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Abstract 
Petasin is a potential antitumor against human neuroblastoma cell SK-N-SH by inhibiting the 
ERK1/2 phosphorylation. In view of its great activity and new antiproliferative mechanisms, a se-
ries of petasin derivatives were designed and synthesized, which showed great antiproliferative 
activity. Among them compounds 1h and 1f were more effective against SK-N-SH cells than petasin 
with the IC50 values of 0.87 and 2.63 µM, respectively. 
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1. Introduction 
Neuroblastoma (neuroblastoma, NB) [1] is the most common extracranial tumor in infants and young children. 
Recent clinical statistics show that the neuroblastoma has become the third most common cause of death after 
renal tumor and leukemia during the childhood [2] [3]. Due to the diversity of clinical manifestations, its treat-
ment varies accordingly. In general, neuroblastoma needs surgery and radioactive therapy, chemotherapy and 
other treatments are also used for the residual tumors. 

Petasin (Figure 1) is the active component of Petasites hybridus L. (Petasites Tricholobus, Compositae), which 
has been reported to possess many bioactivities including analgesic, anti-inflammation, and inhibition of ileum  
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Figure 1. The structures of petasin and petasin derivatives (R1, R2, R3 = alkyl group).                       

 
contraction. In our group, the great antitumor activity against Sk-N-SH was reported for the first time [4]. Peta-
sin successfully inhibited the proliferation but not induced the apoptosis. The inhibition of ERK1/2 phosphory-
lation might be involved in the antiproliferation. 

Based on the above results, a series of petasin derivatives were designed and synthesized (Figure 1) for in-
vestigating the structure-activity relationship and discovering new antiproliferative agents. 

2. Chemistry  
Petasin derivatives were efficiently synthesized as described in Scheme 1. Compounds 1a-h and 3 were ob-
tained from the isopetasinol by acylation reactions with carboxylic acids or maleic anhydride [5] [6]. Isopetasi-
nol was prepared by the hydrolysis [7] of petasin in the presence of NaOH. Compounds 2 were prepared by an 
epoxidation [8]-[10] of compounds 1. Compounds 4a-b with an unsaturated side chain were synthesized by the 
reaction of compound 3 and different alkyl halides. 

To further investigate SARs, compounds 8a-c with an amide functional group were designed and synthesized 
[11]-[17]. Tosylation of isopetasinol resulted in compound 5, followed by nucleophilic substitution with NaN3 
giving the corresponding azide 6. Zn-mediated reduction of compound 6 produced compound 7, which was then 
subjected to prepare compounds 8a-c by acylation reactions. 

3. Results and Discussion  
The IC50 values for all obtained petasin analogues against three human cancer cell lines including SK-N-SH, 
MGC-803 and HepG-2 were determined using MTT assay [18]-[22]. Natural occurring petasin, isopetasinol and 
cisplatin were used as positive controls. The results were demonstrated in Table 1. The cell-based investigation 
demonstrated that some synthetic compounds showed much more potent or comparable antiproliferative activity 
compared to the petasin. Especially they showed selective antiproliferative activities toward SK-N-SH cells with 
weak inhibition against other tumor cells.  

Compared to petasin, the antiproliferative activities of isopetasinol against the tested cancer cell lines was de-
creased significantly (IC50 > 100 µM), which indicated that an additional unsaturated ester group is beneficial 
for the activity. Therefore, substituted benzoic ester group was introduced as represented in compounds 1a-h. 
Interestingly, some of these compounds showed great cytotoxicity against SK-N-SH and were much more potent 
than petasin and cisplatin. Compounds with electron-donating groups attached to the phenyl ring were much  
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Scheme 1. Reagents and conditions: 1) NaOH, CH3OH, 62˚C, 4 - 6 h; 2) DMAP, DCC, CH2Cl2, 0˚C, 6 h; 3) m- 
ClC6H5COOOH, CH2Cl2, rt, 3 h; 4) (C2H5)3N, CH2Cl2, 0˚C, 2 h; 5) Na2CO3, DMF, 65˚C, 2 h; 6) m-CH3C6H5SO2Cl, 
(C2H5)3N, CH2Cl2, 0˚C, 6 h; 7) NaN3, DMF, 95˚C, 8 h; 8) Zn, NH4Cl, THF/H2O, 2 h, rt; 9) (C2H5)3N, CH2Cl2, 0˚C, 2 h.            

 
Table 1. In vitro inhibitory activity of petasin derivatives against SK-N-SH, MGC-803 and HepG-2 cell lines.                        

Compd 
IC50 (µmol/L) 

SK-N-SH MGC-803 HepG-2 

1a 12.01 ± 1.27 >100 38.02 ± 1.87 

1b 5.98 ± 1.06 12.99 ±2.62 64.17 ± 2.06 

1c 14.91 ± 1.85 12.84 ± 1.87 34.55 ± 3.51 

1d >100 13.73 ± 2.46 30.30 ± 2.43 

1e 
1f 
1g 
1h 

31.36 ± 2.01 
2.63 ± 0.76 
61.25 ± 3.21 
0.87 ± 0.28 

33.84 ± 2.85 
24.83 ± 1.97 
40.40 ± 3.41 

>100 

33.82 ± 2.01 
57.33 ± 2,53 
32.02 ± 1.98 
27.46 ± 1.63 

2a 34.78 ± 3.56 43.75 ± 3.78 >100 

2b 
2c 

76.23 ± 2.18 
26.87 ± 1.87 

>100 
>100 

>100 
49.34 ± 1.76 

2d 48.95 ± 2.14 >100 >100 

2e >100 >100 >100 

4a 14.54 ± 1.43 43.19 ± 2.86 58.17 ± 3.01 

4b 12.76 ± 1.52 >100 >100 

8a >100 >100 >100 

8b 31.80 ± 2.07 36.86 ± 3.41 27.63 ± 2.43 

8c 64.31 ± 2.65 78.37 ± 4.01 43.98 ± 3.01 

Isopetasinol >100 >100 >100 

Petasin 
Cisplatin 

5.76 ± 0.98 
12.32 ± 1.06 

34.41 ± 2.75 
10.88 ± 1.86 

26.84 ± 1.65 
8.14 ± 0.89 

 
more potent than those with electron-withdrawing groups. Among them, compound 1h and 1f showed the best 
cytotoxicity with the IC50 values of 0.87 and 2.63 µM, respectively, which were about 14 or 15 fold more potent 
than cisplatin (IC50 = 12.32 µM). 
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Compounds 2a-e with epoxy ring showed bad antiproliferative activity against SK-N-SH with the IC50 values 
more than 26 µM and were less potent than cisplatin and petasin (IC50 = 5.76 µM), which indicated that exo- 
double bond were important for the antiproliferative activity. Besides, the antiproliferative activity of com-
pounds 4a-b and compounds 8a-c also become to be worse than that of compounds 1a-1h and the positive con-
trol.  

In conclusion, SAR of new petasin derivatives against SK-N-SH showed that an additional ester group and 
the exo-double bond were important for the antiproliferative activity. Furthermore the isomerization of the 
double bond and unsaturated ester unaffected the antiproliferative activity. But if the ester group was substituted 
with amide group, the antiproliferative activity against Sk-N-SH showed a certain extent effects. And com-
pounds 1h and 1f were discovered, which showed selective and great antiproliferative activity with IC50 values 
of 0.87 and 2.63 µM against SK-N-SH cells. The result in this study is valuable for the design and optimization 
of petasin derivative and the discovery of new antiproliferative agent. 

4. Experimental Section 
4.1. Chemistry  
Petasin, extracted from Ligularia fischeri with traditional ethanol reflux. Reagents and solvents were purchased 
from commercial sources and were used without further purification. Thin-layer chromatography (TLC) was 
performed on silica gel GF254 plates. Silicagel GF254 and H (200 - 300 mesh) from Qingdao Haiyang Chemical 
Company was used for TLC, preparative TLC, and column chromatography respectively. Melting points were 
determined on an X-5 micromelting apparatus and are uncorrected. 1H NMR and 13C NMR spectra were rec-
orded on a Bruker 400 MHz and 100 MHz spectrometer respectively. High resolution mass spectra (HRMS) 
were recorded on a Waters Micromass Q-T of Micromass spectrometer by electrospray ionization (ESI). 

4.1.1. General Procedure for the Synthesis of Compounds 1a-h 
A mixture of isopetasinol (1 equiv) and Carboxylic acid (1.5 equiv) in CH2Cl2 in the presence of DMAP (1 
equiv) and DCC (1 equiv) was stirred at 0˚C for 6 h. The disappearance of compound isopetasinol was moni-
tored by TLC. Upon completion, the solvent was removed and water was added, the reaction mixture was ex-
tracted with CH2Cl2. The combined organic layer was washed with brine, dried over anhydrous MgSO4 and 
concentrated under vacuum to afford the crude product. The crude product was purified by a flash column to 
yield the pure product 1a-h. 

1,8a-dimethyl-6-oxo-7-(propan-2-ylidene)-1,2,3,4,6,7,8,8a-octahydronaphthalen-2-yl-4-methylbenzoate 
(1a). Yellow solid, yield 75%, mp: 71.2˚C - 72.1˚C, 1H NMR (400 MHz, CDCl3) δ 7.94 - 7.25 (m, 4H, ArH), 
5.81 (s, 1H, HC = C), 5.14 - 5.01 (m, 1H, CH), 2.96 (d, J = 13.7 Hz, 1H, CH2), 2.52 (d, J = 13.6, 1H, CH2), 2.42 
(s, 3H, CH3 ), 2.39 - 2.26 (m, 2H, CH2), 2.23 (d, J = 11.0 Hz, 1H, CH2), 2.11 (s, 3H, CH3), 1.87 (s, 3H, CH3), 
1.81 (d, J = 11.0, 1H, CH2), 1.63 - 1.54 (m, 1H, CH), 1.08 (s, 3H, CH3), 1.04 (d, J = 6.7 Hz, 3H, CH3). 13C NMR 
(100 MHz, CDCl3) δ 206.94, 191.66, 166.23, 165.15, 143.73, 143.43, 129.60, 129.11, 127.59, 127.14, 126.76, 
74.01, 46.34, 42.27, 41.17, 31.65, 30.91, 30.13, 22.61, 22.13, 21.65, 17.19, 10.83. HR-MS (ESI): Calcd. 
C23H28O3, [M+H]+ m/z: 352.2126, found: 352.2128. 

1,8a-dimethyl-6-oxo-7-(propan-2-ylidene)-1,2,3,4,6,7,8,8a-octahydronaphthalen-2-yl-4-methoxybenzoate 
(1b). Yellow solid, yield 70%, mp: 107.7˚C - 110.4˚C, 1H NMR (400 MHz, CDCl3) δ 8.03 - 6.95 (m, 4H, ArH), 
5.83 (s, 1H, HC=C), 5.13 - 5.04 (m, 1H, CH), 3.89 (s, 3H, CH3), 2.98 (d, J = 13.7 Hz, 1H, CH2), 2.56 (d, J = 
13.7, 1H, CH2), 2.46 - 2.29 (m, 2H, CH2), 2.25 (d, J = 11.0 Hz, 1H, CH2), 2.13 (s, 3H, CH3), 1.89 (s, 3H, CH3), 
1.82 (d, J = 11.0, 1H, CH2), 1.63 - 1.57 (m, 1H, CH), 1.10 (s, 3H, CH3), 1.06 (d, J = 6.7 Hz, 3H, CH3). 13C NMR 
(100 MHz, CDCl3) δ 206.99, 191.71, 165.93, 165.26, 163.45, 143.46, 131.59, 127.14, 126.72, 122.71, 113.65, 
73.85, 55.46, 46.38, 42.28, 41.17, 31.70, 30.91, 30.15, 22.62, 22.14, 17.19, 10.83. HR-MS (ESI): Calcd. 
C23H28O4, [M+H]+ m/z: 368.2047, found: 368.2049. 

1,8a-dimethyl-6-oxo-7-(propan-2-ylidene)-1,2,3,4,6,7,8,8a-octahydronaphthalen-2-yl-3-nitrobenzoate (1c). 
White solid, yield 74%, mp: 128.9˚C - 132.8˚C, 1H NMR (400 MHz, CDCl3) δ 7.95 - 7.64 (m, 4H, ArH), 5.82 (s, 
1H HC = C), 5.12 - 5.01 (m, 1H, CH), 2.95 (d, J = 13.7 Hz, 1H, CH2), 2.56 (d, J = 13.7 Hz, 1H, CH2), 2.47 - 
2.39 (m, 2H, CH2), 2.21 (d, J = 11.1 Hz, 1H, CH2), 2.12 (s, 3H, CH3), 1.88 (s, 3H, CH3), 1.78 - 1.70 (m, 1H, 
CH), 1.59 (d, J = 11.0 Hz, 1H, CH2), 1.09 (s, 3H, CH3), 1.06 (d, J = 6.7 Hz, 3H, CH3). 13C NMR (100 MHz, 
CDCl3) δ 207.02, 191.53, 165.14, 164.52, 147.95, 143.63, 132.98, 131.74, 129.65, 127.88, 126.99, 123.96, 
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76.40, 45.85, 42.28, 41.04, 30.95, 29.94, 22.63, 22.16, 17.17, 10.79. HR-MS (ESI): Calcd. C22H25NO5, [M+H]+ 

m/z: 383.1807, found: 383.1809. 
1,8a-dimethyl-6-oxo-7-(propan-2-ylidene)-1,2,3,4,6,7,8,8a-octahydronaphthalen-2-yl-4-nitrobenzoate (1d). 

White solid yield 75%, mp: 88.1˚C - 91.4˚C, 1H NMR (400 MHz, CDCl3) δ 8.36 - 8.21 (m, 4H, ArH), 5.84 (s, 
1H, HC = C), 5.17 - 5.09 (m, 1H, CH), 2.99 (d, J = 13.7 Hz, 1H, CH2), 2.58 (d, J = 13.7 Hz, 1H, CH2), 2.48 - 
2.31 (m, 2H), 2.26 (d, J = 11.0 Hz, 1H, CH2), 2.14 (s, 3H, CH3), 1.89 (s, 3H, CH3), 1.86 (d, J = 11.2, 1H, CH2), 
1.72 - 1.64 (m, 1H, CH), 1.11 (s, 3H, CH3), 1.08 (d, J = 6.7 Hz, 3H, CH3). 13C NMR (100 MHz, CDCl3) δ 
206.86, 191.48, 164.32, 164.29, 150.61, 143.79, 135.67, 130.71, 126.99, 126.92, 123.60, 75.66, 46.16, 42.25, 
41.13, 31.52, 30.93, 29.99, 22.65, 22.17, 17.17, 10.93. HR-MS (ESI): Calcd. C22H25NO5, [M+H]+ m/z: 383.1807, 
found: 383.1813. 

1,8a-dimethyl-6-oxo-7-(propan-2-ylidene)-1,2,3,4,6,7,8,8a-octahydronaphthalen-2-yl-3-fluorobenzoate (1e). 
White solid, yield 73%, mp: 115.1˚C - 116.7˚C, 1H NMR (400 MHz, CDCl3) δ 7.85 - 7.27 (m, 4H, ArH), 5.82 (s, 
1H, HC = C), 5.11 - 5.03 (m, 1H, CH), 2.98 (d, J = 13.7 Hz, 1H, CH2), 2.57 (d, J = 13.7 Hz, 1H, CH2), 2.46 - 
2.29 (m, 2H, CH2), 2.26 (d, J = 11.2 Hz, 1H, CH2), 2.12 (s, 3H, CH3), 1.87 (s, 3H, CH3), 1.82 (d, J = 11.4, 1H, 
CH2), 1.61 - 1.53 (m, 1H, CH), 1.09 (s, 3H, CH3), 1.05 (d, J = 6.7 Hz, 3H, CH3). 13C NMR (100 MHz, CDCl3) δ 
206.99, 191.60, 164.90, 143.60, 127.04, 126.87, 125.31, 120.23, 120.01, 116.58, 116.35, 74.83, 46.21, 42.25, 
41.13, 31.55, 30.94, 30.05, 22.64, 22.15, 17.17, 10.87. HR-MS (ESI): Calcd. C22H25FO3, [M+H]+ m/z: 356.1863, 
found: 356.1865. 

1,8a-dimethyl-6-oxo-7-(propan-2-ylidene)-1,2,3,4,6,7,8,8a-octahydronaphthalen-2-yl-2-hydroxybenzoate 
(1f). White solid, yield 73%, mp: 128.8˚C - 134.6˚C, 1H NMR (400 MHz, CDCl3) δ 10.81 (s, 1H, OH), 7.84 - 
6.89 (m, 4H, ArH), 5.82 (s, 1H, HC = C), 5.14 - 5.06 (m, 1H, CH), 2.99 (d, J = 13.7 Hz, 1H, CH2), 2.56 (d, J = 
13.7 Hz, 1H, CH2), 2.48 - 2.30 (m, 2H, CH2), 2.26 (d, J = 11.2 Hz, 1H, CH2), 2.12 (s, 3H, CH3), 1.87 (s, 3H, 
CH3), 1.83 (d, J = 11.2, 5.5 Hz, 1H, CH2), 1.72 – 1.62 (m, 1H, CH), 1.09 (s, 3H, CH3), 1.06 (d, J = 6.7 Hz, 3H, 
CH3). 13C NMR (100 MHz, CDCl3) δ 206.91, 191.53, 164.42, 161.86, 143.72, 135.89, 129.75, 126.96, 119.23, 
117.68, 112.47, 75.08, 46.18, 42.24, 41.15, 31.58, 30.96, 30.08, 22.66, 22.41, 17.61, 10.97. HR-MS (ESI): Calcd. 
C22H26O4, [M+H]+ m/z: 354.1906, found: 354.1907. 

1,8a-dimethyl-6-oxo-7-(propan-2-ylidene)-1,2,3,4,6,7,8,8a-octahydronaphthalen-2-yl-4-chlorobenzoate 
(1g). Yellow solid, yield 63%, mp: 69.2˚C - 72.8˚C, 1H NMR (400 MHz, CDCl3) δ 7.98 - 7.43 (m, 4H, ArH), 
5.81 (s, 1H, HC = C), 5.10 - 5.02 (m, 1H, CH), 2.98 (d, J = 13.7 Hz, 1H, CH2), 2.56 (d, J = 13.7, 1H, CH2), 2.44 - 
2.30 (m, 2H, CH2), 2.25 (d, J = 11.1 Hz, 1H, CH2), 2.11 (s, 3H, CH3), 1.86 (s, 3H, CH3), 1.84 - 1.76 (m, 1H, 
CH), 1.58 (d, J = 11.2 Hz, 1H, CH2), 1.08 (s, 3H, CH3), 1.04 (d, J = 6.7 Hz, 3H, CH3). 13C NMR (100 MHz, 
CDCl3) δ 206.99, 191.61, 165.32, 164.83, 143.62, 139.52, 130.97, 128.77, 128.74, 127.04, 126.84, 74.65, 46.26, 
42.26, 41.14, 31.59, 30.92, 30.07, 22.63, 22.15, 17.17, 10.86. HR-MS (ESI): Calcd. C22H25ClO3, [M+H]+ m/z: 
372.1570, found: 372.1571. 

1,8a-dimethyl-6-oxo-7-(propan-2-ylidene)-1,2,3,4,6,7,8,8a-octahydronaphthalen-2-yl-2-methoxybenzoate 
(1h). White solid, yield 73%, mp: 102.1˚C - 103.7˚C, 1H NMR (400 MHz, CDCl3) δ 7.77 - 6.96 (m, 4H, ArH), 
5.80 (s, 1H HC = C), 5.11 - 5.01 (m, 1H, CH), 3.91 (s, 3H, CH3), 2.97 (d, J = 13.7 Hz, 1H, CH2), 2.56 (d, J = 
13.7, 1H, CH2), 2.45 - 2.31 (m, 2H, CH2), 2.24 (d, J = 11.0 Hz, 1H, CH2), 2.11 (s, 3H, CH3), 1.87 (s, 3H, CH3), 
1.78 (d, J = 11.0 Hz, 1H, CH2), 1.62 - 1.51 (m, 1H, CH), 1.10 (s, 3H, CH3), 1.08 (d, J = 6.7 Hz, 3H, CH3). 13C 
NMR (100 MHz, CDCl3) δ 206.89, 191.67, 165.95, 165.27, 159.13, 143.36, 133.47, 131.31, 127.18, 126.70, 
120.13, 112.09, 74.07, 55.90, 46.27, 42.29, 41.17, 31.61, 30.16, 22.59, 22.12, 17.19, 10.74. HR-MS (ESI): Calcd. 
C23H28O4, [M+H]+ m/z: 368.2071, found: 368.2072. 

4.1.2. General Procedure for the Synthesis of Compounds 2a-e 
A mixture of petasin derivatives (1 equiv) which were synthesized as the route II and m-ClC6H5COOOH (1.5 
equiv) in CH2Cl2 was stirred at room temperature for 3 h. The disappearance of petasin derivatives was moni-
tored by TLC. Upon completion, the solvent was removed and water was added, the reaction mixture was ex-
tracted with CH2Cl2. The combined organic layer was washed with brine, dried over anhydrous MgSO4 and 
concentrated under vacuum to afford the crude product. The crude product was purified by a flash column to 
yield the pure product 2a-e. 

3',3',8,8a-tetramethyl-3-oxo-3,5,6,7,8,8a-hexahydro-1H-spiro[naphthalene-2,2'-oxiran]-7-ylbenzoate (2a). 
White solid, 90%, mp: 136.1˚C - 137.6˚C, 1H NMR (400 MHz, CDCl3) δ 8.07 - 7.48 (m, 5H, ArH), 5.97 (s, 1H, 
HC = C), 5.14 (m, 1H, CH), 2.66 (d, J = 14.5 Hz, 1H, CH2), 2.54 - 2.45 (d, J = 14.5 Hz, 1H, CH2), 2.38 (d, J = 
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11.2 Hz, 1H, CH2), 2.28 - 2.15 (m, 2H, CH2), 1.89 (d, J = 11.2, 1H, CH2), 1.72 - 1.64 (m, 1H, CH), 1.48 (s, 3H, 
CH3), 1.33 (s, 3H, CH3), 1.30 (s, 3H, CH3), 1.05 (d, J = 6.7 Hz, 3H, CH3). 13C NMR (100 MHz, CDCl3) δ 
194.74, 167.29, 166.14, 133.17, 130.13, 129.59, 129.59, 128.46, 128.46, 125.42, 73.47, 65.79, 65.15, 47.00, 
42.12, 40.48, 31.47, 30.48, 21.20, 19.31, 18.93, 10.68. HR-MS (ESI): Calcd. C22H26O4, [M+H]+ m/z: 354.1925, 
found: 354.1924. 

3',3',8,8a-tetramethyl-3-oxo-3,5,6,7,8,8a-hexahydro-1H-spiro[naphthalene-2,2'-oxiran]-7-yl-4-methoxyb
enzoate (2b). White solid, yield 92%, mp: 206.4˚C - 208.8˚C, 1H NMR (400 MHz, CDCl3) δ 8.02 - 6.95 (m, 4H, 
ArH), 5.96 (s, 1H, HC = C), 5.10 (m, 1H, CH), 3.89 (s, 3H, CH3), 2.66 (d, J = 14.5 Hz, 1H, CH2), 2.49 (d, J = 
14.5 Hz, 1H, CH2), 2.40 - 2.33 (d, J = 11.2 Hz, 1H, CH2), 2.27 - 2.08 (m, 2H, CH2), 1.87 (d, J = 11.2 Hz, 1H, 
CH2), 1.76 - 1.68 (m, 1H, CH), 1.48 (s, 3H, CH3), 1.33 (s, 3H, CH3), 1.29 (s, 3H, CH3), 1.03 (d, J = 6.7 Hz, 3H, 
CH3). 13C NMR (100 MHz, CDCl3) δ 194.76, 167.47, 165.89, 163.55, 131.63, 131.63, 125.36, 122.50, 113.70, 
113.70, 73.04, 65.81, 65.14, 55.48, 47.07, 42.13, 40.49, 31.55, 30.51, 21.19, 19.31, 18.93, 10.66. HR-MS (ESI): 
Calcd. C23H28O5, [M+H]+ m/z: 384.1995, found: 384.1996. 

3',3',8,8a-tetramethyl-3-oxo-3,5,6,7,8,8a-hexahydro-1H-spiro[naphthalene-2,2'-oxiran]-7-yl-2-nitrobenz
oate (2c). White solid, yield 91%, mp: 169.8˚C - 171.7˚C, 1H NMR (400 MHz, CDCl3) δ 7.97 - 7.68 (m, 4H, 
ArH), 5.96 (s, 1H, HC=C), 5.15 (m, 1H, CH), 2.63 (d, J = 14.8 Hz, 1H, CH2), 2.52 (d, J = 14.7 Hz, 1H, CH2), 
2.47 (d, J = 11.2 Hz, 1H, CH2), 2.13 (m, 2H, CH2), 1.78 (d, J = 11.2 Hz, 1H, CH2), 1.70 - 1.63 (m, 1H, CH), 
1.48 (s, 3H, CH3), 1.32 (s, 3H, CH3), 1.29 (s, 3H, CH3), 1.04 (d, J = 6.7 Hz, 3H, CH3). 13C NMR (100 MHz, 
CDCl3) δ 194.62, 166.79, 165.14, 147.90, 133.03, 131.82, 129.58, 127.77, 125.49, 124.01, 75.51, 65.72, 65.13, 
46.56, 42.13, 40.36, 30.65, 30.30, 21.19, 19.27, 18.92, 10.59. HR-MS (ESI): Calcd. C22H25NO6 [M+H]+ m/z: 
399.2785, found: 399.2783. 

3',3',8,8a-tetramethyl-3-oxo-3,5,6,7,8,8a-hexahydro-1H-spiro[naphthalene-2,2'-oxiran]-7-yl-2-fluoroben
zoate (2d). White solid, yield 87%, mp: 136.4˚C - 137.8˚C, 1H NMR (400 MHz, CDCl3) δ 7.86 - 7.32 (m, 4H, 
ArH), 5.97 (s, 1H HC = C), 5.16 - 5.05 (m, 1H, CH), 2.66 (d, J = 14.4 Hz, 1H, CH2), 2.46 (d, J = 14.4 Hz, 1H, 
CH2), 2.41 - 2.33 (d, J = 11.1 Hz, 1H, CH2), 2.26 - 2.11 (m, 2H, CH2), 1.89 (d, J = 11.2 Hz, 1H, CH2), 1.72 - 
1.63 (m, 1H, CH), 1.48 (s, 3H, CH3), 1.33 (s, 3H, CH3), 1.30 (s, 3H, CH3), 1.04 (d, J = 6.7 Hz, 3H, CH3). 13C 
NMR (100 MHz, CDCl3) δ 194.68, 167.0, 164.99, 163.73, 161.27, 132.31, 130.17, 125.34, 120.14, 116.61, 
74.01, 65.76, 65.16, 46.91, 42.11, 40.46, 31.39, 30.41, 21.19, 19.29, 18.93, 10.69. HR-MS (ESI): Calcd. 
C22H25FO4, [M+H]+ m/z: 372.1805, found: 372.1806. 

3',3',8,8a-tetramethyl-3-oxo-3,5,6,7,8,8a-hexahydro-1H-spiro[naphthalene-2,2'-oxiran]-7-yl-2-fluoroben
zoate (2e). White solid, yield 87%, mp: 123.8˚C - 124.1˚C, 1H NMR (400 MHz, CDCl3) δ 7.23 - 6.87 (m, 4H, 
ArH), 5.92 (s, 1H HC=C), 4.86 (m, 1H, CH), 3.82 (s, 3H, CH3), 3.58 (s, 2H, CH2), 2.53 (d, J = 14.4 Hz, 1H, 
CH2), 2.46 (d, J = 14.4 Hz, 1H, CH2), 2.23 - 2.11 (d, J = 11.2 Hz, 1H, CH2), 2.04 (m, 2H, CH2), 1.68 (d, J = 11.2 
Hz, 1H, CH2), 1.54 - 1.47 (m, 1H, CH), 1.45 (s, 3H, CH3), 1.30 (s, 3H, CH3), 1.21 (s, 3H, CH3), 0.86 (d, J = 6.7 
Hz, 3H, CH3). 13C NMR (100 MHz, CDCl3) δ 194.68, 171.53, 167.21, 158.76, 130.19, 130.19, 125.95, 125.35, 
114.03, 114.03, 73.20, 65.74, 65.08, 55.26, 46.73, 42.02, 40.82, 40.39, 31.28, 30.37, 21.16, 19.21, 18.91, 10.37. 
HR-MS (ESI): Calcd. C24H30O5, [M+H]+ m/z: 398.2160, found: 398.2161. 

4.1.3. General Procedure for the Synthesis of Compounds 4a-b 
A mixture of petsasinol (1 equiv) and Maleic anhydride (0.9 equiv) in CH2Cl2 in the presence of (C2H5)3N (1 
equiv) was stirred at 0˚C for 2 h. The disappearance of compound petsasinol was monitored by TLC. Upon 
completion, the solvent was removed and water containing HCl was added, the reaction mixture was extracted 
with CH2Cl2. The combined organic layer was dried over anhydrous MgSO4 and concentrated under vacuum to 
afford the crude product. The crude product was added to a stirred solution of Excessive halids in the presence 
of NaCO3 in DMF at 65˚C. The disappearance of the crude product was monitored by TLC. Upon completion, 
the solvent was removed and water containing NaCl was added, the reaction mixture was extracted with EA. 
The combined organic layer was dried over anhydrous MgSO4 and concentrated under vacuum to afford the 
crude product. The crude product was purified by a flash column to yield the pure product 4a-b. 

allyl (1,8a-dimethyl-6-oxo-7-(propan-2-ylidene)-1,2,3,4,6,7,8,8a-octahydronaphthalen-2-yl)-fumarate (4a). 
Yellow oil, yield 68%, 1H NMR (400 MHz, CDCl3) δ 6.31 (d, J = 12.2 Hz, 1H, HC = C), 6.28 (d, J = 12.1 Hz, 
1H, HC = C), 5.97 (m, 1H, HC = C), 5.80 (s, 1H, HC = C), 5.38 (d, J = 17.2 Hz, 1H, HC = C), 5.30 (d, J = 10.4 
Hz, 1H, HC = C), 4.96 (m, 1H, CH), 4.71 (d, J = 5.8 Hz, 2H, CH2), 2.94 (d, J = 13.7 Hz, 1H, CH2), 2.49 (d, J = 
13.6, 4.4 Hz, 1H, CH2), 2.34 (m, 2H, CH2), 2.21 (d, J = 11.2 Hz, 1H, CH2), 2.11 (s, 3H, CH3), 1.87 (s, 3H, CH3), 
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1.74 - 1.67 (d, J = 11.2 Hz, 1H, CH2), 1.51 (m, 1H, CH), 1.05 (s, 3H, CH3), 1.02 (d, J = 6.7 Hz, 3H, CH3). 13C 
NMR (100 MHz, CDCl3) δ 191.64, 164.89, 164.84, 163.42, 143.65, 131.53, 130.02, 129.58, 127.01, 126.76, 
118.97, 75.03, 65.92, 45.99, 42.23, 41.10, 31.23, 29.99, 22.63, 22.14, 17.17, 10.70. HR-MS (ESI): Calcd. 
C22H28O5, [M+H]+ m/z: 372.2015, found: 372.2013. 

1,8a-dimethyl-6-oxo-7-(propan-2-ylidene)-1,2,3,4,6,7,8,8a-octahydronaphthalen-2-yl-propylfumarate (4b). 
Yellow oil, yield 69%, 1H NMR (400 MHz, CDCl3) δ 6.29 (d, J = 12.3 Hz, 1H, HC = C), 6.25 (d, J = 12.3 Hz, 
1H, HC = C), 5.80 (s, 1H, HC = C), 4.95 (m, 1H, CH), 4.16 (t, J = 6.8 Hz, 2H, CH2), 2.94 (d, J = 13.7 Hz, 1H, 
CH2), 2.50 (d, J = 13.7 Hz, 1H, CH2), 2.41 - 2.27 (m, 2H, CH2), 2.21 (d, J = 11.1 Hz, 1H, CH2), 2.11 (s, 3H, 
CH3), 1.87 (s, 3H, CH3), 1.74 (dd, J = 14.3, 7.1 Hz, 2H, CH2), 1.69 - 1.64 (d, J = 11.1 Hz, 1H, CH2), 1.56 - 1.48 
(m, 1H, CH), 1.05 (s, 3H, CH3), 1.02 (d, J = 6.7 Hz, 3H, CH3), 0.98 (t, J = 7.4 Hz, 3H, CH3). 13C NMR (100 
MHz, CDCl3) δ 191.66, 171.60, 165.32, 164.88, 143.55, 130.10, 129.54, 127.04, 126.76, 74.91, 66.92, 51.64, 
45.99, 42.22, 41.09, 31.23, 30.00, 22.62, 21.81, 20.72, 17.15, 10.70. HR-MS (ESI): Calcd. C22H30O5, [M+H]+ 
m/z: 374.2174, found: 374.2172. 

4.1.4. General Procedure for the Synthesis of Compounds 8a-c 
A mixture of petasinol (1 equiv) and TsOCl (1.5 equiv) in CH2Cl2 in the presence of (C2H5)3N (1 equiv) was 
stirred at 0˚C for 6 h. Then the mixture was filtered and concentrated in vacuum. The residue was purified by 
flash column to yield the pure product 5. The NaN3 was added to a stirred solution of product 5 in DMF at 95˚C 
for 8 h. The disappearance of product 5 was monitored by TLC. After purification, the product 6 was afforded 
and was reduced with Zn power (1 equiv) in the presence of NH4Cl (2 equiv) to produce 7. Condensation of 
product 7 with different kinds of acyl chloride (2 equiv) in CH2Cl2 in the presence of (C2H5)3N (1 equiv) re-
sulted in acyl derivatives. Upon completion, the solvent was removed and water was added, the reaction mixture 
was extracted with CH2Cl2. The combined organic layer was dried over anhydrous MgSO4 and concentrated 
under vacuum to afford the crude product. The crude product was purified by a flash column to yield the pure 
product 8a-c. 

N-(1,8a-dimethyl-6-oxo-7-(propan-2-ylidene)-1,2,3,4,6,7,8,8a-octahydronaphthalen-2-yl)acetamide (8a). 
Yellow oil, yield 66%, 1H NMR (400 MHz, CDCl3) δ 5.96 (s, 1H, NH), 5.75 (s, 1H, HC = C), 4.21 (m, 1H, CH), 
2.87 (d, J = 14.4 Hz, 1H, CH2), 2.44 (d, J = 14.6, Hz, 1H, CH2), 2.24 - 2.18 (d, J = 11.1 Hz, 1H, CH2), 2.15 - 
2.04 (m, 2H, CH2), 2.09 (s, 3H, CH3), 2.02 (s, 3H, CH3), 1.82 (s, 3H, CH3), 1.75 - 1.67 (d, J = 11.1 Hz, 1H, 
CH2), 1.24 (m, 1H, CH), 1.03 (s, 3H, CH3), 1.01 (d, J = 6.7 Hz, 3H, CH3). 13C NMR (100 MHz, CDCl3) δ 
191.44, 169.98, 165.75, 144.53, 127.17, 127.11, 49.39, 43.82, 41.67, 41.03, 30.95, 27.18, 23.77, 22.80, 22.31, 
18.18, 12.02. HR-MS (ESI): Calcd. C17H25NO2, [M+H]+ m/z: 275.1972, found: 275.1975. 

2-chloro-N-(1,8a-dimethyl-6-oxo-7-(propan-2-ylidene)-1,2,3,4,6,7,8,8a-octahydronaphthalen-2-yl)acet
amide (8b). Yellow oil, yield 66%, 1H NMR (400 MHz, CDCl3) δ 6.98 (s, 1H, NH), 5.83 (s, 1H, HC = C), 4.20 
(m, 1H, CH), 4.13 (s, 2H, CH2), 2.93 (d, J = 14.2 Hz, 1H, CH2), 2.47 (d, J = 14.2 Hz, 1H, CH2), 2.32 - 2.23 (d, 
J = 11.1 Hz, 1H, CH2), 2.18 - 2.03 (m, 2H, CH2),2.13 (s, 3H, CH3), 1.85 (s, 3H, CH3), 1.75 (d, J = 11.1 Hz, 1H, 
CH2), 1.26 (m, 1H, CH), 1.11 (s, 3H, CH3), 1.07 (d, J = 6.7 Hz, 3H, CH3). 13C NMR (100 MHz, CDCl3) δ 
191.40, 165.75, 165.17, 144.61, 127.17, 127.06, 50.17, 43.76, 43.01, 41.58, 40.89, 30.75, 27.03, 22.78, 22.26, 
17.88, 12.09. HR-MS (ESI): Calcd. C17H24ClNO2, [M+H]+ m/z: 309.1579, found: 309.1580. 

4-chloro-N-(1,8a-dimethyl-6-oxo-7-(propan-2-yli-dene)-1,2,3,4,6,7,8,8a-octahydronaphthalen-2-yl)benza
mide (8c). Yellow oil, yield 66%, 1H NMR (400 MHz, CDCl3) δ 7.71 - 7.45 (m, 4H, ArH), 6.33 (s, 1H, NH), 
5.86 (s, 1H, HC = C), 4.43 (m, 1H, CH), 2.95 (d, J = 14.2 Hz, 1H, CH2), 2.49 (d, J = 14.2 Hz, 1H, CH2), 2.33 - 
2.28 (d, J = 11.1 Hz,), 2.22 - 2.19 (m, 2H, CH2), 2.15 (s, 3H, CH3), 1.92 (d, J = 11.3 Hz,), 1.87 (s, 3H, CH3), 
1.31 - 1.25 (m, 1H, CH), 1.17 (s, 3H, CH3), 1.13 (d, J = 6.7 Hz, 3H, CH3). 13C NMR (100 MHz, CDCl3) δ 
191.37, 166.38, 165.29, 144.75, 137.92, 133.09, 131.46, 129.05, 128.77, 128.13, 127.24, 127.06, 50.12, 44.03, 
41.59, 41.05, 30.89, 27.20, 22.83, 22.32, 18.29, 12.18. HR-MS (ESI): Calcd. C22H26ClNO2, [M+H]+ m/z: 
371.1710, found: 371.1708. 

4.2. Bioassays 
4.2.1. Grow Inhibition Assay  
The petasin derivatives were assayed for in vitro anticancer activity by using MTT method. Cells were seeded in 
96-well plates at a density of 4.6 × 103 cells/well for 24 h. The cancer cell lines included SK-N-SH, MGC-803 
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and HepG-2. The seeded cells were treated with various concentrations of the test derivatives for 48 h. After 20 
ml of MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) solution (5 mg/mL) was added to 
each well and incubated for 4 h at 37˚C. The medium containing MTT was discarded; then 150 mL of dimethyl 
sulfoxide (DMSO) was added to each well. And the plates were agitated until the dark blue crystals (formazan) 
had completely dissolved. The absorbance was measured using a microplate reader at a wavelength of 490 nm. 
The average 50% inhibitory concentration (IC50) was determined from the concentration response curves ac-
cording to the inhibition ratio for each concentration.  

4.2.2. Statistical Analysis 
Cell activity data were analysed by the SPSS 17.0 software and were expressed as means ± standard error (SE). 
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