Journal of Cosmetics, Dermatological Sciences and Applications, 2015, 5, 116-124 Published Online June 2015 in SciRes. http://www.scirp.org/journal/jcdsa http://dx.doi.org/10.4236/jcdsa.2015.52014 # Mycosis Fungoides in Iraqi Patients— Clinical, Histopathological and Immunohistochemical Study # Hayder R. Al-Hamamy¹, Khalifa E. Sharquie^{2*}, Adil A. Noaimi², Waqas S. Abdulwahhab³ ¹Scientific Council of Dermatology and Venereology, Iraqi Board for Medical Specializations, Baghdad Teaching Hospital, Medical City, Baghdad, Iraq ²Scientific Council of Dermatology and Venereology, Iraqi and Arab Board for Medical Specializations, Department of Dermatology, College of Medicine, University of Baghdad, Baghdad, Iraq ³Arab Board for Medical Specializations, Department of Dermatology and Venereology, Baghdad Teaching Hospital, Medical City, Baghdad, Iraq Email: hayder317@gmail.com, href="mailto:hayder317@gmail.com">hayder317@gmailto:hayder317@gmail.com, =70 years | 4 | 16.0 | | Total | 25 | 100.0 | Regarding the morphology of the lesions: 11 (44%) patients had patch stage, 3 (12%) in the plaque stage, 9 (36%) in the tumor stage and 2 patients presented with erythroderma (**Figure 1**). Palpable lymph nodes were detected in 11 (44%) patients. Palpable axillary lymph glands were detected in 10 (40%) patients, cervical lymph glands were detected in one (4%) patient and inguinal lymph glands were palpable in 7 (28%) patients at the time of presentation. Their sizes were ranged between 1 - 2.5 cm in diameter they were rubbery, mobile and not tender. Lymph nodes biopsies were performed for 4 patients who showed involvement of lymph glands by neoplastic lymphoid cells. The staging of MF was carried out according to TNMB staging system. The most common stage at diagnosis was IB (9 patients), followed by IVB (5 patients). While stage IIB was diagnosed in 3 patients and 2 patients Table 2. Showing the distribution of lesions according to the site. | Site of involvement | Involvement | | T | | |---------------------|--------------------|-------|-------------------------|--| | | Number of patients | 56.5% | Total number of lesions | | | Head and neck | 8 | 32% | 22 | | | Chest | 18 | 72% | 48 | | | Abdomen | 19 | 76% | 58 | | | Back | 11 | 44% | 32 | | | Upper extremities | 14 | 56% | 58 | | | Lower extremities | 20 | 80% | 83 | | | Gluteal area | 9 | 36% | 18 | | **Figure 1.** Clinical types of MF. (A) Patch stage MF: ill-defined brownish to violaceous scaly patches; (B) plaque stage MF: multiple well defined brownish scaly plaques; (C) tumor stage MF: mushroom-like masses on the neck; (D) Erythrodermic MF: the skin is diffusely scaly red. were diagnosed in the stage IA, IIA, IVA (**Table 3**). Visceral involvement was detected in 3 (12%) patients. *Histopathology*: The most common features in histopathology were as follows (**Figure 2** and **Figure 3**): - Large atypical lymphocytes (25 cases, 100%). - Reaction pattern of lymphocytes in papillary dermis (24 cases, 96%). - Epidermotropism of lymphocytes (21 cases, 84%). - Band like distribution of atypical lymphocytes (18 cases, 72%). - Papillary dermal fibrosis (12 cases, 48%). Less common features include multinucleated giant cells (one case), neutrophils (two cases) and diffuse in volvement of dermis and panniculus (two cases). Figure 2. Hematoxylin and eosin (H & E) stained section of patch stage MF. (A) Psoriasiform epidermis and expansion of the papillary dermis with coarsened collagen fibers that contain a dense infiltrate of morphologically atypical lymphocytes (Magnification ×10); (B) permeation of epidermis by singly scattered atypical and hyperchromasia lymphocytes (Magnification ×40); (C) large Pautrier microabscess formed by clustering of atypical looked lymphocytes surrounded by clear space within epidermis (magnification ×40). Figure 3. Granulomatous mycosis fungoides (sarcoid like) showing dense nodular lymphocytic infiltrates throughout the entire dermis. Multinucleated histiocytic giant cells were present. (Hematoxylin-eosin, original magnification $\times 10$ (A); $\times 40$ (B)). *Immunohistochemistry*: CD3+ was detected in all patients. CD4+ T cells were detected in 21 patients and CD8+ in 19 patients. CD20 was negative in all patients. CD30 was positive in one patient. **Table 4** showed the range and average of CD4/CD8 ratio in patients with patch stage and erythrodermic stage of MF. CD30 positive T cells were detected in one patient with tumor stage. He was diagnosed to be large anaplastic T cell lymphoma (**Figure 4**). Figure 4. Hematoxylin and eosin (H & E), CD markers staining of skin specimens from patients with mycosis fungoides. H&E staining shows lymphomononuclear cell infiltrate in the upper dermis with epidermotropism of singly distributed lymphocytes. (A) CD3; (B) CD4; (C) CD8; (D) CD30. Table 3. Staging according to TNMB system of MF. | Staging | Frequency | Percent | |---------|-----------|---------| | IA | 2 | 8 | | IB | 9 | 36 | | IIA | 2 | 8 | | IIB | 3 | 12 | | Ш | 2 | 8 | | IVA | 2 | 8 | | IVB | 5 | 20 | | Total | 25 | 100.0 | Table 4. CD4/CD8 ratio in patients with patch and erythrodermic stage. | | Site | Range | Average | |--------------|-----------|------------|---------| | Erythroderma | Dermal | 3.1 - 5.7 | 4.4 | | | Epidermal | 9.6 - 12.1 | 10.85 | | Patch | Dermal | 1.2 - 3 | 2.01 | | | Epidermal | 3.1 - 9.55 | 4.43 | Unusual Presentations: 1-Hypopigmented MF: In 3 patients the lesions were hypopigmented. One of them was an 18 years old female with 4 years duration of asymptomatic multiple hypopigmented patches. On examination she had 20 lesions distributed on her forearms, back, lower abdomen and inner thighs. The second patient was a 50 years old male with 7 years duration of asymptomatic hypopigmented patches (15 lesions) on the back and abdomen. The third patient was a 45 years old male with asymptomatic patches (11 lesions) on the back and abdomen for 10 years. In all cases the skin was abnormal in texture as the lesions were scaly and thickened and not just a hypopigmentation. 2-Hyperpigmented MF: One patient presented with hyperpigmented lesions. 3-Granulomatous MF: One patient presented with granulomatous lesions. This patient was a 77 years old male with 6 months duration of tumors (7 lesions) distributed on the right shoulder, anterior chest and bilateral inner thighs associated with palpable bilateral axillary and inguinal lymph nodes. Skin biopsy showed dense nodular lymphocytic infiltrates throughout the entire dermis with multinucleated histiocytic giant cells. The patient later on died due to visceral involvement (**Figure 5**). 4-Poikiloderma: Four patients present with poikilodermtous skin rashes in addition to the patch or plaque or tumor stage. #### 4. Discussion Mycosis fingoides is very interesting T cell tumor and it is increasing all over the world including Iraq [6] [11]-[14]. Age of onset at the present study was 47.5 years while in the previous Iraqi study was 42.6 years but was comparable to other studies like USA 55 years; Europe 50 years and Korea 55 years [6] [11]-[14]. In the present work males were more than females with ratio 1.5:1 and this was comparable with other countries like USA 1.6:1 to 2:1; Europe 2:1 and Korea 1.4:1 [11]-[14]. Pruritus was the major symptoms among patients (84%) and this was the main presenting finding and was similar to other published studies [3] [11] [15]. **Figure 5.** Clinical variants of MF. (A) Childhood onset MF: 18 years old age girl with these hypopigmented lesions for four years duration; (B) hypopigmented MF: Multiple hypopigmented macules and patches were noted on the back of 50 years old age male; (C) poikilodermatous MF on left breast of 55 years old male; (D) granulomatous MF: large mass in right shoulder of 77 years old male. The patch alone was the commonest sign of disease as seen in 44% of cases while other patients presented with tumors (36%) single or multiple in addition to patch stage and 8% of patients was seen with erythroderma as part of Sezary syndrome. Palpable lymph glands were detected in 44% of patients at the time of diagnosis mainly in the axilla. This finding was much higher than previous Iraqi study where lymph gland enlargement was seen in 15% of cases while consistent with other reports [11] [15]. Fortunately in 36% of cases of MF presented with stage IB and this in agreement with the previous Iraqi study and this is could be explained to early presentation and diagnosis as most patients seen within 2 years of the disease but in contrast to previous Iraqi study where the time of presentation and diagnosis was 7.9 years [11]. This is probably related to more education of dermatologist about MF. While other studies from Europe and American countries, the stage of disease at time of diagnosis was mostly stage III and IV and this could be attributed to either to more aggressive disease or to the late establishment of diagnosis [12] [13] [16]. Scott *et al.* mentioned the ratio of CD4 to CD8 in patients with patch stage and erythrodermic stage. They put a range of the ratio as an aid to diagnosis of MF in patients with equivocal histopathological picture [17]. In this study all patients fall within this range (Table 4). In Iraq, vitiligo often presents with stage I and stage II of depigmentation and the histopathology of these stages where described to be similar to early MF and even forming pautrier microabscess like [18]. Accordingly hypopigmented MF is rarely diagnosed and even might be questionable as both diseases stage I vitiligo and hypopigmentad MF are disease of children and respond to similar therapy and the prognosis is very good [18]-[20]. In the present work, hypopigmented MF seen in 3 (12%) of patients and these cases the skin is abnormal regarding the textures rather than just hypopigmentations in contrast with the stage I vitiligo where the skin is usually normal apart from pigment loss. This finding raises big question mark regarding the high frequency of hypopigmented MF in neighboring Arabian countries like Saudi Arabia (41.1%) and Kuwait (64%) and this high frequency of this variant might probably related to misdiagnosis with stage I vitiligo or a proper hypopigmented MF [21] [22]. Large anaplastic T cell lymphoma was detected in one patient and granulomatous MF was detected in one patient; these are rare variants [10] [17] [23]. #### 5. Conclusion In conclusion, MF in Iraqi population is commonly presented with patch stage (stage I_B) within a period of 2 years while the hypopigmented MF is not a common feature of the disease. #### **Disclosure** This study is an independent study and not funded by a drug Companies. #### References - [1] Burg, G. and Kempf, W. (2005) Etiology and Pathogenesis of Cutaneous Lymphomas. In: Burg, G. and Kempf, W., Eds., *Cutaneous Lymphomas*, Taylor and Francis, London. - [2] Willemze, R., Jaffe, E.S., Burg, G., Cerroni, L., Berti, E., Swerdlow, S.H., Ralfkiaer, E., Chimenti, S., Diaz-Perez, J.L., Duncan, L.M., Grange, F., Harris, N.L., Kempf, W., Kerl, H., Kurrer, M., Knobler, R., Pimpinelli, N., Sander, C., Santucci, M., Sterry, W., Vermeer, M.H., Wechsler, J., Whittaker, S. and Meijer, C.J. (2005) WHO-EORTC Classification for Cutaneous Lymphomas. *Blood*, 105, 3768-3785. http://dx.doi.org/10.1182/blood-2004-09-3502 - [3] Burg, G., Kempf, W., Cozzio, A., Döbbeling, U., Feit, J., Golling, P., Michaelis, S., Schärer, L., Nestle, F. and Dummer, R. (2006) Cutaneous Malignant Lymphomas: Update. *JDDG*: *Journal der Deutschen Dermatologischen Gesellschaft*, 4, 914-933. http://dx.doi.org/10.1111/j.1610-0387.2006.06069.x - [4] Khamaysi, Z., Ben-Arieh, Y., Izhak, O.B., Epelbaum, R., Dann, E.J. and Bergman, R. (2008) The Applicability of the New WHO-EORTC Classification of Primary Cutaneous Lymphomas to a Single Referral Center. *The American Journal of Dermatopathology*, 30, 37-44. http://dx.doi.org/10.1097/DAD.0b013e31815f9841 - [5] Olsen, E.A., Whittaker, S., Kim, Y.H., Duvic, M., Prince, H.M., Lessin, S.R., Wood, G.S., Willemze, R., Demierre, M.-F., Pimpinelli, N., Bernengo, M.G., Ortiz-Romero, P.L., Bagot, M., Estrach, T., Guitart, J., Knobler, R., Sanches, J. A., Iwatsuki, K., Sugaya, M., Dummer, R., Pittelkow, M., Hoppe, R., Parker, S., Geskin, L., Pinter-Brown, L., Girardi, M., Burg, G., Ranki, A., Vermeer, M., Horwitz, S., Heald, P., Rosen, S., Cerroni, L., Dreno, B. and Vonderheid, E.C. (2011) Clinical End Points and Response Criteria in Mycosis Fungoides and Sezary Syndrome: A Consensus State- - ment of the International Society for Cutaneous Lymphomas, the United Stated Cutaneous Lymphoma Consortium, and the Cutaneous Lymphoma Task Force of the European Organisation for Research and Treatment of Cancer. *Journal of Clinical Oncology*, **29**, 2598-2607. http://dx.doi.org/10.1200/JCO.2010.32.0630 - [6] Criscione, V.D. and Weinstock, M.A. (2007) Incidence of Cutaneous T-Cell Lymphoma in the United States, 1973-2002. Archives of Dermatology Journal, 143, 854-859. http://dx.doi.org/10.1001/archderm.143.7.854 - [7] Pimpinelli, N., Olsen, E.A., Santucci, M., et al. (2005) Defining Early Mycosis Fungoides. Journal of the American Academy of Dermatology, 53, 1053-1063. http://dx.doi.org/10.1016/j.jaad.2005.08.057 - [8] Santucci, M., Biggeri, A., Feller, A.C., Massi, D. and Burg, G. (2000) Efficacy of Histologic Criteria for Diagnosing Early Mycosis Fungoides: An EORTC Cutaneous Lymphoma Study Group Investigation. European Organization for Research and Treatment of Cancer. *The American Journal of Surgical Pathology*, 24, 40-50. http://dx.doi.org/10.1097/00000478-200001000-00005 - [9] Smoller, B.R., Bishop, K., Glusac, E., Kim, Y.H. and Hendrickson, M. (1995) Reassessment of Histologic Parameters in the Diagnosis of Mycosis Fungoides. *The American Journal of Surgical Pathology*, 19, 1423-1430. http://dx.doi.org/10.1097/00000478-199512000-00009 - [10] Zola, H., Swart, B., Nicholson, I. and Voss, E., Eds. (2007) Leukocyte and Stromal Cell Molecules: The CD Markers. John Wiley and Sons, Hoboken. - [11] Ali, A.N. (1999) Mycosis Fungoides in Iraqi Patients a Clinical and Histopathological Study. A Thesis Submitted to Iraqi Board for Medical Specializations, Dermatology and Venereology. - [12] Bradford, P.T., Devesa, S.S., Anderson, W.F. and Toro, J.R. (2009) Cutaneous Lymphoma Incidence Patterns in the United States: A Population-Based Study of 3884 Cases. *Blood*, 113, 5064-5073. http://dx.doi.org/10.1182/blood-2008-10-184168 - [13] Jenni, D., Karpova, M.B., Seifert, B., et al. (2011) Primary Cutaneous Lymphoma: Two-Decade Comparison in a Population of 263 Cases from a Swiss Tertiary Referral Centre. British the Journal of Dermatology, 164, 1071-1077. - [14] Jang, M.S., Kang, D.Y., Park, J.B., Kim, S.T. and Suh, K.S. (2012) Cutaneous T-Cell Lymphoma in Asians. *International Scholarly Research Notices Dermatology Journal*, 2012, Article ID: 575120, 8 p. - [15] Laroche, L., Trautinger, F., Whittaker, S., Ranki, A., Burg, G., Heald, P., Pittelkow, M., Bernengo, M.-G., Sterry, W., Zackheim, H., Duvic, M., Estrach, T., Lamberg, S., Wood, G., Dummer, R., Olsen, E., Vonderheid, E., Pimpinelli, N., Willemze, R., Kim, Y. and Knobler, R. (2007) Revisions to the Staging and Classification of Mycosis Fungoides and Sézary Syndrome: A Proposal of the International Society for Cutaneous Lymphomas (ISCL) and the Cutaneous Lymphoma Task Force of the European Organization of Research and Treatment of Cancer (EORTC). Blood Journal, 110, 1713-1722. - [16] Youn, H.K., Steve, C., Anna, V. and Richard, T.H. (1999) Clinical Characteristics and Long-Term Outcome of Patients with Generalized Patch and/or Plaque (T2) Mycosis Fungoides. *Archives of Dermatology*, **135**, 26-32. - [17] Scott, R., Melissa, C., Ryan, B., Kenneth, M., Glen, M., Ronald, M., Marta, J., John, J., Sheryl, T. and Sherrie, L. (2006) Usefulness (or Lack Thereof) of Immunophenotyping in Atypical Cutaneous T-Cell Infiltrates. *American Journal of Clinical Pathology*, 125, 727-736. http://dx.doi.org/10.1309/3JK2H6Y988NUAY37 - [18] Sharquie, K.E., Mehenna, S.H., Naji, A.A. and Al-Azzawi, H. (2004) Inflammatory Changes in Vitiligo: Stage I and II Depigmentation. *The American Journal of Dermatopathology*, 26, 108-112. http://dx.doi.org/10.1097/00000372-200404000-00004 - [19] El-Shabrawi-Caelen, L., Cerroni, L., Medeiros, L.J. and McCalmont, T.H. (2002) Hypopigmented Mycosis Fungoides: Frequent Expression of a CD8+ T-Cell Phenotype. *American Journal of Surgical Pathology*, 26, 450-457. http://dx.doi.org/10.1097/00000478-200204000-00006 - [20] Singh, Z.N., Tretiakova, M.S., Shea, C.R. and Petronic-Rosic, V.M. (2006) Decreased CD117 Expression in Hypopigmented Mycosis Fungoides Correlates with Hypomelanosis: Lessons Learned from Vitiligo. *Modern Pathology*, 19, 1255-1260. http://dx.doi.org/10.1038/modpathol.3800644 - [21] AlGhamdi, K.M., Arafah, M.M., Al-Mubarak, L.A., Khachemoune, A. and Al-Saif, F.M. (2012) Profile of Mycosis Fungoides in 43 Saudi Patients. *Annals of Saudi Medicine*, **32**, 283-287. - [22] Nanda, A., AlSaleh, Q.A., Al-Ajmi, H., Al-Sabah, H., Elkashlan, M., Al-Shemmari, S. and Demierre, M.-F. (2010) Mycosis Fungoides in Arab Children and Adolescents: A Report of 36 Patients from Kuwait. *Pediatric Dermatology*, 27, 607-613. http://dx.doi.org/10.1111/j.1525-1470.2010.01129.x - [23] Kempf, W., Ostheeren-Michaelis, S., Paulli, M., Lucioni, M., Wechsler, J., Audring, H., Assaf, C., Rüdiger, T., Willemze, R., Meijer, C.J., Berti, E., Cerroni, L., Santucci, M., Hallermann, C., Berneburg, M., Chimenti, S., Robson, A., Marschalko, M., Kazakov, D.V., Petrella, T., Fraitag, S., Carlotti, A., Courville, P., Laeng, H., Knobler, R., Golling, P., Dummer, R. and Burg, G. (2008) Granulomatous Mycosis Fungoides and Granulomatous Slack Skin. Archives of Dermatology, 144, 1609-1617.