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Abstract 
Different aspects of mathematical finance benefit from the use Hermite polynomials, and this is 
particularly the case where risk drivers have a Gaussian distribution. They support quick analyti-
cal methods which are computationally less cumbersome than a full-fledged Monte Carlo frame-
work, both for pricing and risk management purposes. In this paper, we review key properties of 
Hermite polynomials before moving on to a multinomial expansion formula for Hermite polyno-
mials, which is proved using basic methods and corrects a formulation that appeared before in the 
financial literature. We then use it to give a trivial proof of the Mehler formula. Finally, we apply it 
to no arbitrage pricing in a multi-factor model and determine the empirical futures price law of 
any linear combination of the underlying factors. 
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1. Introduction 
Hermite polynomials are widely used in finance, for various purposes including option pricing and risk man- 
agement. Madan and Milne [1] have built a framework applying functional analysis results to the particular case 
of Hermite polynomials and inferred pricing formulas for general payoffs expressed as linear combinations of 
Hermite polynomials. They applied their framework to the simple case of calls to determine the implicit basis 
prices in the market data and imply an empirical futures price law. More recently, a series of papers have de- 
veloped closed-form series expansions for various models: Tanaka, Yamada and Watanabe [2] developed ap- 
proximations of the prices of some interest derivatives; Schloegl [3] adapted this type of expansions to multi- 
period models. On the other hand, Buet-Golfouse and Owen [4], Voropaev [5], and Owen et al. [6] applied the 
Mehler formula and multivariate Hermite expansions to the allocation of risk measures in a portfolio of financial 
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instruments. 
The aim of this paper is to derive a theoretical framework that underlies many usages of Hermite polynomials 

in finance. In particular, the first main result of this paper is to have established a link between the probability 
distribution of the underlying factor and the empirical prices of Hermite functions. The second main result is a 
multinomial expansion theorem for Hermite polynomials (and its extensions). Both provide a solid foundation to 
derive the no-arbitrage price of a contingent claim stemming from a linear combination of factors. 

The article is organised as follows: in the first section we state some basic facts about univariate and multi- 
variate Hermite polynomials; the second section is devoted to the justification of expansions on the basis of 
Hermite functions and demonstrates the link between implicit prices of Hermite polynomials and the probability 
distribution of the underyling assets under the forward probability measure; the third section states and proves a 
multinomial theorem for Hermite polynomials with extensions and examples provided in the fourth and fifth 
sections; the sixth and final sections are dedicated to the application of the multinomial theorem for Hermite 
polynomials to pricing under no-arbitrage. Finally, empirical applications of the described methodology can be 
found in [4] and [6]. 

2. A Few Facts about Hermite Polynomials 
Our objective is not to give a full account of the literature on Hermite polynomials but simply to recall some 
definitions and properties (see Abramovitz and Stegun [7] for more information). Let ( )zφ  be the standard 
normal density and ( )jHe z  be the thj  Hermite polynomial satisfying ( )0 1He z =  and for any 1j ≥ ,  

( ) ( ) ( ) ( )1 d1
d

j
j

j jHe z z z
z

φ φ−= − . An alternative definition is via the exponential generating function  

( ) ( )
2

0, exp
2 !

n

nn

t tf x t xt He x
n

∞

=

 
≡ − = 

 
∑ . 

The two most important properties are the recurrence relationship and the orthogonality property. The re- 
currence relationship states that *n∀ ∈ , x∀ ∈ : 

( ) ( ) ( )1 1n n nHe x xHe x nHe x+ −= −                                  (1) 

and 1n nHe nHe −′ = , whilst the orthogonality property states that for all ,m n∈  

( ) ( ) ( )
! if ,

d
0 otherwise.m n

n n m
He x He x x xφ

=
= 


∫                         (2) 

Explicit and inverse explicit expressions are available for Hermite polynomials: for all n∈  and x∈ , 
the following identities hold:  

( ) ( )
( )

22

0

1
!

! 2 ! 2

n
m n m

n m
m

xHe x n
m n m

 
  − 

=

−
=

−∑  

( )
( )2

2

0

1! .
! 2 ! 2

n

n mn
m

m

He x
x n

m n m

 
  

−

=

=
−∑                             (3) 

N-multivariate Hermite polynomials are usually defined as the product of N univariate Hermite polynomials. 
Let us first clarify some notations used in the rest of the paper: ( )1, , N

Nη η ′= ∈ η , ( )1, , N
Nn n ′= ∈n    

are vectors respectively in N
  and N , .,. N  is the Euclidian scalar product in N

 , while !n  refers to 
the generalised factorial, i.e. 1! !N

ii n
=

=∏n , so that 1
iN n

ii β
=

=∏nβ  for any N∈β , and 1 Nn n= + +n   is 
the order of n. 

( )Hen η  is defined as 

( ) ( )
1

: .
i

N

n i
i

He He η
=

=∏n η                                     (4) 

The orthogonality property can readily be adapted to the multivariate case component by component: 
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( ) ( )
( )

, 2

2

! if ,e d
0 otherwise.2π

N

N NHe He
− =

= 


∫


m n

n n mη η

η η η                        (5) 

Let us now consider the Hilbert space ( )2 ,NH L P=   of functions that are square integrable with respect to 
the measure P defined by the density 

( ) ( ) 2, 2d e 2π d .N NP −= η ηη η                                  (6) 

An orthonormal basis   for H is given by the polynomial functions (also sometimes called “Hermite  

functions”) ( ) ( )
!

He
he = n

n n
η

η : ( ); .Nhe= ∈n n   

Using standard arguments in functional analysis, an arbitrary claim Ψ  in H may be expressed in the basis 
  as 

( ) ( ) ( )
N
a he

∈

Ψ = ∑ n
n

n


η η                                      (7) 

where the coefficients ( )a n  are obtained by the Hilbertian inner product  

( ) ( ) ( ) ( )d .Na he P= Ψ∫


nn η η η                                 (8) 

To summarise, we have built an orthonormal basis in which to decompose functions that are square-integrable 
against the standard N-dimensional Gaussian distribution 

( )
( )

, 2
2

2

e d
2π

N

N N

−

Ψ < +∞∫


η η

η η                                   (9) 

but have actually made no assumption on the distribution of the vector of factors η . Indeed, this is the subject 
tackled by the following section. 

3. Implied Prices and Probability Distributions 
In this section, we demonstrate the link between two notions that are used separately in the literature: the 
implicit prices of Hermite polynomials (as in Madan and Milne (1994), where the payoff is expanded in Hermite 
polynomials) and the risk-neutral distribution of the vector of factors η  (see Yamada and Watanabe [2] and 
Schloegl [3] where it is the factors’ density that is expanded in Hermite polynomials and not the payoff as such). 

We consider a financial market on a period [ ]0,T  with T < +∞ : ( ), , PΩ   where NΩ =   is the uni- 
verse,   the chosen σ -algebra (assumed here to be the Borelian tribe) and P  the market’s probability mea- 
sure (a priori, it is not necessarily a risk neutral measure, as we can choose it to be the physical measure). We 
denote by ( )( ), 0r t t ≥  the risk-free rate and ( )TB 0,  the related zero-coupon with time horizon T. Note that 
we consider this simple framework to lay out the assumptions and theorems, but it could be adapted to a multi- 
period setting. In the definition below, we summarise the key aspects of a complete market (see Portait and 
Poncet [8]). 

Proposition 1. A self-financing strategy is admissible if its terminal value is a random variable whose second 
moment is well-defined (i.e., it is square-integrable), a contingent claim is attainable if there exists a self- 
financing strategy whose terminal value is equal to the contingent claim almost surely (in particular, it has to be 
square integrable), and the market is complete if all contingent claims are attainable. A system of prices V is an 
application from the set of contingent claims to   and it is said to be viable if it is compatible with the no- 
arbitrage condition: in particular, it is a linear form. 

From now on, we assume the market to be complete and to satisfy the no arbitrage condition and consider P  
to be the risk-neutral measure (and to be absolutely continuous with respect to the Lebesgue measure). 

If ( )2 ,NL PΨ∈ 

 , then it is attainable and has a unique price [ ]V Ψ  (V is also unique) and further assum-  
ing that ( )2 ,NL PΨ∈  , it can be expanded in the basis of Hermite polynomials. This results in the possibility  

to express the contingent claim Ψ  as a linear combination of the basis elements, namely the Hermite functions 
( )hen η , which can be seen as simpler contingent claims. Using the linearity of the price functional V and 

Cauchy-Schwarz inequality (see Theorem 2.2 in Madan and Milne [1]), this finally yields the market value of 
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Ψ  as  

[ ] ( ) ( )
N

V a π
∈

Ψ = ∑
n

n n


                                   (10) 

with ( ) ( )V heπ =   nn η  the (implicit) market price of ( )hen η . 
Theorem 1. Under the assumption that V is continuous there exists a unique ( )2 ,Nf L P∈ 

  such that for 
all ( )2 ,NL PΨ∈ 

 , 

[ ] ( ) ( ) ( )d .NV f PΨ = Ψ∫


η η η                               (11) 

Proof. We already know that V is a linear form on ( )2 ,NL P  (which is a Hilbert space) and under the 
theorem’s assumption, it is also continuous. Hence, using the Riesz representation theorem (see Brezis [9]), we  
can infer the existence of a unique ( )2 ,Nf L P∈ 

  such that [ ] ( ) ( ) ( )dNV f PΨ = Ψ∫


η η η .             □ 

We now turn to the probability density function P  and its (unique) Radon-Nikodym derivative µ  with 
respect to the reference measure P defined as the N-variate standard Gaussian distribution in the previous 
section, that is: 

( ) ( )
( )
d

d :
d

P
P

µ =
 η

η
η

                                    (12) 

so that, finally, we have 

[ ] ( ) ( ) ( ) ( )d .NV f PµΨ = Ψ∫


η η η η                             (13) 

Definition 1. Under the same assumptions, ( ) ( ) ( ): fλ µ=η η η  is called the futures price law of η  with 
respect to the probability measure P.  

The meaning of the futures price law can be derived as follows: rewriting [ ]V Ψ  as 

[ ] ( ) ( ) ( )dNV PλΨ = Ψ∫


η η η                                  (14) 

it becomes clear that [ ]V Ψ  is the inner product in ( )2 ,NL P  of the payoff and the empirical prices law 
(which makes sense if the latter is square integrable). We now give a theorem linking the futures price law, 
prices of the basis elements and Hermite expansions to translate this observation in rigorous terms. 

Theorem 2. The following statements are equivalent: 
i) There exists a sequence ( )( ) Nπ

∈n
n


, such that ( )( )2

N π
∈

< +∞∑n n  and [ ] ( ) ( )= NV a π
∈

Ψ ∑n n n  for 

any Ψ  such that ( ) ( ) ( )Na he
∈

Ψ = ∑ nn nη η ; 
ii) ( )2 ,NL Pλ ∈  ; 

iii) There exists a sequence ( )( ) Nπ
∈n

n


, such that ( )( )2
N π

∈
< +∞∑n n  and ( ) ( ) ( )N heλ π

∈
= ∑ nn nη η .  

Remark 1. This result is a slightly different view of Madan and Milne’s Theorem 4.1 [1] because our set of 
assumptions is minimal and it was derived following the path of the Riesz representation formula. In particular 
Madan and Milne’s assumption that ( )dµ η  is uniformly bounded above and below implies that  

( )2 ,NL Pλ ∈  . 
Proof. Clearly, ii) implies iii). To prove that iii) implies ii), we apply Lemma 5.1. in Ch. 5 of Brezis [9]: the  

sequence ( ) ( )( ) Nheπ
∈n n

n


η  is in ( )2 ,NL P , its components are orthogonal to each other and 

( ) ( )( ) ( ) ( )( )2 2
dN he Pπ π=∫ nn n



η η                             (15) 

so that 

( ) ( )( ) ( )2
dN

N
he Pπ

∈

< +∞∑ ∫ n
n

n




η η                              (16) 

Then, noting ( ) ( ) ( )/n n heλ π
≤

= ∑ nn n nη η , it comes that : limn nλ λ→∞=  exists and  

( )( ) ( ) ( )( )2 2
dN

N
Pλ π

∈

= ∑∫
n

n




η η . 
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It now remains to prove that i) is equivalent to iii). iii) implies i) is a simple consequence of the inner product 
in a Hilbert space: 

[ ] ( ) ( ) ( ) ( ) ( )d .N
N

V P aλ π
∈

Ψ = Ψ = ∑∫


n

n nη η η


                            (17) 

Starting from i), we have that [ ] ( ) ( )NV a π
∈

Ψ = ∑n n n  so that we can build ( )λ η  which verifies  

[ ] ( ) ( ) ( )dNV PλΨ = Ψ∫


η η η  

for any contingent claim Ψ  that is also in ( )2 , ,NL P  . Hence, λ  must equal λ .                   □ 
This theorem thus shows that under mild conditions (i.e. that the probability P  is not too “different” from P) 

the futures price law can be expanded in the basis of Hermite functions and is such that its coefficients are the 
prices of the Hermite functions under the risk neutral measure. But so far, we have simply considered V from a 
theoretical perspective and since we want to prove the link between our results and Yamada and Watanabe’s 
expansions in terms of the density of the factors η , we can express it directly as 

[ ] ( ) ( )0 de
Tr s sPV −∫ Ψ = Ψ  



 η                                (18) 

where r is the risk-free rate. 
Introducing the risk-neutral T-forward measure TP , the following holds: 

( ) ( ) ( ) ( )0 de 0,
T Tr s sP PB T−∫ Ψ = Ψ    



 η η                          (19) 

where ( )0,B T  is the price of the zero-coupon of horizon T (see [8] for details). A first but important remark is  
that if r is assumed to be bounded, then ( ) ( )2 2, = ,N N TL P L P 

   so that we can consider contingent claims  

under either probability measure. As in Tanaka et al. [2], the assumption is made that the probability distribution 
g of η  under the T-forward measure can be expressed as  

( ) ( ) ( ) ( ).
N

g b he P
∈

= ∑ n
n

nη η η


                               (20) 

A sufficient and necessary condition for g to be a valid density function is to have 
• ( ) 1b =0 . 
• and ( ) ( ) ( ) 0Nb he P

∈
≥∑ nn n η η  for all N∈η . 

Schloegl [3] discusses ways to ensure that the second condition is met in practice when the summation is 
taken over a finite number of Hermite functions. Now, using the pricing formula under the T-forward measure 

TP  leads to: 
[ ] ( ) ( ) ( ) ( ) ( )0, d .N

N
V B T b he P

∈

Ψ = Ψ ∑∫


n
n

nη η η


                      (21) 

When the various assumptions of the theorems above are verified, it comes 

[ ] ( ) ( ) ( )0,
N

V B T a b
∈

Ψ = ∑
n

n n


                              (22) 

whence the following theorem linking the futures price law and the T-forward probability density function of the 
factors holds. 

Theorem 3. The implied prices ( )π n  of Hermite functions and the coefficients ( )b n  of the the T-forward 
probability density function satisfy the fundamental equality  

( ) ( ) ( )0,B T bπ =n n                                       (23) 
for all N∈n  . 

A direct application of this theorem is the determination of price elements ( )π n  from the moments of the 
distribution g and vice-versa. For the sake of clarity we consider the case 1N =  ( )z= ∈η  in the rest of the 
section, but the results can easily be extended to the multivariate case.  

Lemma 1. Let nµ  denote the thn  moment of the distribution g: ( ) ( ) ( ) ( )0 nng z b n he z zφ∞

=
= ∑ . Then  
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( ) ( )
( )

2
2

0

1
!

! 2 ! 2

n
m

n m
m

m
b n n

m n m
µ

 
  

−

=

−
=

−∑                               (24) 

( )
( )2

0

21!
2! 2 !

n

n m
m

b n m
n

m n m
µ

 
  

=

−
=

−
∑                             (25) 

Proof. It suffices to use the explicit and inverse explicit formulas and perform some simple algebra to obtain 
both results.                                                                               □ 

Since in the financial framework considered so far ( ) ( )
( )0,

n
b n

B T
π

= , all moments of the distribution g can be  

implied from the prices of the orthonormal basis  . Now that the foundations of the framework have been laid, 
we can move to another result, namely the Hermite multinomial theorem. 

4. Factor Models and the Hermite Multinomial Theorem 
Considering several factors at the same time and linear combinations of those is at the core of many financial 
models: Fama and French’s three-factor model for asset returns, Brennan and Schwarz’ two-factor model, Lang- 
estieg’s multi-factor model for interest rates or the multi-factor Merton-Vasicek model for example. Supposing 
that we have a financial instrument depending on a linear combination , Nβ η  of the original factors, we 
would like to expand this instrument in the basis of Hermite functions ( )hen η : this has implications in terms of 
pricing and risk management as the factors can represent some macroeconomic variables that one might wish to 
stress. This section therefore states and proves a multinomial theorem for Hermite polynomials and corrects a 
previous expansion given by Voropaev in [5]. 

Let us start by considering the example of a two-factor model, i.e. 2N = . Noting that 1He X=  and 
2

2 1He X= −  for any 1η  and 2η , it simply comes 

( ) 2 2 2 2
2 1 1 2 2 1 1 1 1 2 2 2 22 1He β η β η β η β η β η β η+ = + + − .                         (26) 

Let us now compute separately: 

( ) ( )

( ) ( ) ( ) ( )
( ) ( )

( )
( ) ( )

1 2
1 2

1 2

1 2 1 2
2 1 2

2 2
1 2 1 2 2 2 1 2 1 1 1 2

2 2 2 2
1 1 2 2 1 1 2 2

2 2 2 2 2 2
1 1 1 1 2 2 2 2 1 2

2 2
2 1 1 2 2 1 2

2
! !

2

1 1 2

2

1

n n
n n

n n
He He

n n

He He He He

He

β β η η

β η β η β β η η

β η β η β η β η

β η β η β η β η β β

β η β η β β

+ =

= + +

= − + − +

= + + − +

= + + − +

∑

                       (27) 

Hence, in the case where 2 2
1 2 1β β+ = , the following identity holds: 

( ) ( ) ( )1 2
1 2

1 2

2 1 1 2 2 1 2 1 2
2 1 2

2
! !

n n
n n

n n
He He He

n n
β η β η β β η η

+ =

+ = ∑ .                  (28) 

The condition 2 2
1 2 1β β+ =  is absolutely key in the equality and is called the “factor loading condition” in 

credit risk modelling. It can actually be seen as a normalisation constraint: if 1η  and 2η  are independent and 
normalised (i.e. have mean 0 and variance 1), then 1 1 2 2β η β η+  will have mean 0 and variance 1 if and only if 

2 2
1 2 1β β+ = . We can now proceed to a general version of the theorem. This result did not have a general 

statement and proof widely available, but given its simplicity, it might have been derived in a different context.  
Theorem 4. Let *N ∈  and N ∈ . Then for all jβ s with { }1, ,j N∈   such that 2

1 1N
jj β

=
=∑ ,  

( )
11 , 11

!
! !

j
j

j N

NN
n

n j j j n j
j n n n n jN

nHe He
n n

β η β η
= + + = =

 
= 

 
∑ ∑ ∏





.                      (29) 

Remark 2. The theorem can be restated in a more condensed form and in terms of Hermite functions as 
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( ) ( )
/

!
,

!N
n N

n

he he
∈ =

= ∑ n
n

n n

n
n

β η β η .                            (30) 

We offer two proofs of the result, one based on the repeated application of the recursion property (see the 
Appendix) and the other on the generating function of Hermite polynomials to show how powerful and different 
these two tools are for analysing relationships involving Hermite polynomials. They offer different insights in 
the manipulation of Hermite polynomials and are a good exercise for the reader. 

Let us now move to a demonstration based on the exponential generating function.  
Proof. We have that 

( ) ( )

2 2
2

1

1 1

1

1 2 2

1 0

0 0 ,1 1

, e e
!

! !

N
iN Ni

i i i i
i i

i ii i i

i i N

N
z

zn i iN z z
i n

i i
i n

N N
n i n in n n n

i i
n n n n n ni ii i

He
f z z

n

He He
z z

n n

β
β η β η

β η
βη

η η
β β

=

= =
∞ − + − +

=

= =

∞ ∞

= = + + == =

∑
∑ ∑

 
    = = = 

 
 

= =   
 

∑
∑ ∑

∑ ∑ ∑∏ ∏


              (31) 

Hence, comparing the first and the last lines of this equation we must have  

( )
1

1

, 1! !
i i

j N

N

n i i N
n ii n

i
n n n n i i

He He
n n

βη η
β=

+ + = =

 
     =   

 

∑
∑ ∏


                            (32) 

which yields the result.                                                                      □ 
To show how powerful this simple tool is, we provide some direct extensions and examples in the next two 

sections. 

5. Two Extensions of the Multinomial Theorem 
It is possible to easily extend this result to multivariate Hermite polynomials and to weights which do not re- 
spect the factor loading condition. 

Looking first at the case of multivariate Hermite polynomials, the idea is to consider a linear combination of  
multivariate factors ( ) ( )1 , , M

η η  so that ( )
1

M k
kk β

=∑ η  is yet another vector.  
Theorem 5. Let M ∈ , ( ) ( )1 , , M N∈ η η , N∈β  such that , 1N =β β  and N∈n  . Then the 

following equality holds: 

( ) ( ) ( )!
!

1 1 /1 1

!
!

i
i i

i i i

N NM M
k k i

k n k i i
k k ni i i

n
He He Heβ β η β

= = == =

   = =   
   
∑ ∑ ∑∏ ∏ m

n m
m m m

η η  

with ( ) ( )( )1 , , M M
i i iη η ′= ∈ η  the vector of the thi  coordinates of the factors. 

Proof. It suffices to apply the multinomial theorem for Hermite polynomials to each of the univariate Hermite  

polynomials ( )( )1i

M k
n k ikHe β η

=∑ .                                                              □ 

Another extension, perhaps more important for practitioners, is to consider the case where the factor loading 
condition is not verified. For the sake of simplicity, let us go back to the univariate case and suppose that 

, 1N ≠β β  (but still , 0N >β β ). We can state the general multinomial theorem for Hermite polynomials as 
follows:  

Theorem 6. Under the assumption that , 0N >β β  (i.e. 0≠β ), the following identity is checked: 

( ) ( ) ( )2 2

0 / 2

, , 1
, !

!2 ! ,

j

j

j j

n jjn
N N

n jN
j n j jN

He
He n

j

−
  

= = −

 −
 =
 
 

∑ ∑
m

m

m m m

ηβ β β β ββ η
β β

.           (33) 

In the proof, we make use of the following lemma from Schloegl (2013) [3]: 
Lemma 2. Let ,a y∈ . Then  
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( ) ( )
( )

( )

22
2

2
0

1
!

2 !2 !

j
n

n j
n n j j

j

a
He ay n a He y

n j j

  
−

−
=

−
=

−∑ .                     (34) 

Proof. (Of the theorem) We can rewrite ( ),n NHe β η  as 

( ) ,
, ,

,
N

n nN N
N

He He
 
 =
 
 

β η
β η β β

β β
.                       (35) 

We derive the following equality from the intermediary lemma: 

( ) ( )
( )

( ) ( )
( )
( )

( )

2

2 2
0

2

2

0 / 2

2 2

0 / 2

, 1
, ! , ,

2 !2 !,

, 12 !
! ,

! 2 !2 !,

, , 1
!

2 ! ,

j

j
j j

j j

j
n n j N

n n j jN N
j

N N

j
n n j N

jN
j n j j N

n jjn
N N

j
j n j N

He n He
n j j

n j
n He

n j j

n
j

   −
−

=

   −

= = −

−
  

= = −

  − =
  − 
 

  −−  =
  −
 

 −
 =
 
 

∑

∑ ∑

∑ ∑

m

m
m m

m m

m

β βββ η β β η
β β

β βββ β η
β β

β β β β β
β β

( )
!

j

j

j

He
m

m

m

η

     (36) 

□ 
Remark 3. In the same vein, it is also possible to infer a similar but even more general result for  

( ),n NHe c+β η                                         (37) 

where c∈  and , 1N ≠β β  and even extend it to the multivariate case; we leave the computational details 
to the interested reader.  

6. Revisiting the Orthogonality Property and the Mehler Formula 
Let us revisit the orthogonality property, but this time in presence of correlation. Our aim is to compute 

( ) ( )m nHe Y He X   , where X and Y are two standard Gaussian random variables with correlation coefficient 
ρ . To do so we prove the following theorem.  

Theorem 7. For any ( )1,1ρ ∈ − , the following identity is true: 

( ) ( ) ( ) ( ) ( )2 ,, , d d ! n
m n m n n mHe Y He X He y He x x y y x nφ ρ ρ δ= =   ∫ ∫

 

            (38) 

with ,n mδ  the Kronecker symbol and 2φ  the bivariate Gaussian probability distribution function. 
Proof. Another way of expressing this double integral is to write it as  

( ) ( ) ( ) ( )21 d dm nHe x z He x x z z xρ ρ φ φ+ −∫ ∫
 

.                       (39) 

Using the binomial formula, which is a particular case of the multinomial formula that we have proved, we 
have 

( ) ( ) ( ) ( )2 2

0
1 ) 1

m m k
k

m k m k
k

m
He x z He x He z

k
ρ ρ ρ ρ

−

−
=

 
+ − = − 

 
∑ .                (40) 

Thus, 
( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( )

2

2

2

0

2
, ,0 ,

0

, , d d

1 d d

1 d d

1 ! !

m n

m n

m m k
k

k n m k
k

m m k
k n

k n m k n m
k

He y He x x y y x

He x z He x x z z x

m
He x He x x x He z z z

k

m
n n

k

φ ρ

ρ ρ φ φ

ρ ρ φ φ

ρ ρ δ δ ρ δ

−

−
=

−

−
=

= + −

 
= − ⋅ 

 
 

= − = 
 

∫ ∫

∫ ∫

∑ ∫ ∫

∑

 

 

 

            (41) 
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The “correlated orthogonality” property has been proved.                                         □ 
Based on this simple observation, a simple and elegant proof of the Mehler formula can be given: 
Corollary 1. (Mehler formula) The bivariate normal probability density function 2φ  satisfies the following 

equality (for ( )1;1ρ ∈ −  and ,x y∈ ): 

( ) ( ) ( ) ( ) ( )2
0

, ;
!

k

k k
k

x y x y He x He y
k
ρφ ρ φ φ

+∞

=

= ∑ .                        (42) 

Proof. It suffices to expand ( )
( ) ( )

2 , ;x y
x y

φ ρ
φ φ

 in the Hermite polynomial basis: 

( )
( ) ( ) ( ) ( ) ( ) ( ) ( )2

2
, 0

, ;
, , d dk n k n

k n

x y
He x He y He x He y x y x y

x y
φ ρ

φ ρ
φ φ

+∞

=

= ∑ ∫ ∫
 

                (43) 

and use the correlated orthogonality property.                                                    □ 
The Mehler formula is of special importance since it can be used as a foundation in credit-risk modelling, as 

in Voropaev [5], to compute the expected value of a portfolio V of K financial instruments kV , 1, ,k K=  , 
conditional on the value of a factor, say Y. Suppose that each kV  is a function (verifying all necessary inte- 
grability conditions) of a random variable kξ  which depends linearly on a systemic factor Y and an idio- 
syncratic (i.e. instrument-specific) factor k  ( k ’s are assumed to be mutually independent and to follow 
standard Gaussian distributions): 

( ) ( )21k k k k k k kV v v Yξ ρ ρ= = + −  .                            (44) 

Thus, ( )2
1 1K

k k k kkV Y v Y Yρ ρ
=

   = + −    ∑   . Focusing on ( )21k k k kv Y Yρ ρ + −  
  , we can write 

the following equations: 

( ) ( ) ( )

( )

( ) ( ) ( ) ( )

( ) ( )

2 2

2 2

0

0

1 1 d

d

1 1

d
!

!

k k k k k k k k k k

k k k
k k

k k

n
k

k k n k n k k
n

n
nk

k n
n

v Y Y v Y

Y
v

v He He Y
n

v He Y
n

ρ ρ ρ ρ ε φ

ξ ρ ξ
ξ φ

ρ ρ

ρ
ξ ξ φ ξ ξ

ρ

+∞

=

+∞

=

 + − = + −  
 − =
 − − 

=

=

∫

∫

∑∫

∑







   

           (45) 

where we have defined ( ) ( ) ( ) ( ): dn
k k k n k k kv v Heξ ξ φ ξ ξ= ∫



, which does not depend on the decomposition in  

terms of Y and k . This is extremely useful as it can be used for assessing the impact of Y on the whole port- 
folio (for instance by computing the value-at-risk of the conditional expected loss, and so on).  

7. The Multinomial Factorisation Theorem and Arbitrage 
Going back to our framework where the market has no arbitrage and is complete, we wish to determine the 
relationship between the implied prices of the basis and those of a linear combination of the underlying factors. 
To make things clearer suppose that we are looking at a payoff 0Ψ  whose underlying factor η  is a linear 
combination of N factors (as previously, we note ( )1, , Nη η ′= η ) with a vector ( )1, , Nβ β ′= β  of factor 
loadings whose norm is 1: 1: , N

j jjNη β η
=

= = ∑β η  with , 1N =β β . Then: 

( ) ( ) ( )
/

!,
!N

n n N
n

nHe He Heη
∈ =

= = ∑ n
n

n n n

β η β η                      (46) 

which can be restated in terms of Hermite functions as ( ) ( )/

!,
!n nN

nhe he
=

= ∑ n
nn n n

β η β η  where 
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!
n

n
He

he
n

= . 

On the one hand, we have the basis of Hermite functions to expand the payoff 0Ψ  as a function of η :  

( ) ( ) ( )0 0
0

k k
k

a heηη η
+∞

=

Ψ = Ψ∑                                  (47) 

where ( ) ( ) ( ) ( )0 0 dk ka z he z z zη φΨ = Ψ∫


. 

On the other hand, we can express the payoff 0Ψ  of η  as a multivariate function Ψ  of η  by writing 
that ( ) ( )0 , NΨ ⋅ = Ψ ⋅β . Applying a multivariate expansion this time, we obtain that  

( ) ( ) ( )
N
a he

∈

Ψ = Ψ∑ n n
n 

ηη η                                   (48) 

where 

( ) ( ) ( )

( ) ( )0 1
1 1

d

d d

N

j

N

NN

j j n j j N
j j

a he

he

φ

β η η φ η η η
= =

= Ψ

 
= Ψ  

 

∫

∑ ∏∫ ∫

n n


 

 

η η η η η

                      (49) 

Since ( ) ( )0 ηΨ = Ψ η , using the valuation formula, by no arbitrage, we would necessarily have 
( ) ( )0V VηΨ = Ψ      η  so that 

( ) ( ) ( ) ( )0 0
0 N

k k
k

V a a Vηη π π
+∞

= ∈

Ψ = Ψ = Ψ = Ψ      ∑ ∑ n n
n 

η η                     (50) 

where kπ  is the potential implied price of ( )khe η  for all k and π n  is the known implied price of  

( )1 j

N
n jj he η

=∏ . 

Thanks to the multinomial factorisation, we have that 

( ) ( ) ( ) ( ) ( )0 0 0
0 /

!!
! !N

n
n n

na he a heη ηη
+∞

= = ∈

Ψ = Ψ = Ψ∑ ∑ ∑n n
n nn

n n n

n
n n

β η β η .              (51) 

By identifying terms in this multivariate polynomial function, we obtain  

( ) ( )0

!
!

a aηΨ = Ψ n
n n

n
n

η β .                                 (52) 

Turning to the prices, we see that 

( ) ( ) ( )

( )

( )

0 /

0
0 /

0
0 /

!
!

!
!

N N

N

N

n n

n n

n
n n

V a a

a

a

η

η

π π

π

π

+∞

=∈ ∈ =

+∞

= ∈ =

+∞

= ∈ =

Ψ = Ψ = Ψ  

= Ψ

= Ψ

∑ ∑ ∑

∑ ∑

∑ ∑

n n n n
n n n

n
nn

n n

n
n

n n

n
n

n
n

 





η ηη

β

β

                       (53) 

On the other hand, we have that ( ) ( ) ( )0 00 n nnV V aηη π+∞

=
Ψ = Ψ = Ψ       ∑η . Bringing both equations together, 

we can write the following equality: 

( ) ( )0 0
0 0/

!
!N

n n n
n nn

a aη ηπ π
+∞ +∞

= =∈ =

Ψ = Ψ∑ ∑ ∑n
n

n n

n
n

β                      (54) 
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and infer the theorem: 
Theorem 8. Since the function 0Ψ  is a generic payoff, by analysing the series coefficient by coefficient, we 

finally obtain that 

/

!
!N

n
n

π π
∈ =

= ∑ n
n

n n

n
n

β                                    (55) 

Proof. We have shown that 
/

!
:

!
Nn nπ π

∈ =
= ∑ n

nn n

n
n



 β  was a valid choice for nπ . Let us show that it is the 

only one by applying no-arbitrage pricing arguments. 
Indeed, suppose that there exists n∈  such that n nπ π≠  (for clarity’s sake, n nπ π< ). Let us then choose 
0 nheΨ = , which is a valid payoff, so that we have ( )0 ,k k naη δΨ = . A portfolio can then be built by buying the  

duplicated payoff at price 
/

!
!

N n π
∈ =∑ n

nn n

n
n β , i.e. nπ , and shorting it at price nπ . 

Since the payoffs ( )0 ηΨ  and ( )Ψ η  are equal, we have built a portfolio that displays an arbitrage.     □ 
To summarise, we have shown that it was possible to express explicitly the coefficients ( )0naη Ψ  and the 

prices nπ  as functions of the coefficients ( )a Ψn
η  and the prices π n . The strength of this theorem is to make 

explicit the no arbitrage relationship between the empirical prices of the Hermite polynomials and the empirical 
price of a linear combination of the factors, which leads to the formulation of the following result:  

Theorem 9. We have determined the futures price law density of , Nη = β η  denoted by λβ  as  

( ) ( )
0 /

!
!N

n
n n

heλ η π η
+∞

= ∈ =

 
 =
 
 

∑ ∑ n
n

n n

n
n

β β .                         (56) 

8. Concluding Remarks 
This paper proposes a simple way of expanding the Hermite polynomial of a linear combination of factors into 
simpler elements. This method allows us to prove the celebrated Mehler formula in a very simple way, but also 
enables us to derive the empirical prices of functions of linear combination of factors in a market with no arbi- 
trage and facilitates credit risk modelling. Practical illustrations of the theoretical framework developed in this 
paper can be found in [2]-[6]. We have built on the theory developed by Madan and Milne and highlighted the 
relationship that existed between their results and other recent results obtained in the field of pricing. Using a 
multinomial theorem for Hermite polynomials, we have shown how to tackle expressions including more than 
one factor. 

The main assumption made throughout the paper is the existence of a payoff’s or probability density func- 
tion’s expansion in the basis of Hermite polynomials. Although this is quite restrictive (it implies the existence 
of all moments in the latter case for instance), it does allow for significant deviations from the benchmark case 
of standard Gaussian distributions. The computational approach at hand indeed permits to only consider a series 
of simple computations rather than a difficult and time consuming one. It offers a practical analytical alternative 
to full-fledged Monte Carlo simulations. 
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Appendix 
In this appendix we give an alternative proof of the multivariate theorem for Hermite polynomials 

Proof. The cases 0n =  and 1n = , for all N, are obvious since 0 1He =  and 1He X= . Let us now suppose 
that the property holds for all k such that k n≤ . 

Using the recurrence formula  

1 1
1 1 1 1

N N N N

n m m n m m m m n m m
m m m m

He He nHeβ η β η β η β η+ −
= = = =

      = −      
      
∑ ∑ ∑ ∑                (57) 

we can write that 

( ) ( ) ( )

( ) ( )

( )

1
1

, , , 11 1

, 1 , 11 1

1

, 1 1,

! !
! !

! !
! !

!
!

j j j
j j j

j j
j j

j l
j l

N

n m m
m

N N
n m k
j n j m j j k j

n m nj j

N NN
n k

j j j n j j k j
n j nj j

NN
n n

j j n j l n
n j l l j

He

n nHe He He

n nHe He

n He He

β η

β η η β η

β η β η β η

β η η β

+
=

+

= = = −= =

= = = −= =

+

= = = ≠

 
 
 

= −

= −

=

∑

∑ ∑ ∑∏ ∏

∑ ∑ ∑∏ ∏

∑ ∑ ∏

n n m m k k

n n k k

n n

n m k

n k

n
( ) ( )

( ) ( )( ) ( ) ( )

, 1 1

1
1 1

, 1 , 11, 1

!
!

! !
! !

j
j

j jl
j j l j

N
k

l j k j
n j

N NN
n kn

j n j j n j l n l j k j
n j nl l j j

n He

n nHe n He He He

η β η

β η η β η β η

= − =

+
+ −

= = = −= ≠ =

−

= + −

∑ ∏

∑ ∑ ∑∏ ∏

k k

n n k k

k

n k

     (58) 

We can split the above expressions into the three pieces: 

( ) ( ) ( )1
1 1

, 1 1,

!,
!

j l
j l

NN
n n

j n j l n l
n j l l j

nI n N He Heβ η β η+
+

= = = ≠

= ∑ ∑ ∏
n n n

                   (59) 

( ) ( ) ( )1
2 1

, 1 1,

!,
!

j l
j l

NN
n n

j j n j l n l
n j l l j

nI n N n He Heβ η β η+
−

= = = ≠

= ∑ ∑ ∏
n n n

                 (60) 

( ) ( )3
, 1 1

!,
!

j
j

N
k
j k j

n j

nI n N Heβ η
= − =

= ∑ ∏
k k k

                                 (61) 

Our aim is to demonstrate ( ) ( ) ( ) ( )4 1 2 3, , , ,I n N I n N I n N I n N= + −  where  

( ) ( ) ( )4
, 1 1

1 !
,

!
j

j

N
k
j k j

n j

n
I n N Heβ η

= − =

+
= ∑ ∏

k k k
                              (62) 

We start by proving ( ) ( )2 3, ,I n N I n N=  and then move on to showing that ( ) ( )4 1, ,I n N I n N= . 

( ) ( ) ( )

( ) ( )

2
3

, 1 , 1 11 1

2

, 1 1 1,

! !,
! !

!
!

j j
j j

jl
l j

N NN
k k
j k j l j k j

n n lj j

NN
kk

l k l j k j
n l j j l

n nI n N He He

n He He

β η β β η

β η β η

= − = − == =

+

= − = = ≠

 = =  
 

=

∑ ∑ ∑∏ ∏

∑ ∑ ∏

k k k k

k k

k k

k

          (63) 

Turning to ( )2 ,I n N , it now boils down to making the change of variables 1j jn n= −  to obtain the equality  
( ) ( )2 3, ,I n N I n N= . 
Similarly, in ( )1 ,I n N , using the change of variables 1j jn n= + , we obtain 
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( ) ( ) ( ) ( )

( )

( )

1

1

1

1

1
1 1 1,1

1 1 11

1

1 11

!,
! 1 ! !

!
! ! !

!

! ! !

jk
k j

k N

j
j

k N

j
j

k N

k N

NN
nn

n k j n j
k n n n n j j kk N

NN
nk
j n j

k n n n n jk N

N

k N
nk
j n j

n n n n jk N

n n n

nI n N He He
n n n

n n
He

n n n

n n
He

n n n

β η β η

β η

β η

= + + + + = + = ≠

= + + + + = + =

=

+ + + + = + =

+ + + +

=
−

=

 
 
 =

=

∑ ∑ ∏

∑ ∑ ∏

∑
∑ ∏






 

 

 

 


 

 

 

( ) ( )
1 11

1 !
! ! !

j
j

N
n
j n j

n jk N

n
He

n n n
β η

= + =

+
∑ ∏

 

          (64) 

Finally, the result has been proved.                                                           □ 
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