order and lower 
support) than their counterpart of lower arity schemes. 
Therefore research communities are gaining interest in 
introducing higher arity schemes (i.e. ternary, quater-
nary,…, a -ary). Mustafa and Khan [13] offered a new 4- 

point 3C  quaternary approximating subdivision scheme. 
Lian [14] generalized classical 4-point and 6-point inter-
polating schemes to a -ary interpolating schemes for any 
integer 3a  . These new a -ary schemes are derived 

from corresponding two scale functions, a notion from 
the content of wavelets. Lian [15] has also introduced 
a -ary 3-point and 5-point interpolating schemes for ar-
bitrary odd integer 3a  . Unfortunately, schemes pre-

sented by [15] have very stumpy smoothness that is 

Lian’s 3- and 5-point schemes have 1C  continuity while 

schemes introduced in this article have 2 C  and 5C  
continuity respectively. Lian [16] also offered 2m -point 
and (2 1)m  -point interpolating a -ary schemes for 

curve design. Mustafa and Rehman [17] introduced the 
explicit formulae to generate the mask of (2 4)b  -point 

n -ary subdivision scheme. Siddiqi and Rehan [18] in-
troduced modified form of binary and ternary 3-point 

subdivision schemes which are 1C and 2C in the inter-

vals  51,  
8 24
  and  71,  

72 72
  respectively. These 
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intervals are too narrow to provide freedom for curve 
designing. This motivates us to present the family of 
odd-point ternary schemes with high smoothness and 
more degree of freedom for curve designing.  

The paper is organized as follows: we recall basic 
definitions and preliminary results in Section 2. The 
family of odd-point ternary approximating schemes and 
analysis by Laurent formalism of one odd-point ternary 
scheme is presented in Section 3. Basic properties of 
odd-point ternary schemes are discussed in Section 4. 
Comparison with existing odd-point ternary schemes is 
also shown in this section. A few remarks and future 
work constitute Section 5. 

2. Preliminaries 

A general compact from of univariate ternary subdivision 

scheme S  which maps polygon  k k
i i Z

f f


  to a 

refined polygon  1 1k k
i i Z

f f 


  is defined by  

1
3 ,k k

i j i i
j Z

f f




  ,i Z           (2.1) 

where the set  :ia a i Z   of coefficients is called 
the mask at kth  level of refinement. A necessary condi-
tion for the uniform convergence of subdivision scheme 
(2.1) is that 

3 3 1 3 2 1.j j j
j Z j Z j Z

   
  

              (2.2) 

A subdivision scheme is uniformly convergent if for 
any initial data 0 { : }o

if f i Z  , there exists a con-
tinuous function f such that for any closed interval 
I R , satisfies 

3

lim sup
kk

i I
 

(3 ) 0.k k
if f i   

Obviously, 0f S f . 
For analysis of scheme, the z-transform of the mask 

( ) ,i
i

i Z

z a z


                 (2.3) 

which is usually called the Laurent polynomial of 
scheme and plays a crucial role in the analysis of the 
scheme. From (2.2) and (2.3) the Laurent polynomial of 
convergent subdivision scheme satisfies 

2 /3 4 /3( ) ( ) 0i ia e a e    and (1) 3a  .    (2.4) 

This condition guarantees the existence of a related sub-
division scheme for the divided differences of the origi-
nal control points and the existence of an associated 
Laurent polynomial (1) ( )a z  

2
(1)

2

3
( ) ( ).

1

z
a z a z

z z


 
 

The subdivision scheme 1S  with Laurent polynomial 
(1) ( )a z , is related to scheme S  with Laurent polyno-

mial ( )a z  by the following theorem. 
Theorem 2.1. [1] Let S denote a subdivision scheme 

with Laurent polynomial ( )a z  satisfying (2.4). Then 
there exists a subdivision scheme 1S  with the property  

1
1 , ( )k kf S f a z    

where 0k kf S f  and 1{( ) 3 ( );k k k k k
i i if f f f      

}i Z . Furthermore, S  is a uniformly convergent if 

and only if 1
1
3

S  converges uniformly to zero function 

for all initial data 0f , in the sense that 

lim

0k 
0

1

1
0

3

k

S f
   
 

 

The above theorem indicates that for any given scheme 
S , with mask ' 'a . satisfying (2.2), we can prove the 
uniform convergence of S  by deriving the mask of 

1
1
3

S  and computing  1
1
3

i

S


for 1, 2,3, ,i L  , 

where L  is the first integer for which  1
1 1
3

L

S  . If 

such an L  exists, then S  converges uniformly. Since 
there are three rules for computing the values at next 
refinement level, so we define the norm 

3 3 1 3 2max ,  ,  j j j
j Z j Z j Z

S a a  
  

 
  

 
   ,  (2.5) 

and 

[ , ]

3

1
max ;  0, 1, 2, ,3 1

3
L

L
n L L

n i j
j Z

S b i




       
   

  , (2.6) 

where 

 
1

[ , ] 3

1

1
( ) ( )

3

L
nn L j

L
j

b z a z




  ,         (2.7) 

and 

2 2
( ) ( 1)

2 2

3 3
( ) ( ) ( ),

1 1

                                  1.

n

n nz z
a z a z a z

z z z z

n

   
          



 (2.8) 

Theorem 2.2. [6] Let S be subdivision scheme with a 

characteristic polynomial 
21( ) ( )

23

n

z za z q z
z

     
 

. If 

the subdivision scheme nS  corresponding to the poly-

nomial ( )q z  converges uniformly, then 0S f   
nC R   for any initial control polygon 0f . 
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Corollary 2.3. [6] If S  is a subdivision scheme of 

the form above and 1
1
3 nS   converges uniformly to the 

zero function for all initial data 0f  then 
0  nS f C R     for any initial control polygon 0f . 

Corollary 2.3 indicates that for any given ternary sub-

division scheme S , we can prove 0 ( )nS f C R   by 

first deriving the mask of 1
1
3 nS   and then computing 

 1
1
3

i

nS 


for 1,  2,  3, ,i L  , where L  is the first 

integer for which  1
1 1
3

L

nS 


  If such an L exists, 

then 0 ( )nS f C R  . 

3. The Odd-Point Ternary Approximating  
Schemes 

Here we propose the general formula for odd-point ter-
nary approximating subdivision schemes with one pa-
rameter in the form of Laurent polynomial 

 
2

1

2

1
( ) (1 )

3

1 5 1
             2

12 6 12

n
n

a z z z

z z


 

  


   

                
      

 (3.1) 

where 2 3n   , 0n  . Although one can easily gen-
erate  2 3n  -point ternary schemes for 0n   from 
(3.1), for simplicity, we generate and discuss the 
smoothness of only 3-point ternary scheme. The 
smoothness of other odd-point ternary schemes can be 
computed in similar way. Moreover, for 0n  , 

1/ 4   (3.1) simplifies to [1,  4,  10,  16,  19,  16,  10,  
4,  1] / 27  which is just 3-point ternary cubic B-spline. 

3.1. A 3-Point Ternary Scheme 

From (3.1) for 0n  , we get Laurent polynomial for 
3-point scheme 

2
[3]

3 4 5

6 7 8

1 1 13 37
( )

9 12 12 12

35 41 35
            2 2 2

6 6 6

37 13 1
            

12 12 12

a z z z

z z z

z z z

  

  

  

               
     

               
     

                
      

.  

This gives the mask of 3-point scheme 

[3]

1 1 13 37
0, ,0,  0,  ,  ,  ,

9 12 12 12

35 41 35
       2 ,  2 ,  2 ,

6 6 6

37 13 1
,  ,  ,  0,  0, ,0

12 12 12

a   

  

  

                    
            
     

                   





.  

From the above mask, we suggest following 3-point 
ternary approximating scheme 

1

3

1

1

3 1

1

1

3 2

37 35
2

12 61
,

9 1

12

13 41
2

12 61
,

9 13

12

1 35
2

12 61

9 37

12

k k
i i

k i
i

k
i

k k
i i

k i
i

k
i

k k
i i

k i
i

f f

f

f

f f

f

f

f f

f

 



 



 


















              
     

  
              
     

  

        
   
 


1

.
k

if 

 
 
 
 
 

 

   (3.2) 

From (2.8), we have  

2
(1)
[3] [3]2

3
( ) ( ).

1

z
a z a z

z z

 
    

  

This implies 

2

2
(1)
[3]

3 4 5 6

1
2

12

3 17 1
2 2

6 12

z z
z

a

z z z z



 

           
                

  

and 

(1)
[3]

1 17
0, ,0,  0,  ,  1,  2,  2 ,

12 61

3 1
2,  1,  ,  0,  0, ,0

12

a

 



                
      




  

From (2.7), we have 
2

[1, 1] (1)
[3] [3]2

1 1 3
( ) ( )

3 3 1

z
b a z a z

z z

 
     

.  

This implies 

2 3

2
[1, 1]

4 5 6

1 17
2 2

12 6

9 1
2

12

z z z
z

b

z z z

 



                  
         

. 
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This can be written as 

3 2

[1, 1] 1 0
5

1 2 3

1

12

1 17
2 2

69

1
2

12

z z

b z z
z

z z z







 



       
       

  
       

  

       (3.3) 

If [3]
1S  is the scheme corresponding to (1)

[3]a , then for 
0C  continuity, we require that (1)

[3]a  satisfies (2.2), 

which it does and  [3]
1

1 1
3

L

S


  Since from (2.6), for 

1L  , we have 

[1, 1]
1 3

1
max ;  0,  1,  2

3 i j
j Z

S b i


      
   

 .  

This implies that 

[1, 1]
1 3

1
max ;  0,  1,  2

3 i j
j Z

S b i


      
   

 .  

for integer values of j  ( 3 3 3j   ) that is 
1,  0,  1j    and from (3.3), we get 

1
[1, 1]
3 3 0 3

1

1 1 1 17 1
              2

9 12 9 6 12

2 1 1 17
              2

9 12 9 6

j
j

b b b b

  

 




  

     

   



,  

1
[1, 1]
1 3 2 1 4

1

1 2 1
= 0

9 9 3j
j

b b b b 


      ,  

and 
1

[1, 1]
2 3 1 2 5

1

2 1 1
0

9 9 3j
j

b b b b 


       .  

Summarizing, we get following for 19 35
12 12

    

[3]
1

1
                  

3

2 1 1 17 1
max 2 ,  1

9 12 9 6 3

S

 



   
 

 
    

 

.  (3.4) 

Then by Theorem 2.1, 3-point scheme is 0C . 
From (2.8), we have 

[3]

2
(2) (1)
[3] 2

3
( ) ( )

1

z
a z a z

z z

 
    

.  

This implies 

2

(2) 4
[3]

3 4

1 11
2

12 12
( )

11 1
2

12 12

z z

a z z

z z

 

 

                 
               

, 

and 

(2)
[3]

1 11
0, ,0,  0,  ,  2 ,

12 121

3 11 1
1,  2 ,  ,  0,  0, ,0

12 12

a

 

 

                
             




.  

If [3]
2S  is the scheme corresponding to (2)

[3]a , then for 
1C  continuity, we require that (2)

[3]a  satisfies (2.2), 

which it does and  [3]
2

1 S 1.
3

L



  Since from (2.6), 

for 13 23
18 18

    and 1L  , we have 

[3]
2

1
                   

3

1 1 1 11 1
max 2 ,  1

3 12 3 12 3

S

 



   
 

 
    

 

,  (3.5) 

then by Corollary 2.3, 3-point scheme is 1C . From (2.8) 
we have 

[3]

2
(3) (2)
[3] 2

3
( ) ( )

1

z
a z a z

z z

 
    

.  

This implies 

2

(3) 4
[3]

3 4

1 11
2

12 12
( )

11 1
2

12 12

z z

a z z

z z

 

 

                 
               

, 

and 

(3)
[3]

1
0, ,0,  0,  ,

121

3 5 1
2 ,  ,  0,  0, ,0

6 12

a



 

         
             




.  

If [3]
3S  is the scheme corresponding to (3)

[3]a , then for 
2C  continuity, we require that (3)

[3]a  satisfies (2.2), 

which it does and  [3]
3

1 S 1
3

L



 . Since from (2.6), for 

1 11
12 12

    and 1L  , we have 
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[3]
3

1 1 5
max ,  2 1

3 12 6

L

S  


        
   

, (3.6) 

then by Corollary 2.3, 3-point scheme is 2C . 
Remark: The continuity of 5-point ternary scheme 

can be computed in a similar fashion. The sufficient con-
ditions for the order of continuity of proposed 3-point 
and 5-point ternary schemes for certain ranges of pa-
rameter are given in Table 1. 

4. Basic Properties of the Schemes 

In this section, we discuss basic properties of odd-point 
ternary approximating subdivision schemes that are their 
precision set and support of basic limits function. 

4.1. Precision Set 

Here, we find the precision set of 3-point ternary 
scheme. 

Lemma 4.1. The proposed 3-point ternary precision 
set scheme has quadratic precision for   and cubic at 

1
4

  . 

Proof. We carry out this result by taking our origin the 
middle of an original span with ordinate ,  ( 3) ,n  
( 1) ,  (1) ,  (3) ,n n n   

If ny x , then we have 

1 2 3 4

5 4 3 2

1 1 2 3 4

5 4 3 2 1

[ ] ,  ( 3) ( 1) (1) ,  ( 3)

       ( 1) (1) ,  ( 3) ( 1)

       (1) ,  ( 1) (1) (3) ,  ( 1)

       (1) (3) ,  ( 1) (1) (3) ,

n n n n

n n n n

n n n n n

n n n n n

y a a a a

a a a a

a a a a a

a a a a a

     

     

    

    





 

where 1

1 37

9 12
a    

 
, 2

1 35
2

9 6
a    

 
, 3

1

9
a   

1

12
  

 
, 4

1 13

9 12
a    

 
, 5

1 41
2

9 6
a    

 
, 

If 1  y x , then 

5 1 1 5
[ ] ,  1,  ,  ,  1,  ,

3 3 3 3
y        

2 2 2 2 2
,  ,  ,  ,  ,  ,

3 3 3 3 3
y   ,  

2[ ]y  , where   represents the differences of the 
vertices. 

If 2  y x , then 
101 8 29 8 29 8

[ ] ,  ,  ,  ,
27 9 27 9 27 9

29 8 29 8 101 8
        ,  ,  ,

27 9 27 9 27 9

y   

  

   

  




,  

Table 1. The order of continuities of proposed 3-point and 
5-point ternary approximating schemes are given below.  

Scheme Parameter ContinuityScheme Parameter Continuity

3-point 19 35
12 12

   0C  5-point 28 131
3 12

   0C  

…….. 13 23
18 18

   1C  ……… 71 91
12 12

   1C  

…….. 1 11
12 12

   2C  ……… 67 89
12 12

   2C  

   ……… 19 35
12 12

   3C  

   ……… 13 23
18 18

   4C  

   ……… 1 11
12 12

   5C  

 
Taking further differences, we get 3[ y  . 
If 3 y x , then 

89 8 35 8 5 8
[ ] ,  ,  ,  ,

9 3 27 3 9 3
5 8 35 8 89 8

         ,  ,  ,
9 3 9 3 9 3

y   

  

  
   

  




,  

by taking further differences, we have 
4[ ,  , ,y       , 4[ 0y  ,  

at 
1

=
4

 ,  

Thus by [9], the proposed scheme has quadratic preci-

sion   and cubic at 1
4

  . Similarly one can easily 

prove that proposed 5-point ternary approximating sub-
division scheme has quintic (i.e. 5) precision set for   

and sextic (i.e. 6) at 1
4

  .  

4.2. Remark 

Actually, due to the referee’s implication/allusion, we 
can find the approximation order of proposed 3-point 

ternary scheme by taking 1
4

  . The mask of 3-point 

scheme at 1
4

   simplifies to [1,  4,  10,  16,  19,  16,  

10,  4,  1] / 27 , which is just the ternary cubic B-spline. 

Now according to the precision analysis this scheme has 
cubic precision, which is totally correct because cubic 
polynomials are special case of cubic B-spline, of course. 
However, B-splines are well-known to have approxima-

tion order 2( )o h . Here it is pointed that the presented 

version of the paper owes much to the precise and kind 
remarks of the anonymous referee. 

4.3. Support of Basic Limit Function 

The basic function of a subdivision scheme is the limit 
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function of proposed scheme for the following data 

0 1, 0,

0, 0.i

i
f

i


  

           (4.4) 

Figure 1 (a) and (b) show the basic limit functions, 
     0

iS f 


  of proposed µ-point ternary approxi-

mating schemes, for 2 3n   , 0,1n   respectively. 

The following theorem is related to the support of basic 
limit functions for odd-point ternary schemes. 

Theorem 4.4. The basic limit functions    of pro-  

 
(a)  

 

 
(b) 

 

Figure 1. The basic limit functions of proposed schemes at 
1=

12
ω . (a) 3-point scheme; (b) 5-point scheme. 

posed  -point ternary approximating scheme has sup-

port width 1s n   , for 2 3n   , 0n  , which 

implies that it vanishes outside the interval 
1

,
2
n  

 

1
2
n   


  

Proof. Since the basic function is the limit function of 
the scheme for the data (4.1), its support width ′s′ can be 
determine by computing how for the effect of the 
non-zero vertex 0

0f  will propagate along by. As the 
mask of  -point scheme is 3  -long sequence by 
centering it on that vertex, the distances to the last of its 
left and right non-zero coefficients are equal to 1  .  

    
(a)                       (b) 

 

    
(c)                       (d) 

 

  
(e)                      (f) 

 

Figure 2. Comparison: Dotted lines indicate initial polygons. 
Thin solid and bold solid continuous curves are generated 
by proposed ternary approximating scheme and Lian [15] 
ternary interpolating schemes respectively. (a), (b), and (c) 
show different levels of 3-point ternary schemes, whereas (d), 
(e), and (f) show different levels of 5-point ternary schemes. 
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Table 2. Comparison of proposed 3- and 5-point ternary schemes. 

Scheme Type Support Order nC  Range 

3-point ternary [2] Interpolating 4 2 1C  1
3

a b   and 32 , 
9 9

b     
3-point ternary [15] Interpolating 4 2 1C  For some particular value 

3-point ternary [2] Approximating 4 2 2C  For some particular value 

3-point ternary [18] Approximating 4 2 2C  71,  
72 72

     
 

4-point ternary [6] Interpolating 5 4 2C  1 1,  
9 15

     
 

4-point ternary [4] Approximating 5.5 4 2C  For some particular value 

5-point ternary [15] Interpolating 7 4 1C  For some particular value 

3-point ternary proposed Approximating 4 2 2C  
1 11

12 12
    

5-point ternary proposed Approximating 7 4 5C  
1 11

12 12
    

 
(a)                            (b)  

Figure 3. Dotted lines indicate initial polygons. Dashes, dashes dot and solid line show the visual smoothness of proposed 

schemes for the parametric value at -1=
12

ω , 1=
6

ω  and 1=
3

ω  respectively. (a) 3-point scheme; (b) 5-point scheme.

At the first subdivision step, we see that the vertices on 

the both sides of 1
0f  at 

1
3
n  

are the furthest non- 

zero new vertices. At each refinement, the distances on 

both sides are reduced by the factor 1
3

. At the next step 

of the scheme this will propagate along by 
1 1

3 3
n     

on both sides. Hence after k  subdivision steps the fur-

thest non-zero vertex on the left will be at 

 
1

2
0

11 1 1 11 ...
3 33 3 3

k

k j
j

n
n






                   
 . So 

the total support width is  
1

0

1 12
3 3

k

j
j

n 




       
   

  

1n  . 

4.4. Comparison and Application 

Table 2 shows that the support size and continuity of 
proposed 3-point ternary scheme is same as 3-point ter-
nary scheme introduced by [18]. It is also declared that 

the scheme introduced by [18] is 2C  for  71,  
72 72
  

while our 3-point scheme is 2C  for  1 11,  
12 12
  which 

provides more freedom for curve designing. Support size 
of proposed 3-point ternary approximating scheme is 
smaller than 4-point ternary interpolating schemes [6] 
but gives the same order of derivative continuity. It is 
also mentioned that proposed 3-point scheme has larger 
interval of continuity with less computational cost than 
schemes [6] and [4].  
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In Table 2, we have pointed out that proposed 5-point 
ternary scheme is 5C  continuous while the 5-point ter-
nary scheme of [15] is 1C .  

Figure 2 shows the visual comparison of 3- and 
5-point ternary interpolating schemes of Lian [15] with 
the proposed 3- and 5-point ternary approximating 
schemes. Figure 3 is exposed to show the role of shape 
parameter   when proposed 3- and 5-point schemes 
applied on discrete data points. From this figure, we see 
that the behavior of the limiting curve acts as tightness 
when  the choice of shape parameter vary from right to 

left in the interval  1 11,  
12 12
 . 

5. Conclusions 

The family of odd-point approximating schemes for curve 
design has established. Smoothness and approximation 
order of 3- and 5-point ternary schemes have been dis-
cussed. Support of family of odd-point ternary schemes 
has computed in general. It has been shown that pro-
posed schemes are better then existing odd-point ternary 
schemes in the sense of smoothness. The family of 
even-point ternary approximating schemes will be stud-
ied in detail in the forthcoming paper. 
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