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Abstract 
This paper presents new numeric and symbolic algorithms for solving doubly bordered tridiagon-
al linear system. The proposed algorithms are derived using partition together with UL factoriza-
tion. Inversion algorithm for doubly bordered tridiagonal matrix is also considered based on the 
Sherman-Morrison-Woodbury formula. The algorithms are implemented using the computer al-
gebra system, MAPLE. Some illustrative examples are given. 
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1. Introduction 
Linear systems are among the most important and common problems encountered in scientific computing. The 
whole range of technical problems leads to the solution of systems of linear equations. The first step in numeri-
cal solution of many problems is a choice of an appropriate algorithm. 

Throughout this paper the word, “simplify”, means simplify the expression under consideration to its simplest 
rational form. The abbreviation DBT refers to doubly bordered tridiagonal. 

The main objective of the current paper is to construct efficient algorithms for solving DBT linear system of 
the form: 

A =x f                                           (1) 

where the coefficient matrix A is a DBT matrix with the special structure of the partitioned form 
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( )1 2  t
nx x x= x  and ( )1 2  t

nf f f= f , 3n ≥ . 
Such systems arise in many scientific and engineering applications when considering certain partial differen-

tial equations and spline approximation. For more details see, for instance [1]-[5]. It is worth noting that in [6], 
the authors solved the system (1) via transformation method. In this paper, we are going to solve the system un-
der consideration via partition. 

The linear system (1) can also be written in block form as follows: 

1 1 1

2 2ˆ

td

T

     
  =   
         

h x f
x fv

                                    (3) 

where 

1

ˆ

td
A

T

 
 =
  

h

v
                                           (4) 

is a 2 2×  block matrix, ( )1 1 2 3 2n na h h h h− −= 

th , ( )2 1 2 3 2
t

n nb v v v v− −= v  
( )1 1, n− ×∈h v , ( ) ( ) ( ) ( )1 1 2 2 3 1 1 2 2 3, , ,t t

n nx x x x f f f f= = = = x x f f  and T̂  is  

( ) ( )1 1n n− × −  tridiagonal matrix which is given by  

2 2
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4 4 4
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T
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b d

−
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 

 
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   

 

                           (5) 

The present paper is organized as follows. In Section 2, we introduce some facts about tridiagonal matrices 
and a new recursive procedure for inverting this matrix is proposed. In Section 3, the UL factorization of DBT 
matrix is considered. Numeric and symbolic algorithms for evaluating DBT matrix determinant are constructed. 
Also a symbolic algorithm for computing the inverse of DBT matrix is developed using the Sherman-Morrison- 
Woodbury formula. Finally, the solution of the linear system whose coefficient matrix is of DBT matrix type is 
proposed. In Section 4, some illustrative examples are given.  

2. Preliminaries and Basic Results 
Tridiagonal matrices arise in many contexts in pure and applied mathematics. Also, they arise in many different 
theoretical fields, especially in applicative fields such as spline approximation, numerical analysis, ordinary and 
partial differential equations, solution of linear systems of equations, engineering, telecommunication system 
analysis, system identification, signal processing (e.g., speech decoding), partial differential equations and natu-
rally linear algebra. See [1]-[4]. Research area on these types of matrices is very active and has recently attracted 
the attention of many researchers. 
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In many of these areas, inversions of tridiagonal matrices are necessary and different approaches are consi-
dered [7]-[10] in order to obtain such inverse. Some authors consider a general tridiagonal matrix of finite order 
and then describe the LU factorizations, determine the determinant and inverse of a tridiagonal matrix under 
certain conditions [1], [2] and sometimes without any restrictive conditions [8], [11]. The interested reader may 
refer to [12]-[23]. 

The general tridiagonal matrix ( )  1 ,ijT t i j n= ≤ ≤  takes the form  

1 1

2 2 2
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0
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                              (6) 

in which 0ijt =  for 2i j− ≥ . 
When we consider the matrix T defined by (6), it is helpful to introduce the n quantities , 1, 2, ,ie i n=   as 

follows: 

1
1

              if ,

if 1, 2, ,1.
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Following [8], we have the following result whose proof will be omitted for the sake of space requirement. 
Theorem 2.1. The UL factorization of the matrix T in (6) is possible if 0ie ≠  for each 1,2, ,i n=  . In this 

case we have the following two UL factorizations: 

1 1 2 2T U L U L= =                                         (8) 

where 
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The following are two useful remarks: 
Remark 1: The matrices 1 2 1 2, , ,L L U U  in (9) and (10) are related by  

1
1 2L D L−=                                          (11) 

and 

1 2U U D=                                           (12) 

where 
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Remark 2: If the UL factorization of the matrix T in (6) is possible, then we have: 

( )
1

n

k
k

Det T e
=

= ∏                                      (14) 

where 1 2, , , ne e e  are given by (7). In other words, the matrix T is invertible as long as 

1
0.

n

i
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=

≠∏                                          (15) 

Now we are going to state the following result without proof. 
Theorem 2.2. Let T be a non-singular tridiagonal matrix, given by (6), and let ( )1

1 ,ij i j n
T α−

≤ ≤
=
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3. Doubly Bordered Triangular Matrix (DBT Matrix) 
In this section, we are going to construct new numeric and symbolic algorithms to evaluate the determinant of a 
DBT matrix and to compute the inverse of such matrices. For these purposes it is advantageous to consider the 
UL factorization. 

To factor the n × n DBT matrix A given in )2(  into the product of an upper-triangular matrix ( )ijU u=  and a 
lower-triangular matrix ( )ijL l=  in the form A = UL, we may proceed as follows 



M. El-Mikkawy et al. 
 

 
971 

1 1 1 2 3 2

2 2 2

3 3 3

2 4 4

3 1 1 1

2

1 2 3 1

2

3

3

4

1

1

0 0

0
0

0 0

1

0 1 0 0

0 0 1

0 0 0 1
0

0 0 0 1

n n

n n n n

n n n

n

n

n

d a h h h h
b d a

b d a
A v b d

v b d a
v b d

q q q q
a
e

a
e

a
e

v

− −

− − − −

−

−

−

 
 
 
 
 

=  
 
 
 
 
 
 
 
 
 
 
 
 

=  
 
 
 
 
 

 



 

 

  

     

 

 

 

 

 

  

    

   

 

1

1 2

2 3 3

3 4 4

1

0 0 0 0
0 0 0

0
0 ,

0
0 0n n n

e
p e
p b e
p b e UL

p b e−

 
 
 
 
 

× = 
 
 
 
 
 




 

 

 

     

    

 

       (17) 

where  

1 2 3 1

2

3

3

4

1

1

0 1 0 0

0 0 1

0 0 0 1
0

0 0 0 1

n

n

n

q q q q
a
e

a
e

U

a
e

−

−

 
 
 
 
 
 
 

=  
 
 
 
 
 
 
  

 

 

 

  

    

   

 

                         (18) 

and   

1

1 2

2 3 3

3 4 4

1

0 0 0 0
0 0 0

0
0 .

0
0 0n n n

e
p e
p b e

L p b e

p b e−

 
 
 
 
 

=  
 
 
 
 
 

 

 

 

     

    

 

                         (19) 

Equation (17) can be written in block matrix form as follows: 

11 1
ˆˆ ˆ

ed
LT U
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t th q
pv

                                 (20) 

where ( ) ( )1 2 2 1 1 2 2 1, tt
n n n nq q q q p p p p− − − −= = q p , L̂  and Û  are the lower and upper 
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triangular matrices of the tridiagonal matrix T̂  given in (5), respectively. 
From (20), we see that the following equations are satisfied: 

1 1,te d+ =q p                                        (21) 

ˆ,t t L=h q                                           (22) 

ˆ ,U=v p                                            (23) 
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3.1. Algorithms for Evaluating the Determinant of a DBT Matrix 
The determinant of the matrix A in )2(  can be computed using the following numeric algorithm. 

Algorithm 3.1. A numeric algorithm for computing the determinant of a DBT matrix. 
To compute the determinant of the DBT matrix in )2( , we may proceed as follows:  
INPUT: Order of the matrix, n and vectors a, d, b, h, v. 
OUTPUT: The determinant of the matrix A in )2( . 
Step 1: Set n ne d= . Step 2: For i = n − 1, n − 2, …, 2 do 

compute and simplify 1
1

.i
i i i

i

a
e d b

e +
+

= −  

End do. 
Step 3: Compute e1 using (27). 

Step 4: ( )
1

Det .
n

r
r

A e
=

=∏  

As can be easily seen, Algorithm (3.1) breaks down if any ei = 0 for some { }1,2, ,i n∈  . The following 
symbolic algorithm is developed in order to remove the case where the numeric algorithm fails. 

Algorithm 3.2. A symbolic algorithm for computing the determinant of DBT matrix. 
To compute the determinant of the DBT matrix in )2( , we may proceed as follows:  
INPUT: Order of the matrix, n and vectors a, d, b, h, v. 
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OUTPUT: The determinant of the matrix A in )2(  
Step 1: Set n ne d= . If 0ne =  then ne t=  End if. (t is just a symbolic name) 
Step 2: For i = n − 1, n − 2, …, 2 do 

compute and simplify: 

1
1

.i
i i i

i

a
e d b

e +
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= −  If 0ie =  then ie t=  End if.  

End do. 
Step 3: Compute and simplify e1 using (27). 
Step 4: Compute and simplify: 

( )
1

.
n

r
r

p t e
=

=∏  

Step 5: Det (A) = p(0). 
The Algorithm (3.2) will be referred to as DETGDBTRI algorithm. 

3.2. Algorithm for Inverting DBT Matrix 
In this sub-section, we are going to formulate a new symbolic algorithm for inverting the general DBT matrix 
based on the Sherman-Morrison-Woodbury formula. 

A general DBT matrix can be written as following: 
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Applying the Sherman-Morrison-Woodbury formula [13] to A gives 

( ) ( )1 11 1 1 1 1.t t tA T UV T T U I V T U V T
− −− − − − −= + = − +                        (30) 

Now we are ready to formulate the following symbolic algorithm for inverting the DBT matrix. 
Algorithm 3.3. A symbolic algorithm to compute the inverse of a non-singular DBT matrix. 
To invert a general DBT matrix )2( , we may proceed as follows: 
INPUT: The order of the matrix, n and the entries of the matrices T, U and V. 
OUTPUT: The inverse of the DBT matrix A given in (2). 
Step 1: Set n ne d= . If 0ne =  then ne t= . (t is just a symbolic name) 
Step 2: For 1, 2, ,1i n n= − −   do 

compute and simplify: 

1
1

i
i i i

i

a
e d b

e +
+

= − . If 0ie =  then ie t=  End if 
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End do. 
Step 3: Compute and simplify the elements of the inverse matrix 1T −  using (16). 
Step 4: compute 1A−  using (30). 
Step 5: Substitute t = 0 in all expressions of the matrix 1A−

. 

3.3. Solving Linear System of Equations of DBT Matrix Type 
In this sub-section, we introduce different approaches for solving doubly bordered tridiagonal linear systems of 
the form (1). 

The inverse matrix of the DBT matrix A introduced in )2(  could be written in the block form as follows: 
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where 
1

1

1
ˆt

d
d T −

=
−



h v
, 

1 1

1 1
1 1

ˆ ˆ
,ˆ ˆ

t

t t

T T
d T d T

− −

− −

− −
= =

− −




h vh v
h v h v

 and ( )1 1
1

ˆ ˆ .tT d T T− −= − +

h v vh

 Now, we can formulate our first algorithm for solving the linear systems of the form (1). 
Algorithm 3.4. A first numeric algorithm for solving linear systems of DBT matrix type. 
To solve a general bordered tridiagonal linear system of the form (1), we may proceed as follows: 
INPUT: The entries of the matrix T̂ , the value of d1 and the vectors , ,v h f . 
OUTPUT: The solution vector [ ]1 2 tx x=x . 

Step 1: Compute ( ) ( )11 1
1 1 1 2

ˆ ˆt tx d T T
−− −= − −h v f h f . 

Step 2: Compute ( )1
2 2 1T̂ −= −x f v x . 

Step 3: The solution vector is [ ]1 2
tx x=x . 

As we can see, the computational cost of Algorithm (3.4) is ( )2O n . 
The following algorithm depends on the UL factorization of the coefficient matrix A in (1), so it is more con-

venient to rewrite the linear system (1) as: 

1 1

2

1
.ˆˆ

t e

LU

       
  =     
            

0

0

q x f
x fp

1

2
                              (32) 

To solve the linear system (32), it is equivalent to solve the two standard linear systems: 

1

2

1
ˆ

t

U

     
  =   
         

1

20

q w f
w f                                   (33) 

and 
1 1 1

2 2
ˆ

e

L
     

=     
         

0 x w
x wp

                                  (34) 

where [ ]1 1w=w  and [ ]2 2 3
t

nw w w= w . 
Armed with the above results, we may formulate the following numeric algorithm: 
Algorithm 3.5. A second numeric algorithm for solving linear systems of DBT matrix type. 
To solve a general doubly bordered tridiagonal linear system of the form (1), we may proceed as follows: 
INPUT: The components, , , , ,i i i i ia b d h v  and if . 
OUTPUT: The solution vector [ ]1 2    t

nx x x= x  of the linear system in (1). 
Step1: Use the algorithm (3.1) to check the non-singularity of the coefficient matrix A of the system (1). 
Step2: If Det (A) = 0; then OUTPUT (‘no inverse exists’); STOP. 
Step 3: Set n nw f= . 
Step 4: For 1 2, , , 2i n n= − −   do 

compute 1i i i iw f y w += −  
End do. 
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Step 5: Compute 
1

1 1 1
1

.
n

i i
i

w f q w
−

+
=

= −∑  

Step 6: Set 1 1 1x w e= . 
Step 7: Compute ( )2 2 1 1 2 ,x w p x e= −  

For 3, 4, ,i n=   do 
compute ( )1 1 1i i i i i ix w p x b x e− −= − −  
End do. 

Step 8: The solution vector [ ]1 2   .t
nx x x= x  To remove all cases in which Algorithm (3.5) fails, it is convenient to give the following symbolic version of 

the numeric algorithm described above. 
Algorithm 3.6. A symbolic algorithm for solving linear systems of DBT matrix type. 
To solve a general doubly bordered tridiagonal linear system of the form (1), we may proceed as follows: 
INPUT: The components, , , , ,i i i i ia b d h v  and if . 
OUTPUT: The solution vector [ ]1 2    t

nx x x= x  of the linear system in (1). 
Step 1: Use the DETGDBTRI algorithm to compute , 1, ,ie i n=  . 
Step 2: Use the DETGDBTRI algorithm to check the non-singularity of the coefficient matrix A of the sys-

tem (1). 
Step 3: If Det(A) = 0; then OUTPUT (‘no inverse exists’); STOP. 
Step 4: Compute and simplify , 1, , 1iq i n= −  using (25). 
Step 5: Compute and simplify , 1, , 1ip i n= −  using (26). 
Step 6: Set n nw f= . 
Step 7: Compute and simplify , 2, , 1iy i n= −  using (28). 
Step 8: For 1 2, , , 2i n n= − −   do 

Compute and simplify: 
1i i i iw f y w += −  

End do 
Step 9: Compute and simplify: 

1

1 1 1
1

.
n

i i
i

w f q w
−

+
=

= −∑  

Step 10: Set 1 1 1x w e= . 
Step 11: Compute and simplify: 

( )2 2 1 1 2 .x w p x e= −  
For 3, 4, ,i n=   do 
Compute and simplify: 

( )1 1 1i i i i i ix w p x b x e− −= − − . 
End do. 

Step 12: Substitute t = 0 in all expressions of the solution vector [ ]1 2    .t
nx x x= x  The computational cost of Algorithm (3.6) is 11 16n −  multiplications/divisions and 8 13n −  additions/ 

subtractions. The Algorithm (3.6) will be referred to as DBTLSys algorithm. 

4. Illustrative Examples 
In this section we give four examples for the sake of illustration. 

Example 4.1. Solve the following periodic tridiagonal linear system of size 12. 

1

2

3

4

12

2 1 0 0 1 2
1 2 1 0 0

0 1 2 1
1 2 0

0 1 0
1 0 0 1 2 2

x
x
x
x

x

−     
    − −     
    − −

=    
−     

    −
    

−        



 

  

   

   



                           (35) 
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Solution: we will solve this system as a DBT linear system where 

[ ]
[ ]
[ ]
[ ]
[ ]

[ ]

12, 2 2 2 2 2 2 2 2 2 2 2 2 ,

1 0 0 0 0 0 0 0 0 0 1 ,

1 0 0 0 0 0 0 0 0 0 1 ,

1 1 1 1 1 1 1 1 1 1 ,

1 1 1 1 1 1 1 1 1 1

and 2 0 0 0 0 0 0 0 0 0 0 2 .

t

t

n = =

= −

= −

= − − − − − − − − − −

= − − − − − − − − − −

=

d

h

v

a

b

f

 

By applying DBTLSys algorithm, we have 

• 1 12 11 10 9 8 7 6 5 4 3 2 .
3 11 10 9 8 7 6 5 4 3 2
 
  

e =  

• ( )
12

1
Det 4.r

r
A e

=

= =∏  

• The solution vector is [ ]1 1 1 1 1 1 1 1 1 1 1 1 t=x . 
This result is in complete agreement with the result in [14]. 
Example 4.2. Solve the following DBT linear system 

1

2

3

4

5

6

7

8

9

10

5 2 2 6 3 5 2 7 12 4 34
2 1 1 0 0 0 0 5
5 2 5 2 0 0 12
4 0 1 2 7 0 3
1 0 0 3 10 2 0
6 0 1 15 3 0 18

7 9 2 5 0 0 32
2 1 1 7 0 7
2 0 3 1 1 9
3 0 0 0 0 1 1 4

x
x
x
x
x
x
x
x
x
x

    
   
   
   
   
   
   
   =

−    
   
   
   
   
   
      

  





 

 

 



  
















                    (36) 

Solution: we have a DBT linear system with 

[ ]
[ ]
[ ]
[ ]
[ ]

[ ]

10, 5 1 5 2 10 15 2 1 1 1 ,

1 2 7 2 3 5 7 1 ,

2 1 3 1 9 1 3 1 ,

2 2 6 3 5 2 7 12 4 ,

2 5 4 1 6 7 2 2 3

and 34 5 12 3 0 18 32 7 9 4

t

t

n = =

=

=

=

= −

d

a

b

h

v

f =

 

By using DBTLSys algorithm we have 

• 
( )

( ) ( ) ( )
( )

( )
( )

( ) ( )5 16 17 88 107 4 11 14 17 13 3 8 7 3 1415048 163819 21   1 .
105 16 17 88 107 4 11 2 17 13 3 8 7 14 21

t t t t t tt t t
t t t t t t t t

=

+ + − + + + − + + −
− + + + + + + − 

e

 

( )
10

1 0

Det 163819.r
r t

A e
= =

= = −∏  

• The solution vector is [ ]1 2 1 1 0 1 3 2 0 1 t= −x . 
This result is in complete agreement with the result in [6]. 
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Example 4.3. Solve the following DBT linear system 

1

2

3

9

10

1 1 1 5 1 1 1 1 2 1 10
2 1 3 0 0 0 0 7
2 1 3 3 0 0 4
3 0 4 6 2 3
1 0 0 2 2 1 4
2 3 1 2 4
4 1 5 1 0 0 18
5 3 2 4 0 5
1 0 0 2 1 1 6
6 0 0 0 0 5 1 13

x
x
x

x
x

    
    
    
    
    
    
    
    =

−     
    
   

−    
   
   
       

  

 

 

   

 

 

  







                     (37) 

Solution: we have a DBT linear system with 

[ ]
[ ]
[ ]
[ ]
[ ]

[ ]

10, 1 1 3 6 2 1 5 2 1 1 ,

3 3 2 1 2 1 4 1 ,

1 4 2 3 1 3 2 5 ,

1 1 5 1 1 1 1 2 1 ,

2 2 3 1 2 4 5 1 6

and 10 7 4 3 4 4 18 5 6 13

t

t

n = =

= −

= −

=

=

=

d

a

b

h

v

f

 

By using DBTLSys algorithm we have 

• 127 14 207 166 7 31 23
  4  4 1

28 69 83 7 31 23 4
.− − −

− =   
e  

• ( )
10

1
Det 1524.r

r
A e

=

= =∏  

• The solution vector is [ ]1 2 1 1 1 3 2 1 1 2 t= −x . 
Example 4.4. Solve the following DBT linear system 

1

2

3

4

5

6

4 1 2 3 4 5 12
1 2 2 0 0 0 14
2 1 1 1 0 0 12
3 0 3 3 3 0 18
4 0 0 1 5 4 4
5 0 0 0 5 4 7

x
x
x
x
x
x

    
    
    
    −

=    
    
    
    

        

                          (38) 

Solution: we have a DBT linear system with
 [ ] [ ]

[ ] [ ]
[ ] [ ]

6, 4 2 1 3 5 4 , 2 1 3 4 ,

1 3 1 5 ,  1 2 3 4 5 ,

1 2 3 4 and5 12 14 12  18 4 7 .t t

n = = = −

= =

= =

d a

b h  

v f
 

By using DBTLSys algorithm we have 

• ( )36 13 2 2 1
4

8 2 1 1

1
.t t t

t
t t t t

t− −
−

− −

− 
=  
 

e  

• ( )
6

1 0

Det 39.r
r t

A e
= =

= =∏  
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• The solution vector is [ ]4 3 2 1 1 2 .t= − −x  
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