
Journal of Computer and Communications, 2015, 3, 74-86 
Published Online June 2015 in SciRes. http://www.scirp.org/journal/jcc 
http://dx.doi.org/10.4236/jcc.2015.36008  

How to cite this paper: Azarbar, A. (2015) Non-Vanishing Space Time Block Code for Three Time Slots and Two Transmit 
Antennas. Journal of Computer and Communications, 3, 74-86. http://dx.doi.org/10.4236/jcc.2015.36008  

 
 

Non-Vanishing Space Time Block Code for 
Three Time Slots and Two Transmit  
Antennas 
Ali Azarbar 
Department of Electrical and Computer Engineering, Islamic Azad University, Parand Branch, Tehran, Iran 
Email: azarbar@ee.sharif.edu  
 
Received 30 March 2015; accepted 30 May 2015; published 3 June 2015 

 
Copyright © 2015 by author and Scientific Research Publishing Inc. 
This work is licensed under the Creative Commons Attribution International License (CC BY). 
http://creativecommons.org/licenses/by/4.0/ 

    
 

 
 

Abstract 
Recently, space time block codes (STBCs) are proposed for multi-input and multi-output (MIMO) 
antenna systems. Designing an STBC with both low decoding complexity and non-vanishing prop-
erty for the Long Term Evolution Advanced (LTE-A) remains an open issue. In this paper, first our 
previously proposed STBC’s non-vanishing property will be completely described. The proposed 
STBC scheme has some interesting properties: 1) the scheme can achieve full rate and full diversi-
ty; 2) its maximum likelihood (ML) decoding requires a joint detection of three real symbols; 3) 
the minimum determinant values (MDVs) do not vanish by increasing signal constellation sizes; 4) 
compatible with the single antenna transmission mode. The sentence has been dropped. Second, in 
order to improve BER performance, we propose a variant of proposed STBC. This scheme further 
decreases the detection complexity with a rate reduction of 33%; moreover, non-vanishing MDVs 
property is preserved. The simulation results show the second proposed STBC has better BER 
performance compared with other schemes. 
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1. Introduction 
Space-time block codes (STBCs) are known as well-suited techniques that provide an effective diversity method 
to mitigate the fading in wireless channels. In these codes, transmitted signals are repeated in different time slots 
by using two or more transmit antennas. In order to provide diversity gain, each replica of a signal must en-
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counter independent fading. Thus, transmit (receive) antennas must be separated appropriately. Therefore, if 
each replica of transmitted signals encounters independent fading, the probability of occurring deep fading is 
very unlikely. Alamouti code is the most popular STBC scheme for two-transmit antennas systems [1]. It 
achieves code rate one and full diversity transmission using two-time slots for information symbols. Tarokh and 
et al. generalized Alamouti code for systems with an arbitrary number of transmit antennas which are called or-
thogonal codes [2]. Although, these codes provide full diversity for more than two transmit antennas with linear 
decoding complexity code rate is less than one. To increase code rate for more than two transmit antennas, Qua-
si-Orthogonal STBC (QSTBC) scheme is introduced in [3] and [4]. However, code rate is increased for QSTBC 
scheme decoding complexity is higher, but not exponentially, compared with orthogonal codes.  

The Three Generation Partnership Project (3GPP) started the next generation wireless systems (4G) under the 
project Long Term Evolution Advanced (LTE-A) in 2008 [5]. In LTE-A, user equipment (UE) is imposed two 
transmit antennas. Therefore, STBC scheme can be the most popular candidate for the uplink diversity gain [6]. 
Alamouti STBC scheme sounds a suitable candidate in LTE-A systems. Unfortunately, in LTE frame structure 
is dedicated 3-time slots with Alamouti STBC scheme. This has brought up an interesting STBC design problem 
which is compatible with LTE frame structure. Hybrid STBC scheme as the first scheme has been proposed for 
3-time slots and two transmit antennas systems [7]. Its encoding matrix includes two time slots Alamouti 
scheme followed by one time slot repetition transmission. Although, the Hybrid scheme achieves code rate one 
and its decoding complexity is linear at receiver does not achieve full diversity. To remove full diversity defect, 
a class of QSTBC scheme is proposed by Lie et al. in [8] [9]. The QSTBC scheme achieves code rate one and 
full diversity. But, there are two problems with this scheme. The first problem is highcomplexity of maximum 
likelihood (ML) decoding which requires a joint detection of two complex symbols (O(M2)), where M is size of 
the used symbol constellation. The second problem is that the minimum determinant values (MDVs) extremely 
vanish by increasing the symbol constellation size. Recently, Fast-Group-Decodable STBC (Fast-GSTBC) 
scheme has been proposed in [10] [11]. As generic construction method for odd-time slot, new GSTBC scheme 
has been designed for LTE-A that achieves code rate one and full diversity with symbol-wise decoding com-
plexity (O(M1)) [12]. GSTBC scheme achieves code rate one and full diversity with symbol-wise decoding 
complexity (O(M1)). However, GSTBC scheme reduces decoding complexity for 3-time slots two transmit an-
tennas its MVDs vanish. Also, this scheme is not compatible with single antenna.  

In [13], a novel 3-time slots STBC structure, based on trace criterion, has been designed. To the best our 
knowledge, this is the first 3-time slots two transmit antennas STBC scheme which has non-vanishing MDVs 
property. In this paper, by using this STBC structure, 1) a 3-time slots STBC scheme which can achieve code 
rate one and full diversity with decoding complexity of O(M1.5) is proposed, 2) a 3-time slots code rate 2/3 
STBC scheme which can achieve full diversity with symbol-wise decoding complexity is obtained. Also, we 
will show that both schemes have non-vanishing MDVs property. The simulation results show that our first 
scheme has the same bit error rate (BER) performance with the GSTBC scheme. However, BER for the second 
proposed scheme is improved about 0.3 dB compared with the first scheme.  

The rest of the paper is organized as follows: Section 2 comprises two subsections: 2.1. Channel Model, 2.2. 
Code Design Criteria, and 2.3. Review of Three Time Slots Two Transmit Antennas STBC Schemes. In Section 3, 
the Non-Vanishing MDVs Code Rate One 3-Time Slots STBC is introduced. This section includes four subsec-
tions: 3.1. Encoding matrix, 3.2. Parameter k Optimization, 3.3. Decoding Complexity, and 3.4. Some 1

proX  
Properties. In Section 4, Code Rate 2/3 3-time slot 2-antenna STBC is introduced. In Section 5, Simulation Re-
sults and Discussion is presented: 5.1. Performance Comparison in Rate One Scheme, and 5.2. Performance 
Comparison in Rate 2/3 Scheme. Conclusion is given in Section 6.  

Notations: Hereafter, 1j = − , small letters, bold letters and bold capital letters will designate scalars, vec-
tors, and matrices, respectively. If A is a matrix AH, AT, and tr(A) denote the conjugate-transpose, transpose, and 
trace of A, respectively; ( ). R , ( ). I  and ( ). ∗  denote the real part, the imaginary part and the complex conju-
gate, respectively. 

2. Review of 3-Time Slots STBC for Two Transmit Antennas 
2.1. Cannel Model 
Consider a MIMO system with Nt (Nt = 2) transmit antennas and Nr receive antennas and with quasi-static flat 
fading of block length T (T = 3). It is assumed that the channel state information (CSI) to be known at the re-
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ceiver but unknown at the transmitter. The input-output relation of this system can be written as 

q= +Y XH Z                                        (1) 

where the normalization q ( )tq Nρ=  is to ensure that the ρ  (SNR at the receiver) is independent of the 
number of the transmit antennas (Nt). X is the tT N×  complex matrix of the transmitted symbols that are 
drawn constellation. H is the t rN N×  complex matrix that contains all the channel coefficients with zero mean 
and unit variance. Z is the rT N×  complex noise matrix, and Y is the rT N×  complex matrix of the received 
signals. The entries of Z are assumed to be i.i.d. complex Gaussian random variables with the probability density 
function (pdf) ( )00,CN N , where ( ).,.CN  stands for the complex Gaussian pdf and 0N  for the noise va-
riance. 

2.2. Code Design Criteria 
2.2.1. Rank and Determinant Criteria 
Recently STBC schemes mainly rely on analysis of the pair wise error probability (PEP) ( )ˆP →X X  which is  

the probability that X̂  is detected while X  is transmitted. Chernoff bound Analysis of the PEP at high SNR 
values results in Rank criterion and Determinant criterion [14]. The STBC scheme has full diversity property if  
the difference matrix ( )ˆ→X X  is full rank for all codeword pairs. The diversity gain at high SNR values do-  

minates the steepness of the Bit Error Rate (BER) curve. Thus, in STBC scheme design ensuring full diversity is 
important at high SNR values. Afterwards, coding gain should be maximized for given average transmit power 
that leads to a good determinant criterion. The maximum coding gain results in the minimum PEP. Besides 
maximizing coding gain, this value should be constant for any symbol constellation sizes. This property is called 
non-vanishing MDV and has been established for several popular STBC schemes [15]-[18]. The non-vanishing 
MDV can beexploited through the use of the adaptive constellation (adaptive rate) according to the wireless 
channel quality.  

2.2.2. Trace Criterion 
The trace criterion is less known but paramount for designing non-orthogonal STBC schemes [19] [20]. This 
criterion states: to optimize performance of the BER STBC scheme, say X , should be designed so that the ei- 

genvalues of the ( ) ( )ˆ ˆH
− −X X X X  are as close as possible to each other and to ( ) ( )( )ˆ ˆtr

H
T− −X X X X ,  

and for which the row-wise sum of the absolute values of the elements off the main diagonal is as small as  

possible. Moreover, the ( ) ( )( )ˆ ˆtr
H

− −X X X X  plays the role of the Euclidean distance between codewords.  

2.3. Review of Three Time Slots Two Transmit Antennas STBC Schemes 
In this section, the three time slots two transmit antennas STBC schemes has been reviewed. Also, advantageous 
and disadvantageous of the all schemes are included.  

2.3.1. Hybrid STBC Scheme 
The hybrid scheme, HSTBCX , is the first 3-time slot STBC scheme has been proposed [7]. Encoding matrix of 
this scheme is prescribed in (2). As can be seen in encoding matrix, Alamouti STBC is used at fist 2-time slots, 
and symbol 3s  is repeated at the last time slot over both antennas. Such STBC scheme has code rate one with 
linear decoding at receiver and symbols are encoded by standard modulation that has low hardware complexity. 
Because symbol 3s  is not transmitted in different time slot, full diversity does not achieve.  

T*
1 2 3

*
2 1 3

 HSTBC
s s s
s s s
 −

=  
 

X                                (2) 

However, the scheme achieves code rate one and its decoding complexity is linear at receiver does not 
achieve full diversity. 
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2.3.2. QSTBC Scheme 
Incapacitation of Hybrid STBC to achieve full diversity was good reason for author in [8] [9] to design a class of 
QSTBC scheme, QSTBCX , compatible with 3-time slots systems. The encoding matrix of such scheme has a 
general form of  

T
1 2 3

T * T * T *
1 2 2

QSTBC

s s s 
=  
 

X
b s b s b s

                                 (3) 

where [ ]T1 2 3, ,s s s=s . By defining [ ]T1 2 3, ,b b b=A , A yields: 

2π 2π
5 5

2π π
5 5

2π π
5 5

1 2e 2e

1 2e e 2
3

2e 2 e

j j

j j

j j

−

−

−

 
 
 
 = −
 
 
− 
 

A                             (4) 

QSTBCX  has code rate one, full diversity, and backward compatible with single antenna properties. Also, it is 
proven that ML decoding complexity of the QSTBCX  is O(M2). There is two defects with QSTBCX . First defect 
is high decoding complexity, and second MDVs vanish by increasing symbol modulation orders (i.e. non-va- 
nishing MDV property does not preserve). Also, the rotation factors in matrix A  may cause encoder and de-
coder accommodate three different constellations our simulations show for 4-QAM modulation. MDV is 7.18 
while for 16-QAM this value is 0.12. Therefore in order to reduce the decoding complexity, the code in subsec-
tion II.C.3. is proposed. 

2.3.3. Group-Decodable STBC Scheme 
Recently Fast-Group-Decodable STBC (Fast-GSTBC) scheme has been proposed in [10] [11]. As generic con-
struction method for odd-time slot, new GSTBC scheme with arbitrary code dimension including odd time slot 
has been designed. Based on Fast-Group-Decodable STBC, in [12] a new STBC scheme for LTE-A system was 
designed as follows 

T
*1 2 1 2
3

* *
1 2 1 2

3

2 2

2 2

GSTBC

s s s ss

s s s ss

+ − + − 
 =
 + − +
 
 

X                      (5) 

GSTBCX  achieves code rate one and full diversity with symbol-wise decoding complexity. Encoder/decoder 
only needs to accommodate one rotated constellation that reduces hardware complexity. However, similar to 
scheme in (4) GSTBCX  cannot preserve non-vanishing MDVs property. For 4-QAM and 16-QAM, MDV is 16, 
but for 8-QAM the MVD is 6.18. Also, this scheme is not suitable for single antenna transmission.  

So, design of 3-time slots two-transmit antennas STBC scheme with non-vanishing MDVs is required. In the 
next section a novel STBC structure with non-vanishing MDVs property that has been proposed in [13] will be 
presented. 

3. Non-Vanishing MDVs Code Rate One 3-Time Slots STBC 
In this section, initially the encoding matrix is presented. Then, parameter k is optimized to maximize the MDVs. 
Also, we will prove that our scheme achieves non-vanishing MDVs. Finally, the decoding complexity of the 
proposed STBC scheme with ML criterion is illustrated.  

3.1. Encoding Matrix 
In this subsection, the problem is formulated.  

Figure 1 shows a schematic drawing of the proposed STBC scheme. Three data symbols are transmitted con-
secutively during three time slots. Therefore, full rate is achieved (an STBC rate is defined as the number of  
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Figure 1. The proposed STBC scheme.    

 
transmitted symbols during time slots). The 1st antenna transmits the three symbols x1, x2,and x3 during three 
time slots. The 2nd antenna transmits three symbols v1, v2, and v3. Now, the three symbols transmitted by the 2nd 
antenna will be defined. One possible way to define these symbols is to make vector v (v = [v1v2v3]) orthogonal 
to vector s (s = [x1 x2 x3]), i.e. 0H H= =s v v s . As will be shown in the next subsection this causes the decoding 
complexity reduces from joint three complex symbols detection to joint three real symbols; moreover results in 
suitable trace criteria [19] [20]. Then, improve BER performance at high SNR. To achieve this goal, three dif-
ferent STBC schemes are proposed as: 

T TT
1 2 3 1 2 31 2 3

1 2 3* * * ** *
3 1 3 22 1

, ,
0 00

x x x x x xx x x
x x x xx x

    
= = =     − −−     

X X X              (6) 

In all of the above schemes, the first row is orthogonal to the second one. However, zero entry in the second 
row reduces diversity order. The following solution overcomes to this deficiency: 

1 2 3
,= + +X X Xv v v v                                      (7) 

where 
iXv  (i = 1, 2, 3) is the second row in matrix iX . Therefore, v yields as * * * * * *

2 3 1 3 1 3, ,x x x x x x = − − − + v .  

In order to achieve power balance, the symbols in the vector v are transmitted with power 1 2 . Now, we can 
present the proposed encoding matrix as:  

T
1 2 3

1 * * * * * *
2 3 1 3 1 2

2 2 2
pro

x x x
x x x x x x

 
 = − − − + 
  

X                             (8) 

For full diversity, symbols x1, x2, and x3 are selected from three different symbol constellations. Figure 2 
represents these three symbol constellations. From the represented constellations xi (i = 1, 2, 3) are obtained as 
[21]: 

( ) ( )
( ) ( )

1

2
2

2
3

,

2 1 ,

2 1 .

R I

R I

R I

x s js

x k s jks

x k ks js

= +

= + +

= + +

                              (9) 

Power ( )22 1 k+  in 2x  and 3x  guarantees 2 1ixε   =   (i = 1, 2, 3), where [ ]zε  is the excepted val- 

ue of z. Rs  and Is  are chosen from the standard QAM constellation. Parameter k is unknown and must be 
optimized to maximize the MDVs. In the subsection III.B the parameter k will be optimized. Note that despite 
the first row is orthogonal to the second one 1

proX  is neither orthogonal code nor quasi-orthogonal. Consider  
orthogonal code, say orthX , then H

orth orth Iα=X X , in which 2
1

K
kk sα

=
= ∑  and I  is identity matrix.  

3.2. Parameter K Optimization 
In the previous subsection, the three different symbol constellations were represented. The parameter k norma- 

1 2 3, ,x x x

1 2 3, ,v v v

1st 
antenna

2nd  
antenna
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(a)                            (b)                         (c) 

Figure 2. Three different symbol constellations. (a) The standard QAM constellation that symbol x1 is chosen from; (b) The 
horizontally stretched QAM constellation that symbol x2 is chosen from; (c) The vertically stretched QAM constellation that 
symbol x3 is chosen from.                                                                                       
 
lizes symbols 2x  and 3x . In this subsection the parameter k is optimized.  

( ) 2 20
H H

H
H Hdet det ×

 
= ≠ 

 

s s v s
X X

s v v v
                             (10) 

Where 1 1ˆ
pro pro= −X X X  and 1 1ˆ and pro proX X  represent two different codewords and det(.) denotes determinant 

value of (.). 
According to 0H H= =v s s v , it is easy to show that X  is full rank. Note that when 1k = , it is possible 

0=v , although we consider 0 1k< <  in 3.1. This vouches that determinant is always nonzero. Then,  

( ) ( )
3 3

2 2 * * *
2 3 1 3 1 2

1 1
min

RH
i i

i i
det x x x x x x x x

= =

  
= + − +  
  
∑ ∑X X                     (11) 

where ˆi i ix x x= −  (i = 1,2,3), and ix  represents the possible error in symbol ix . 
Lemma 1: 1

proX  has non-vanishing-MDV and for min 1d =  its value is 5.82. 
Prove: 
Consider M-ary QAM standard constellation, where the real and image components of a symbol can be 

viewed as M1-ary standard PAM and M2-ary standard PAM symbols, respectively (e.g. 8-ary QAM constellation 
can be considered as 4-ary PAM and 2-ary PAM for real and image components, respectively). Then, for real 

components, 1 1 min2Rx m d= , ( )2
2 2 min2 2 1Rx m k d= + , and ( )2 2

3 3 min2 2 1Rx m k k d= + , mind  is the mini- 

mum Euclidian distance between the PAM constellation points and here is considered as 1. im  (i = 1, 2, 3) is  
an integer such that [ ]{ }1 11: 2 : 1 0im M M∈ − − +  . 

With the above assumptions, the optimized MDV for 4-QAM (for traceability constellation is assumed 4- 
QAM) in (11) is achieved for { }0, 1im ∈ ± , observe that { }0, 1im ∈ ±  is compatible with any QAM constella-
tion size. As mentioned before, when 0 1k< < , the determinant in (11) is nonzero. To optimize MDV and 
show non-vanishing-MDV property, define expression D as follows: 

( )( )2 2 2 2 2 2
1 2 3 1 2 3 2 3 1 3 1 2D z z z z z z z z z z z z= + + + + + − +                          (12) 

where 1 1z m= , ( )2
2 2 2 1z m k= + , and ( )2 2

3 3 2 1z m k k= + . In fact, D is similar the expression in (11) 

that normalized by 4
min16d  and for traceability 1 2 3 0I I Ix x x= = =  is considered. Since the first term in (12) is 

always nonzero define ( )2 2 2
1 2 3 2 3 1 3 1 2D z z z z z z z z z D′ = + + + − + < . Now, suppose two following cases:  

case1: 1 0z = , this case yields: 

( )2
21

2
2 3 3D z z z z′ = + +                                            (13) 

According to 2z  and 3z  and k, the minimum value is always obtained for 2 0z =  and 3 0z ≠ . Then, we 
define 1,minD′  as follows  

 

        ⦁     ⦁     ⦁     ⦁
        ⦁     ⦁     ⦁     ⦁    
        ⦁     ⦁     ⦁     ⦁                         
        ⦁     ⦁     ⦁     ⦁
      
                 

 

 Re

Im

(2.a)

 

        ⦁      ⦁      ⦁      ⦁
        ⦁      ⦁      ⦁      ⦁    
        ⦁      ⦁      ⦁      ⦁                         
        ⦁      ⦁      ⦁      ⦁
      
                 

 

 Re

Im

(2.b)

 
 Re

Im

 

        ⦁    ⦁    ⦁    ⦁

        ⦁    ⦁    ⦁    ⦁    

        ⦁    ⦁    ⦁    ⦁                         
        ⦁    ⦁    ⦁    ⦁
      
                 

(2.c)
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( ) ( )( )2 2 2
1,min 3 2 1D k m k k′ = +                                (14) 

Note, both 2z  and 3z  cannot be zero at the same time. 
case 2: 1 0z ≠ , this case yields: 

( ) ( )( ) ( )( ) ( )( )
( ) ( )

2 2 2 2 2 2 2
1 2 3 2

2 2 2

2 3

1 231

2 1 2 1 2 1

       2 1 2 1

D m m k m k k m m k k

m m k k m m k

′ ′ ′= + + + + + +

′− + + +
         (15) 

{ }3 0, 1m′ ∈ ± , is different from 3m  in (13). It is clear for 1 2 3 0m m m′= − = ≠ , 2D′  has minimum determinant 
value. Then, 2,minD′  is defined as follows: 

( ) ( )( ) ( ) ( )( )2 2 2 2 2
32,min 3 2 1 2 1 2 1 .D k k k k k k m′ ′= − + − + − +             (16) 

In order to maximize MDVs, equate ( )1,minD k′  and ( )2,minD k′ : 

( ) ( ) { }1,min 2,mi 3n 3, 1 .D k D k m m′ ′ ′= ∀ ∈ ±                             (17) 

This equality yields 0.66k =  and corresponding MDV is min 5.82det =  when min 1.d =  therefore, the 
obtained min det  is the maximum min det  for all k.  

Note that { }0, 1im ∈ ±  is assumed, this assumption is compatible with any constellation size. 

3.3. Decoding 
To illustrate the decoding complexity of the proposed STBC scheme with the ML criterion, the decision metric 
used for the ML decoder will be derived. 

Consider a single antenna at receiver 1rN = , the ML decoder metric is: 
2 ,−y Xh                                              (18) 

where X, h and y are represented in (1). The objection of the 
ML decoder is to obtain optimal X between all of the possibilities which minimize (12). After some manipu-

lations, 

( ) ( )2
1 2 3 1 2 3, , , ,R R R I I I

R If x x x f x x x− = +y Xh                         (19) 

where 

( ) { } { } { } ( )

( )

2
22 2 2

1 2 3 1 2 3 1 2 3
1

2
2 3 1 3 1 2 2

, , R R RR R R R R R R R R
R i

i

R R R R R R

f x x x a x b x c x x x x h

x x x x x x h
=

= + + + + +

+ − +

∑
                 (20.1) 

and 

( ) { } { } { } ( )

( )

2
22 2 2

1 2 3 1 2 3 1 2 3
1

2
2 3 1 3 1 2 2

, ,

,

I I II I I I I I I I I
I i

i

I I I I I I

f x x x a x b x c x x x x h

x x x x x x h
=

= + + + + +

+ − +

∑
              (20.2) 

and 

( ) ( ) ( )* * * * * *
1 1 2 3 2 2 1 1 3 2 3 1 1 2 22 2 , 2 2 , 2 2 .a r h r r h b r h r r h c r h r r h= − − − = − − − = − − −  

From (19), it is clear that Rf  is independent of 1 2,I Ix x , and 3
Ix  and If  is independent of 1 2,R Rx x , and 3

Rx . 
The minimization of (19) is equivalent to minimize Rf  and If  independently. Therefore, the ML decoding 
requires a joint detection of three real symbols (O(M1.5)). Compared with QSTBC scheme in [9] and GSTBC 
scheme in [12], the proposed scheme for square symbol constellation has lower decoding complexity than 
QSTBC scheme and slightly higher decoding complexity than GSTBC scheme. But, for real constellations such 
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as BPSK, the proposed scheme will have highest decoding complexity among the three time slots two transmit 
antennas schemes. 

3.4. Some proX 1  Properties 

Simple but important properties of the proposed code are illustrated. 
• full rate and full diversity 

It was mentioned that three information symbol are transmitted from two antennas during three time slots. 
This achieves full rate property. Also, when 0 1k< < , the determinant of the difference matrix ( )HX X  is 
always nonzero. This ensures full diversity property. 
• Non-vanishing MDVs 

It was proved in lemma 1 1
proX  always has nonzero determinant that guarantees 1

proX  achieves full diver-
sity, and its MDVs do not vanish by increasing symbol constellation sizes. Non-vanishing MDVs property dis-
tinguishes our scheme from other schemes have been proposed for LTE-A systems. 
• Compatible with single transmit antenna 

Our scheme has the property that first row is 1 2 3x x x  in (8), such property provide backward compatible for 
single antenna, which is desired in LTE-A. QSTBC encoding matrix in (3) is also compatible with single anten-
na system while GSTBCX  has not such property. 

4. Code Rate 2/3 3-time Slot 2-Antenna STBC 
It was shown 1

proX  has non-vanishing-MDV property, but its decoding complexity slightly is high. To reduce 
detection complexity another STBC scheme, 2 3

proX , is proposed. 2 3
proX  has these properties: 1) detection com-

plexity reduces from order 1.5 to 1; 2) non-vanishing-MDV is preserved in 2 3
proX ; 3) code rate reduces from 1 

to 2/3.  

Encoding Matrix 
The structure of 2 3

proX  is same 1
proX . However, encoding of symbols is different from 1

proX . Consider detec-
tion function in (19) again:  

( ) ( ) ( ) 2
1 2 3 1 2 3 2 3 1 3 1 2 2, , , ,R R R R R R R R R R R Rf s s s g s s s x x x x x x h= + − +  

At the above expression, the last term is called symbol interference term. We can decrease interference by 
omitting one of the information symbols, say 3x . In fact, instead of three symbols, two symbols, 1s , 2s , is 
transmitted. Note, the structure of the encoding matrix is preserved for 2 3

proX , but encoding of symbols is 
changed as follows: 

1 1 2 2 3 1, , andR Ix s x s x js= = =                                 (21) 

and 
T

1 2 32 3
* * * * * *
2 3 1 3 1 3

pro

x x x
x x x x x x

 
=  − − − + 

X                             (22) 

where 1s  and 2s  are chosen from the M-QAM standard constellation. Following lemma shows this scheme 
ensures non-vanishing MDVs property, too. 

Lemma 2: 2 3
proX  has non-vanishing-MDV and its value is 32 when min 1d = . 

The determinant for 2 3
proX  is obtained: 

( )( ) ( ) ( )( )2 2 2 22 3 2 3
1 2 1 2 1 2

1 2

2 .
H R

pro prodet D s s s s s s⋅≡ = + + +X X
 

                    (23) 

Like lemma 1 Consider M-ary QAM standard constellation, where the real and image components of a sym-
bol can be viewed as M1-ary standard PAM and M2-ary standard PAM symbols, respectively. mind  shows Eucli-
dian distance between the PAM constellation points and here is considered as 1. As regards the first term in (23)  
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is always greater than zero, we define ( )( )2 2
1 2 1 2

RD s s s s D′ = + + <⋅ . For traceability ( ) ( )1 2 0.I Is s= =   

Then, D′  yields: 

2 2
1 2 1 2  R R R RD s s s s=′ + +                                     (24) 

where ˆ 1,, 2i i is s s i= − =  and as mentioned before is  and îs  are chosen from M-QAM standard constella-
tion. Thus 

1 1 min

2 2 min

2
2

R

R

s m d
s m d
 =


=
                                        (25) 

where mi (i = 1, 2) is an integer such that [ ]{ }1 11: 2 : 1 0im M M∈ − − +  . Replace (24) by (25) and normalize 

by 2
min4d  we obtain, 

( )2 2
1 2 1 2 .D m m m m= + +′                                    (26) 

Assume following two cases: 
Case 1: 1 0m =  or 2 0m =  
This case results in: 

1
2

iD m′ =                                      (27) 

When 1i =  or 2.i =  
Case 2: 1 2 0m m= − ≠  
This case results in: 

2
12 .D m′ =                                    (28) 

1D′  is minimum when 1 1m = ±  or 2 1m = ±  and 2D′  is minimum when 1 2 1.m m= − =  Therefore, 
1 2 1D D′ ′= = . This means expression in (23) is always nonzero for any symbol constellation sizes and has a 

minimum. According to (25), this minimum value is 32 when min 1d =  is considered. The minimum value 32 is 
non-vanishing and constant over all symbol constellation sizes.  
• Compared with 1

proX  Scheme 
2 3
proX  cannot ensure full rate property compared with 1

proX . But, full diversity and non-vanishing properties 
preserve in 2 3

proX  scheme similar to 1
proX  scheme. Also, it has highest MDVs compared to the existing three 

time slots two transmit antennas STBCs [7] [9] [12], and 1
proX . It can be shown that ML decoding metric can 

be calculated as the sum R If f+  where  

( ){ } ( ){ }

( )

* * * *
1 1 2 3 2 1 2 1 1 3 2 2

2
2 2 22 2

1 2 2 1 2 2
1

2 2 2 2

2

R RR R
R

R R R R
i

i

f r h r r h s r h r r h s

s s h h s s h
=

= − − − + − − −

 
+ + + + 

 
∑

                (29.1) 

and 

( ){ } ( ){ }

( )

* * * *
1 1 2 3 2 1 2 1 1 3 2 2

2
2 2 22 2

1 2 2 1 2 2
1

2 2 2 2 ? 

2

I II I
I

I I I I
i

i

f r h r r h s r h r r h s

s s h h s s h
=

= − − − + − − −

 
+ + + + 

 
∑

               (29.2) 

since Rf  and If  is just function of R
is  and I

is  for 1, 2i =  respectively, the minimization of the ML metric 
is equivalent to minimizing the two metrics Rf  and If  independently. That implies 2 3

proX  has lower decod-
ing complexity than 1

proX  and has the same decoding complexity compared to GSTBCX  scheme for any sym-
bol constellation sizes except for BPSK modulation.  

In general, Table 1 summarizes various properties of all schemes and gives a detailed comparison. 
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5. Simulation Results and Discussion 
In this section, the simulation results of the proposed schemes, 1

proX  and 2 3
proX , are shown for 2 bits per 

channel use (2bpcu) and 4bpcu throughputs. It is assumed that the amplitudes of fading from each transmit an-
tenna to the receive antenna are mutually uncorrelated Rayleigh-distributed and the receiver has perfect know-
ledge of the channel. 

5.1. Performance Comparison in Rate One Scheme 
We first give performance comparison between 1

proX  and other 3-time 2-antenna STBC schemes. Figure 3 
shows the simulation results for the proposed STBC scheme for two transmit antennas and one receive antenna 
and compares BER performance with HSTBC in [7], QSTBC in [8] [9], and GSTBC in [12] scheme. Also, 
Alamouti scheme (two symbols are transmitted during three time slots) is considered. The transmitted symbols 
are 4-QAM modulated for all of the schemes except Alamouti scheme (8-QAM modulated), hence their spectral 
efficiencies are 2 bpcu. As can be observed from Figure 3 the proposed STBC, QSTBC, GSTBC, and Alamouti 
schemes have the same diversity order, but hybrid STBC scheme does not achieve full diversity. Also, from 
Figure 3 it is clear that even with lower decoding complexity, the proposed scheme outperforms the QSTBC 
scheme. However, the proposed scheme with higher decoding complexity than GSTBC scheme has same similar 
performance at high SNR. For 4-QAM modulation, Note that the MDVs for the proposed scheme, QSTBC, and 
GSTBC are 5.82, 7.18, and 16, respectively. Therefore, it is expected that the both QSTBC and GSTBC 
schemes to have better BER performance upon the proposedX  which is in contrast with simulation results. But, 
beside rank (diversity) and determinant criteria, trace criterion must be considered, too. The trace criterion state:  

In uncorrelated Rayleigh fading, the lowest expected value for the union bound to the pairwise error event is 
obtained when for all pairs X  (transmitted matrix) and X̂  (detected matrix) the matrix HX X  
( )ˆ= −X X X  is diagonal with all diagonal elements equal. Alternatively, the best suboptimal codes are those 
for which the matrices HX X  are such that the main diagonal elements are as close as possible to each other, 
and the row-wise sum of the absolute values of the elements off the main diagonal is as small as possible for 
each row. 

The matrix HX X  for the proposed scheme is diagonal with unequal main diagonal elements. However, 
both QSTBC and GSTBC schemes suffer from nonzero off the main diagonal elements that increases the absolute 
value of the off the main diagonal to main diagonal ratio. According to the trace criterion the proposed scheme 
has better BER performance upon QSTBC and GSTBC schemes with equal MVDs. In contrast, according to the 
 

 
Figure 3. BER curves of the first proposed, GSTBC, QSTBC, hybrid, 
and Alamouti scheme.                                         

5 10 15 20 25
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

Eb/N0 (dB)

B
E

R

 

 
Alamouti (8-QAM 2bpcu)
Hybrid (4-QAM 2bpcu)
QSTBC (4-QAM 2bpcu)
GSTBC (4-QAM 2bpcu)
Proposed (4-QAM 2bpcu)
QSTBC (16-QAM 4bpcu)
GSTBC (16-QAM 4bpcu)
QSTBC (16-QAM 4bpcu)



A. Azarbar 
 

 
84 

determinant criterion, the proposed scheme should have worse BER performance than QSTBC and GSTBC 
scheme. Therefore, there is a tradeoff between lower determinant criterion and good trace criterion. This tra-
deoff closes BER performance for all schemes at high SNR for 4-QAM modulation. Figure 3 shows BER per-
formance of the proposed STBC scheme and the QSTBC scheme for 16-QAM modulation (4 bpcu).  

It is clear that the QSTBC scheme because of nonzero values off the main diagonal and lower MDV (for 16- 
QAM its MDV is 0.12) has poor BER performance compared with other schemes, e.g. at BER 10−4 both the 
GSTBC and proposed scheme about 1.5 dB work better than the QSTBC scheme. The MDVs of the proposed 
scheme and GSTBC scheme for 16-QAM modulation are 16 and 5.82, respectively. Nevertheless, like 4-QAM 
modulation both schemes have same BER performance at high SNR. 

5.2. Performance Comparison in Rate 2/3 Scheme 
In this subsection, BER curve for 2 3

proX  with 4 bps throughput is presented and compared with other schemes 
in Figure 4. However, 64-QAM modulation is used for 1

proX  and 16-QAM modulation for other schemes si-
mulation results show the second proposed scheme has lower BER than other schemes. Because the diagonal 
elements of the matrix HX X  in the second scheme are closer to each other can achieve trace criterion better 
than the first scheme. In other side, 2 3

proX  has higher coding gain than QSTBCX  that result in good determinant 
criterion. Therefore, both trace and determinant criteria are dominant compared with other schemes. The profit 
of this can be seen in Figure 4 that our second proposed scheme outperforms 0.3 dB in power efficiency. 
 

 
Figure 4. BER curves of the first proposed, second proposed, 
GSTBC, QSTBC schemes.                               

 
Table 1. Detailed comparison of various properties between schemes.                                                 

Diversity  
Order 

Compatible with 
LTE-A 

Compatible with 
Signal Antenna 

Non-vanishing 
MDVs Detection Complexity Code Rate  

2 No Yes Yes 1 (Linear Decoder) 0.67 AlamoutiX  [1] 

1 Yes Yes No 1 (Linear Decoder) 1 HSTBCX  [7] 

2 Yes Yes No 2 (ML) 1 QSTBCX  [9] 

2 Yes No No 1 (ML) 1 GSTBCX  [12] 

2 Yes Yes Yes 1.5 (ML) 1 1
proX  

2 Yes No Yes 1 (ML) 0.67 2/3
proX  
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6. Conclusion 
In this paper, a novel STBC structure for three time slots and two transmit antennas was proposed. Based on this 
structure, two STBC schemes were proposed. The first scheme achieves full rate and full diversity properties 
and has a joint three real symbols decoding complexity (O(M1.5)). Also, the minimum determinant value is con-
stant for different symbol constellation sizes. Then, the proposed scheme achieves non-vanishing-MDV property. 
Also, the proposed scheme has the property that first row is 1 2 3x x x , such property provides backward compati-
ble for single antenna, which is desired in LTE-A. However, the encoder (decoder) needs to accommodate 3 
different constellations, which may increase the hardware complexity at the encoder (decoder). The second 
scheme cannot achieve full rate. But, full diversity and non-vanishing-MDV properties are preserved. Moreover, 
the second scheme reduces decoding complexity compared with the first one and is not compatible with single 
antenna transmission. Also, this scheme uses standard modulation in encoder (decoder) which is easily imple-
mentable. Simulation results show that our first scheme has better BER performance than QSTBC and similar 
BER performance with GSTBC at high SNR. Also, the second scheme has the best BER performance compared 
with other schemes. 
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