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Abstract 
For square contingency tables with ordered categories, this article proposes new models, which 
are the extension of Tomizawa’s [1] diagonal exponent symmetry model. Also it gives the decom-
position of proposed model, and shows the orthogonality of the test statistics for decomposed 
models. Examples are given and the simulation studies based on the bivariate normal distribution 
are also given. 
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1. Introduction 
Consider an R R×  square contingency table with the same row and column classifications. Let ijp  denote the 
probability that an observation will fall in the ith row and jth column of the table ( )1, , ; 1, ,i R j R= =  . The 
symmetry (S) model is defined by 

( )1, , ; 1, , ,ij ijp i R j Rψ= = =   

where ;ij jiψ ψ=  see Bowker [2]. Caussinus [3] considered the quasi-symmetry (QS) model defined by 

( )1, , ; 1, , ,ij i j ijp i R j Rα β ψ= = =   
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where ij jiψ ψ= .  The marginal homogeneity (MH) model is defined by 

( )1, , ,i ip p i R⋅ ⋅= =   

where 1
R

i ittp p⋅ =
= ∑  and 

1 ;R
i sisp p⋅ =
= ∑  see Stuart [4]. Caussinus [3] gave the theorem that the S model holds 

if and only if both the QS and MH models hold. 
Tomizawa [1] considered the diagonal exponent symmetry (DES) model defined by 

( )
( )

i j
j i

ij
ii

d i j
p

i j

δ

ψ

+
−

 ≠ ,= 
= .

 

By putting 
1
2δ γ=  and 

1
21 j i

j i j id µ γ − − −
− −= ,  this model is also expressed as 

( )1 .i
ij ji j ip p i jµ γ −

−= = <  

Note that the DES model implies the S model; thus the DES model implies the QS (MH) model. The DES model 
states that 1 1i jp + , +  ( )i j≠  is 2δ  times higher than ijp ; in other words, for fixed distance k ( )1, , 2k R= −  
from the main diagonal of the table, i i kp , +  increase (decrease) exponentially along every subdiagonal of the ta-
ble as the value i increase ( )1, ,i R k= − . 

Iki, Yamamoto and Tomizawa [5] considered the quasi-diagonal exponent symmetry (QDES) model defined 
by 

( )
( )

i j
j i

ij
ii

d i j
p

i j

α β

ψ
−

 ≠ ,= 
= .

 

A special case of the QDES model obtained by putting α β=  is the DES model. Note that the QDES model 
implies the QS model. Let X and Y denote the row and column variables, respectively. We define the mean 
equality (ME) model as ( ) ( )E EX Y= . Iki et al. [5] gave the theorem that the DES model holds if and only if 
both the QDES and ME models hold. 

Iki et al. [5] described the relationship between the QDES model and a joint bivariate normal distribution, and 
showed that the QDES model may be appropriate for a square ordinal table if it is reasonable to assume an un-
derlying bivariate normal distribution with equal marginal variances. We are interested in considering the new 
model which is appropriate for a square ordinal table if it is reasonable to assume an underlying bivariate normal 
distribution without equal marginal variances, and a decomposition using the proposed models. 

The present paper proposes two models, and gives the decomposition using the proposed models. Also it 
shows the orthogonality of the test statistics for decomposed model. 

2. New Models 
Consider a model defined by 

( )
( )

2 2

1 2
i j i j

j i
ij

ii

d i j
p

i j

δ δ

ψ

+ +
−

 ≠ ,= 
= .

 

A special case of this model obtained by putting 2 1δ =  is the DES model. Thus we shall refer to this model 
as the extended diagonal exponent symmetry (EDES) model. The EDES model states that 1 1i jp + , +  ( )i j≠  is 

( )2 12
1 2

i jδ δ + +  times higher than ijp ; in other words, for fixed distance from the main diagonal of the table, the ra-
tio of 1 1i jp + , +  to ijp  increases (decreases) exponentially along every subdiagonal of the table. Note that the 
EDES model implies the S model. 

Next, consider a model defined by 

( )
( )

2 2

1 2 1 2
i i j j

j i
ij

ii

d i j
p

i j

α α β β

ψ
−

 ≠ ,= 
= .
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A special case of this model obtained by putting 2 2 1α β= =  is the QDES model. Thus we shall refer to this 
model as the extended quasi-diagonal exponent symmetry (EQDES) model. A special case of the EQDES model 
obtained by putting 1 1α β=  and 2 2α β=  is the EDES model. The EQDES model states that 1 1i jp + , +  ( )i j≠  
is 2 1 2 1

1 2 1 2
i jα α β β+ +  times higher than ijp ; in other words, for fixed distance from the main diagonal of the table, 

the ratio of 1 1i jp + , +  to ijp  increases (decreases) exponentially along every subdiagonal of the table. Note that 
the EQDES model implies the QS model. 

Under the EQDES model, we can see 

( )
2

1 1 2

1 1 2

d
i j ij

j i ji

p p
i j

p p
β
α

+ , +

+ , +

 
= < , 
 

 

where d j i= − . This indicates that the odds that an observation will fall in the ( )1 1i j+ , + th cell, instead of 
the ( )1 1j i+ , + th cell is ( )2

2 2
dβ α  times higher than the odds that the observation will fall in the ( )i j, th 

cell, instead of the ( )j i, th cell. Also we can see 

( )ij d
k

ji

p
i j

p
ξ= < ,  

where k i j= +  and ( )( )1 1 2 2
k

kξ β α β α= . If 1kξ > , for corresponding i and j, the structure of ij jip p>  
holds. Also if 1kξ < , the structure of ij jip p<  holds. 

In Figure 1, we show the relationships among models. In figure, A B→  indicates that model A implies 
model B. 

3. Decomposition 
Refer to model of equality of marginal means and variances, i.e., ( ) ( )E EX Y=  and ( ) ( )Var VarX Y= ,  as 
the MVE model. This model is also expressed as ( ) ( )E EX Y=  and ( ) ( )2 2E EX Y= .  We obtain the de-
composition of the EDES model as follows: 

Theorem 1. The EDES model holds if and only if the EQDES and MVE models hold. 
Proof. If the EDES model holds, then the EQDES and MVE models hold. Assuming that both the EQDES 

and MVE models hold, then we shall show that the EDES model holds. Let { }ijp∗  denote the cell probabilities 
which satisfy both the EQDES and MVE models. Since the EQDES model holds, we see 

( )2 2
1 2 1 2log log log log log log 1, , ; 1, , .ij j ip i i j j d i R j Rα α β β∗

−= + + + + = =           (1) 

Let ij j id cπ −=  with 
1 1

R R
j ii jc d −= =

= .∑ ∑  We denote that 
1 1 1R R

iji j π= =
=∑ ∑  with 0 1.ijπ< <  Then, since 

{ }ijp∗  satisfy the EQDES and MVE models, we see 

2 2
1 2 1 2log log log log log logij

ij

p
c i i j jα α β β

π

∗ 
= + + + + ,  

 
                     (2) 

and 

1 2 1 2µ µ ν ν∗ ∗ ∗ ∗= , = ,                                      (3) 

where 1 1
R

ii ipµ∗ ∗
⋅=

= ,∑  2 1
R

ii ipµ∗ ∗
⋅=

= ,∑  2
1 1

R
ii i pν ∗ ∗
⋅=

= ,∑  2
2 1

R
ii i pν ∗ ∗
⋅=

= ∑  with 1
R

i ittp p∗ ∗
⋅ =
= ∑  and 1

R
i sisp p∗ ∗
⋅ =
= ∑ .  

 

 

QDES EQDES QS 

MH 

S EDES DES 

 
Figure 1. Relationships among models. 
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Then, we denote ( )1 2µ µ∗ ∗=  by 0µ  and ( )1 2ν ν∗ ∗=  by 0ν .  
Consider the arbitrary cell probabilities { }ijp  satisfying 

1 2 0 1 2 0µ µ µ ν ν ν= = , = = ,                                  (4) 

where 1 1
R

ii ipµ ⋅=
= ,∑  2 1

R
ii ipµ ⋅=

= ,∑  2
1 1

R
ii i pν ⋅=

= ∑  and 2
2 1

R
ii i pν ⋅=

= .∑  
From (2), (3) and (4), we see 

( )
1 1

log 0
R R

ij
ij ij

i j ij

p
p p

π

∗
∗

= =

 
− = .  

 
∑∑                               (5) 

Using the Equation (5), we obtain 

{ } { }( ) { } { }( ) { } { }( ), , , ,ij ij ij ij ij ijK p K p K p pπ π∗ ∗= +  

where 

{ } { }( )
1 1

, log ,
R R

ij
ij ij ij

i j ij

a
K a b a

b= =

 
=   

 
∑∑  

and { } { }( ),ij ijK a b  is the Kullback-Leibler information between { }ija  and { }ijb . Since { }ijπ  being a func-  

tion of { }ijp∗  is fixed, we see 

{ }
{ } { }( ) { } { }( )min , , ,

ij
ij ij ij ij

p
K p K pπ π∗=  

and then { }ijp∗  uniquely minimizes { } { }( ),ij ijK p π  (see Bhapkar and Darroch [6]). 
Let ij jip p∗∗ ∗=  for 1 , .i j R≤ ≤  Then 

2 2
1 2 1 2log log log log log log logij ji j ip p j j i i dα α β β∗∗ ∗

−= = + + + + .                 (6) 

Noting that { },ij jiπ π=  the Equation (6) is also expressed as 

2 2
1 2 1 2log log log log log logij

ij

p
c j j i iα α β β

π

∗∗ 
= + + + + .  

 
                    (7) 

From (3), (4) and (7), we see 

( )
1 1

log 0
R R

ij
ij ij

i j ij

p
p p

π

∗∗
∗∗

= =

 
− = .  

 
∑∑                                (8) 

Using the Equation (8), we obtain 

{ } { }( ) { } { }( ) { } { }( ), , , .ij ij ij ij ij ijK p K p K p pπ π∗∗ ∗∗= +  

Since { }ijπ  being a function of { }ijp∗∗  is fixed, we see 

{ }
{ } { }( ) { } { }( )min , , ,

ij
ij ij ij ij

p
K p K pπ π∗∗=  

and then { }ijp∗∗  uniquely minimizes { } { }( )ij ijK p π, .  Therefore, we see { }.ij ijp p∗ ∗∗=  Thus, { }.ij jip p∗ ∗=  
From (1) and (6), for i j< , we see 

( ) ( ) ( ) ( )

( ) ( )

2 2 2 2
1 2 1 2

1 2

1 2

log log log log log

log log 0

ij

ji

p
i j i j j i j i

p

j i j i

α α β β

β β
α α

∗

∗

 
= − + − + − + −  

 
 

= − + + = . 
 
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Thus, we obtain 1 1α β=  and 2 2α β= .  Namely, the EDES model holds. The proof is completed. 

4. Orthogonality of Test Statistics 
Let nij denote the observed frequency in the (i, j)th cell of the table ( )1, , ; 1, ,i R j R= =   with ijn n= ∑∑ , 
and let ijm  denote the corresponding expected frequency. Assume that { }ijn  have a multinomial distribution. 
The maximum likelihood estimates (MLEs) of { }ijm  under the EDES and EQDES models could be obtained 
using iterative procedures; for example, see Darroch and Ratcliff [7]. The MLEs of { }ijm  under the MVE 
model could be obtained using Newton-Raphson method to the log-likelihood equations. 

Let ( )2G M  denote the likelihood ratio chi-squared statistic for testing goodness-of-fit model M. The num-
bers of degrees of freedom (df) for the EDES and EQDES models are 2 2 1R R− −  and 2 2 3R R− − , respec-
tively. 

The orthogonality (asymptotic separability or independence) of the test statistics for goodness-of-fit of two 
models is discussed by, e.g., Darroch and Silvey [8] and Read [9]. We obtain as follow: 

Theorem 2. The test statistic ( )2G EDES  is asymptotically equivalent to the sum of ( )2G EQDES  and
( )2G MVE . 

Proof. The EQDES model is expressed as 

( )2 2
1 2 3 4log 1, , ; 1, , ,ij ijp i j i j i R j Rβ β β β φ∗ ∗ ∗ ∗= + + + + = =                   (9) 

where ( ).ij j i i jφ γ −= ≠  Let 

( )

( )
11 1 21 2 1

1 2 3 4 5

, , , , , , , , , ,

, , , , ,

t
R R R RR

t

p p p p p p p

β β β β β β∗ ∗ ∗ ∗ ∗ ∗

=

=

   

 

where “t” denotes the transpose, and 

( )5 1 2 1 11 22, , , , , , , ,R RRβ γ γ γ φ φ φ∗
−=    

is the ( )1 2 1R× −  vector. The EQDES model is expressed as 

( )1 2 3 4 5log p X X X X X Xβ β∗ ∗= = , , , , ,  

where X is the 2R K×  matrix with 2 3K R= + ,  1 1R RX J= ⊗  (the R2 × 1 vector), 2 1R RX J= ⊗  (the R2 × 1 
vector), 2

3 1R RX J= ⊗  (the R2 × 1 vector), 2
4 1R RX J= ⊗  (the R2 × 1 vector), and 5X  is the ( )2 2 1R R× −  

matrix of 1 or 0 elements determined from (9), 1s  is the 1s×  vector of 1 elements, ( )1, , ,t
RJ R=   

( )2 2 21 , , ,
t

RJ R=   and ⊗  denotes the Kronecker product. The matrix X is full column rank which is K. In a 
similar manner to Haber [10], we denote the linear space spanned by the columns of the matrix X by ( )S X  
with the dimension K. 

Let U be an 2
1R l× , where 2 2

1 2 3l R K R R= − = − − , full column rank matrix such that ( )S U  is the or-
thogonal complement of ( )S X . Thus, 

1

t
l KU X O ,= , where s tO ,  is the s × t zero matrix. Therefore the EQDES 

model is expressed as 

( )
11 0lh p = ,  

where 0s  is the 1s×  zero vector, and ( )1 logth p U p= . The MVE model is expressed as 

( )
22 0lh p = ,  

where 2 2l = , and ( )2h p Wp= , with { } { }( )2 21 1 , 1 1
t

R R R R R R R RW J J J J= ⊗ − ⊗ ⊗ − ⊗  being the 22 R×  ma-
trix. Namely, ( )2 1 4 3

tW X X X X= − , − . Thus tW  belongs to ( )S X .  Hence 
2 1l lWU O ,= .  From Theorem 1, 

the EDES model is expressed as 

( )
33 0lh p = ,  

where 2
3 1 2 2 1l l l R R= + = − − ,  and ( )3 1 2

tt th h h= , . 
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Let ( )( )1 2 3sH p s = , ,  denote the 2
sl R×  matrix of partial derivative of ( )sh p  with respect to p, i.e., 

( ) ( ) t
s sH p h p p= ∂ ∂ .  Let ( ) ( ) tp diag p ppΣ = − , where ( )diag p  denotes a diagonal matrix with ith com-

ponent of p as ith diagonal component. Let p̂  denote p with { }ijp  replaced by { }ˆ ij ijp n n= . Then 
( )ˆn p p−  has asymptotically a normal distribution with mean 20

R
 and covariance matrix ( )pΣ . Using the 

delta method, ( ) ( )( )3 3ˆn h p h p−  has asymptotically a normal distribution with mean 
3

0l  and covariance 
matrix 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

1 1 1 2
3 3

2 1 2 2

t t
t

t t

H p p H p H p p H p
H p p H p

H p p H p H p p H p

 Σ Σ
 Σ = .
 Σ Σ 

 

Note that 21
R

 belongs to ( )S X  because 25 2 11 1R R
X − = . Thus ( ) 2 11 1 0t

lR
H p p U= = . Since 

( ) ( )1
tH p diag p U=  and ( )2H p W= , we see 

( ) ( ) ( )
1 21 2

t t t
l lH p p H p U W O ,Σ = = .  

Thus, we obtain ( ) ( ) ( )3 1 2p p p∆ = ∆ + ∆ ,  where 

( ) ( ) ( ) ( ) ( ) ( )
1t t

s s s s sp h p H p p H p h p
−

 ∆ = Σ .                         (10) 

Under each ( ) ( )0 1 2 3
ss lh p s= = , , , the Wald statistic ( )ˆs sW n p= ∆  has asymptotically a chi-squared dis-

tribution with sl  degrees of freedom. From (10), we see that 3 1 2W W W= + .  From the asymptotic equivalence 
of the Wald statistic and likelihood ratio statistic, we obtain Theorem 2. 

5. Examples 
Example 1. Consider the data in Table 1, taken from Bishop, Fienberg and Holland [11], which describe the 
cross-classification of father’s and son’s occupational status categories in Denmark. The row is the father’s sta-
tus category and column is the son’s status category. The categories are ordered from (1) to (5) (high to low). 
These data have also been analyzed by some statisticians; see for example, Kullback [12], Haberman [13], 
Goodman [14], and Yamamoto, Tahata and Tomizawa [15]. 
 

Table 1. Occupational status for Danish father-son pairs; from Bishop et al. [11]. (The 
parenthesized values are MLEs of expected frequencies under the EQDES model.) 

Father’s Son’s status  

status (1) (2) (3) (4) (5) Total 

(1) 18 17 16 4 2 57 

 (18.00) (21.13) (18.26) (6.85) (4.49)  

(2) 24 105 109 59 21 318 

 (22.01) (105.00) (95.43) (59.12) (15.91)  

(3) 23 84 289 217 95 708 

 (18.50) (92.83) (289.00) (206.96) (91.94)  

(4) 8 49 175 348 198 778 

 (6.31) (52.26) (188.06) (348.00) (215.58)  

(5) 6 8 69 201 246 530 

 (3.51) (11.93) (70.92) (183.00) (246.00)  

Total 79 263 658 829 562 2391 

Note: Status (1) is high professionals, (2) white-collar employees of higher education, (3) white-collar em-
ployees of less high education, (4) upper working class, and (5) unskilled workers. 
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We see from Table 3 that the EQDES and QS models fit these data well, although the other models fit poorly. 
The EQDES model is a special case of the QS model. We shall test the hypothesis that the EQDES model holds 
assuming that the QS model holds for these data. Since ( ) ( ) ( )2 2 2 11 52G EQDES QS G EQDES G QS| = − = .  
with 6 df being the difference between the numbers of df for the EQDES and the QS models, this hypothesis is 
accepted at the 0.05 significance level. Therefore, the EQDES model would be preferable to the QS model. 

Under the EQDES model, the MLEs of 1α ,  2α ,  1β  and 2β  are 1ˆ 4 67α = . ,  2ˆ 0 82α = . ,  1̂ 4 05β = .  and 
2

ˆ 0 85β = . ,  respectively. Therefore the probability that a father’s and his son’s status categories are 1i +  and 
1j + , respectively, is estimated to be ( ) ( )2 1 2 1

1 2 1 2
ˆ ˆˆ ˆ 13 11 0 67 0 72i ji jα α β β+ + = . × . × .  times higher than the probabil-

ity that those are i and j, respectively ( )1,2,3,4; 1,2,3,4;i j i j= = ≠ . Since the values of { }2 1 2 1
1 2 1 2

ˆ ˆˆ ˆ i jα α β β+ +  for 
i j≠  and ( ) ( )4 3i j, ≠ ,  are greater than 1 and it for ( ) ( )4 3i j, = ,  is less than 1 (see Table 2), the probability 
that a father’s and his son’s status categories are 1i +  and 1j + , respectively, is estimated to be greater than 
the probability that those are i and j, respectively ( ) ( )( )1 2 3 4 1 2 3 4 4 3i j i j i j= , , , ; = , , , ; ≠ , , ≠ , . 

Also the MLEs of kξ  ( )3, ,9k =   are 3̂ 0 96ξ = . , 4̂ 0 99ξ = . , 5̂ 1 03ξ = . , 6̂ 1 06ξ = . , 7̂ 1 10ξ = . , 8̂ 1 14ξ = .   
and 9̂ 1 18ξ = . , respectively. Therefore, it is estimated that there is the structure of { }ij jip p>  for i j<  with 

5, ,9i j+ =   and { }ij jip p<  for i j<  with 3i j+ =  and 4. 
We see from Table 3 that the poor fit of the EDES model is caused by the influence of the lack of structure of 

the MVE model rather than the EQDES model. 
Example 2. Consider the data in Table 4 taken from Tomizawa [16]. These data are an unaided distance vi-

sion of 3168 pupils comprising nearly equal number of boys and girls aged 6 - 12 at elementary schools in 
Tokyo, Japan, examined in June 1984. These data have also been analyzed by Tomizawa [1], Tahata and Tomi-
zawa [17], and Iki et al. [5]. The row is the right eye grade and column is the left eye grade. 

We see from Table 3 that the EDES and EQDES models fit these data well, although the MVE model fits 
poorly. The EDES model is a special case of the EQDES model. We shall test the hypothesis that the EDES 

 
Table 2. Values of { }2 1 2 1

1 2 1 2
ˆ ˆˆ ˆ i jα α β β+ + , i j≠ , under the EQDES model applied to Table 1. 

 1j =  2 3 4 

1i =  - 4.52 3.24 2.32 

2 4.22 - 2.17 1.56 

3 2.83 2.03 - 1.04 

4 1.89 1.36 0.97 - 

 
Table 3. Likelihood ratio chi-squared values 2G  for models applied to Table 1 and Table 4. 

Applied Table 1 Table 4 

models df 2G  df 2G  

S 10 24.80* 6 9.69 

QS 6 6.47 3 2.81 

MH 4 18.26* 3 6.87 

DES 15 131.45* 8 10.18 

QDES 14 125.70* 7 8.71 

ME 1 5.73* 1 1.46 

EDES 14 25.48* 7 9.70 

EQDES 12 17.99 5 3.12 

MVE 2 7.47* 2 6.57* 

* means significant at the 0.05 level. 
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model holds assuming that the EQDES model holds for these data. Since 

( ) ( ) ( )2 2 2 6 58G EDES EQDES G EDES G EQDES| = − = .  

with 2 df being the difference between the numbers of df for the EDES and the EQDES models, this hypothesis 
is rejected at the 0.05 significance level. Therefore, the EQDES model would be preferable to the EDES model. 

Under the EQDES model, the MLEs of 1α ,  2α ,  1β  and 2β  are 1ˆ 0 34α = . ,  2ˆ 1 13α = . ,  1̂ 0 72β = .  and 
2

ˆ 0 97β = . ,  respectively. Therefore the probability that a pupil’s right eye grade and his or her left eye grade are 
1i +  and 1j + , respectively, is estimated to be ( ) ( )2 1 2 1

1 2 1 2
ˆ ˆˆ ˆ 0 26 1 27 0 94i ji jα α β β+ + = . × . × .  times higher than the 

probability that those are i and j, respectively ( )1, 2,3; 1,2,3;i j i j= = ≠ . Since all values of { }2 1 2 1
1 2 1 2

ˆ ˆˆ ˆ i jα α β β+ + , 
i j≠ , are less than 1 (see Table 5), the probability that a pupil’s right eye grade and his or her left eye grade are 

1i +  and 1j + , respectively, is estimated to be less than the probability that those are i and j, respectively 
( )1 2 3 1 2 3i j i j= , , ; = , , ; ≠ . 

Also the MLEs of kξ  ( )3, ,7k =   are 3̂ 1 35ξ = . , 4̂ 1 16ξ = . , 5̂ 0 99ξ = . , 6̂ 0 85ξ = .  and 7̂ 0 73ξ = . , re-
spectively. Therefore, it is estimated that there is the structure of { }ij jip p>  for i j<  with 3i j+ =  and 4 
and { }ij jip p<  for i j<  with 5 6i j+ = ,  and 7. 

6. Simulation Studies 
Under the QDES model, we see the structure of ( ) j i

ij jip p β α −=  which is the structure of Agresti’s [18]  
 

Table 4. Unaided distance vision of 3168 pupils comprising nearly equal number of boys and 
girls aged 6 - 12 at elementary schools in Tokyo, Japan, examined in June 1984; from 
Tomizawa [16]. (Upper and lower parenthesized values are MLEs of expected frequencies 
under the EDES and EQDES models, respectively.) 

Right eye Left eye grade  

grade Best (1) Second (2) Third (3) Worst (4) Total 

Best (1) 2470 126 21 10 2627 

 (2470.00) (110.80) (15.65) (11.00)  

 (2470.00) (127.26) (17.88) (10.86)  

Second (2) 96 138 33 5 272 

 (110.80) (138.00) (37.72) (5.85)  

 (94.48) (138.00) (37.45) (4.92)  

Third (3) 10 42 75 15 142 

 (15.65) (37.72) (75.00) (15.48)  

 (13.39) (37.77) (75.00) (13.10)  

Worst (4) 12 7 16 92 127 

 (11.00) (5.85) (15.48) (92.00)  

 (11.14) (6.80) (17.95) (92.00)  

Total 2588 313 145 122 3168 

 
Table 5. Values of { }2 1 2 1

1 2 1 2
ˆ ˆˆ ˆ i jα α β β+ + , i j≠ , under the EQDES model applied to Table 4. 

 1j =  2 3 

1i =  - 0.29 0.28 

2 0.40 - 0.35 

3 0.51 0.48 - 
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linear diagonals-parameter symmetry model, and under the EQDES model, we see the structure of 
( ) ( )

2 2

1 1 2 2
j i j i

ij jip p β α β α− −=  which is the structure of Tomizawa’s [19] extended linear diagonals-parameter 
symmetry model. Also under the DES and EDES models, we see the structure of 1ij jip p =  for i j< . 

Consider now random variables U and V having a joint bivariate normal distribution with means ( ) 1E U µ=  
and ( ) 2E V µ= ,  variances ( ) 2

1Var U σ=  and ( ) 2
2Var V σ= ,  and correlation ( )Corr U V ρ, = .  Then the 

joint bivariate normal density function ( )f u v,  satisfies 

( )
( ) ( ) ( ) ( )

( ) ( ) ( )

2 1
2 1 2 22

1 2 2 1

2 2
2 22
1 2

1 2exp 2
2 1

1 1 1exp
2 1

f u v
v u

f v u

v u u v

µ µρ µ µ
σ σ σ σρ

σ σρ

  ,    = − + − −  ,  −     
  
 ⋅ − − < . 
 −   

 

Namely, ( ) ( )f u v f v u, ,  has the form 
2 2v u v uζ η− −  for constant ζ  and η . Agresti [18] described rela-

tionship between the linear diagonals-parameter symmetry model and the joint bivariate normal distribution (see 
also Tomizawa [19]). We now consider the relationship between the QDES (DES) and EQDES (EDES) models 
and the joint bivariate normal distribution in terms of simulation studies. 

Table 6 gives the 4 4×  tables of sample size 5000 formed by using cut points for each variable at 1µ , 
1 10 7µ σ± . , for underlying bivariate normal distribution with the conditions 0 3ρ = . , and 2 1 0µ µ− =  and
2 2
1 2σ σ=  (Table 6(a)), 2 1 0 5µ µ− = .  and 2 2

1 2σ σ=  (Table 6(b)), 2 1 0 5µ µ− = .  and 2 2
2 10 8σ σ= .  (Table 

6(c)) and 2 1 0 5µ µ− = .  and 2 2
2 11 2σ σ= .  (Table 6(d)). 

 
Table 6. The 4 4×  tables of sample size 5000, formed by using cut points for each variable 
at μ1, μ1 ± 0.7σ1, from an underlying bivariate normal distribution with the conditions ρ = 0.3 
and (a) 2 1 0µ µ− =  and 2 2

1 2σ σ= , (b) 2 1 0 5µ µ− = .  and 2 2
1 2σ σ= , (c) 2 1 0 5µ µ− = .  and 

2 2
2 10 8σ σ= . , (d) 2 1 0 5µ µ− = .  and 2 2

2 11 2σ σ= . . 

(a) 2 2
2 1 1 20µ µ σ σ− = , =  

442 335 244 143 

321 351 352 258 

245 321 357 331 

159 285 364 492 

(b) 2 2
2 1 1 20 5µ µ σ σ− = . , =  

272 336 319 237 

203 285 367 427 

145 228 376 505 

82 183 369 666 

(c) 2 2
2 1 2 10 5 0 8µ µ σ σ− = . , = .  

247 382 368 282 

176 317 424 385 

115 271 414 461 

65 162 353 578 

(d) 2 2
2 1 2 10 5 1 2µ µ σ σ− = . , = .  

318 304 277 255 

224 269 341 460 

168 209 361 511 

106 184 326 687 
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Table 7. Likelihood ratio chi-squared values 2G  for models applied to Tables 6(a)-6(d). 

Applied  2G  

models df Table 6(a) Table 6(b) Table 6(c) Table 6(d) 

DES 8 6.74 341.67* 506.78* 315.56* 

EDES 7 6.73 333.26* 506.40* 302.20* 

QDES 7 5.78 13.81 25.97* 34.92* 

EQDES 5 3.60 4.59 1.98 9.74 

*means significant at the 0.05 level. 

 
We see from Table 7 that the EQDES model fits well for each of Tables 6(a)-6(d), although the QDES mod-

el fits well for each of Table 6(a) and Table 6(b), and fits poorly for each of Table 6(c) and Table 6(d). The 
DES and EDES models fit well for Table 6(a) and fit poorly for each of Tables 6(b)-6(d). Thus the EQDES 
model may be appropriate for a square ordinal table if it is reasonable to assume an underlying bivariate normal 
distribution (without the equality of marginal variances), although the QDES model may be appropriate if it is 
reasonable to assume it with equal marginal variances, and the DES and EDES models may be appropriate if it 
is reasonable to assume it with both equal marginal means and equal marginal variances. 

7. Concluding Remarks 
Theorem 1 may be useful for seeing the reason for the poor fit when the EDES model fits the data poorly; in fact, 
see from Example 1, a poor fit of the EDES model would be caused by a poor fit of the MVE model rather than 
the EQDES model. 

From Theorem 2, we point out that the ( )2G MVE  can be easily calculated using the ( )2G EDES  and
( )2G EQDES ; in fact, see from Table 3, the value of ( )2G EDES  is very close to the value of the sum of 
( )2G EQDES  and ( )2G MVE .  

From Simulation studies, the EQDES model may be appropriate for a square ordinal table if it is reasonable to 
assume an underlying bivariate normal distribution without equal marginal means and equal marginal variances; 
although the QDES model may be appropriate if it is reasonable to assume it with equal marginal variances. 

Acknowledgements 
The authors would like to thank the editor and the referee for theirhelpful comments. 

References 
[1] Tomizawa, S. (1992) A Model of Symmetry with Exponents along Every Subdiagonal and Its Application to Data on 

Unaided Vision of Pupils at Japanese Elementary Schools. Journal of Applied Statistics, 19, 509-512.  
http://dx.doi.org/10.1080/02664769200000046 

[2] Bowker, A.H. (1948) A Test for Symmetry in Contingency Tables. Journal of the American Statistical Association, 43, 
572-574. http://dx.doi.org/10.1080/01621459.1948.10483284 

[3] Caussinus, H. (1965) Contribution à l’analyse statistique des tableaux de corrélation. Annales de la Faculté des 
Sciences de l’Université de Toulouse, 29, 77-182.  

[4] Stuart, A. (1955) A Test for Homogeneity of the Marginal Distributions in a Two-Way Classification. Biometrika, 42, 
412-416. http://dx.doi.org/10.1093/biomet/42.3-4.412 

[5] Iki, K., Yamamoto, K. and Tomizawa, S. (2014) Quasi-Diagonal Exponent Symmetry Model for Square Contingency 
Tables with Ordered Categories. Statistics and Probability Letters, 92, 33-38.  
http://dx.doi.org/10.1016/j.spl.2014.04.029 

[6] Bhapkar, V.P. and Darroch, J.N. (1990) Marginal Symmetry and Quasi Symmetry of General Order. Journal of Multi-
variate Analysis, 34, 173-184. http://dx.doi.org/10.1016/0047-259X(90)90034-F 

[7] Darroch, J.N. and Ratcliff, D. (1972) Generalized Iterative Scaling for Log-Linear Models. Annals of Mathematical 
Statistics, 43, 1470-1480. http://dx.doi.org/10.1214/aoms/1177692379 

http://dx.doi.org/10.1080/02664769200000046
http://dx.doi.org/10.1080/01621459.1948.10483284
http://dx.doi.org/10.1093/biomet/42.3-4.412
http://dx.doi.org/10.1016/j.spl.2014.04.029
http://dx.doi.org/10.1016/0047-259X(90)90034-F
http://dx.doi.org/10.1214/aoms/1177692379


K. Iki et al. 
 

 
272 

[8] Darroch, J.N. and Silvey, S.D. (1963) On Testing More than One Hypothesis. Annals of Mathematical Statistics, 34, 
555-567. http://dx.doi.org/10.1214/aoms/1177704168 

[9] Read, C.B. (1977) Partitioning Chi-Square in Contingency Table: A Teaching Approach. Communications in Statis-
tics-Theory and Methods, 6, 553-562. http://dx.doi.org/10.1080/03610927708827513 

[10] Haber, M. (1985) Maximum Likelihood Methods for Linear and Log-Linear Models in Categorical Data. Computa-
tional Statistics and Data Analysis, 3, 1-10. http://dx.doi.org/10.1016/0167-9473(85)90053-2 

[11] Bishop, Y.M.M., Fienberg, S.E. and Holland, P.W. (1975) Discrete Multivariate Analysis: Theory and Practice. The 
MIT Press, Cambridge. 

[12] Kullback, S. (1971) Marginal Homogeneity of Multidimensional Contingency Tables. Annals of Mathematical Statis-
tics, 42, 594-606. http://dx.doi.org/10.1214/aoms/1177693409 

[13] Haberman, S.J. (1974) The Analysis of Frequency Data. The University of Chicago Press, Chicago. 
[14] Goodman, L.A. (1981) Association Models and the Bivariate Normal for Contingency Tables with Ordered Categories. 

Biometrika, 68, 347-355. http://dx.doi.org/10.1093/biomet/68.2.347 
[15] Yamamoto, K., Tahata, K. and Tomizawa, S. (2012) Some Symmetry Models for the Analysis of Collapsed Square 

Contingency Tables with Ordered Categories. Calcutta Statistical Association Bulletin, 64, 21-36. 
[16] Tomizawa, S. (1985) Analysis of Data in Square Contingency Tables with Ordered Categories Using the Conditional 

Symmetry Model and Its Decomposed Models. Environmental Health Perspectives, 63, 235-239. 
http://dx.doi.org/10.1289/ehp.8563235 

[17] Tahata, K. and Tomizawa, S. (2006) Decompositions for Extended Double Symmetry Models in Square Contingency 
Tables with Ordered Categories. Journal of the Japan Statistical Society, 36, 91-106. 
http://dx.doi.org/10.14490/jjss.36.91 

[18] Agresti, A. (1983) A Simple Diagonals-Parameter Symmetry and Quasi-Symmetry Model. Statistics and Probability 
Letters, 1, 313-316. http://dx.doi.org/10.1016/0167-7152(83)90051-2 

[19] Tomizawa, S. (1991) An Extended Linear Diagonals-Parameter Symmetry Model for Square Contingency Tables with 
Ordered Categories. Metron, 49, 401-409. 
 

http://dx.doi.org/10.1214/aoms/1177704168
http://dx.doi.org/10.1080/03610927708827513
http://dx.doi.org/10.1016/0167-9473(85)90053-2
http://dx.doi.org/10.1214/aoms/1177693409
http://dx.doi.org/10.1093/biomet/68.2.347
http://dx.doi.org/10.1289/ehp.8563235
http://dx.doi.org/10.14490/jjss.36.91
http://dx.doi.org/10.1016/0167-7152(83)90051-2

	Extended Diagonal Exponent Symmetry Model and Its Orthogonal Decomposition in Square Contingency Tables with Ordered Categories
	Abstract
	Keywords
	1. Introduction
	2. New Models
	3. Decomposition
	4. Orthogonality of Test Statistics
	5. Examples
	6. Simulation Studies
	7. Concluding Remarks
	Acknowledgements
	References

