Degree Splitting of Root Square Mean Graphs

S. S. Sandhya ${ }^{1}$, S. Somasundaram ${ }^{2}$, S. Anusa ${ }^{3}$
${ }^{1}$ Department of Mathematics, Sree Ayyappa College for Women, Chunkankadai, India
${ }^{2}$ Department of Mathematics, Manonmaniam Sundaranar University, Tirunelveli, India
${ }^{3}$ Department of Mathematics, Arunachala College of Engineering for Women, Vellichanthai, India
Email: anu12343s@gmail.com

Received 15 April 2015; accepted 30 May 2015; published 2 June 2015

Copyright © 2015 by authors and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

Abstract

Let $f: V(G) \rightarrow\{1,2, \cdots, q+1\}$ be an injective function. For a vertex labeling f, the induced edge labeling $f^{*}(e=u v)$ is defined by, $f^{*}(e=u v)=\left\lceil\sqrt{\frac{f(u)^{2}+f(v)^{2}}{2}}\right\rceil$ or $\left\lfloor\sqrt{\frac{f(u)^{2}+f(v)^{2}}{2}}\right\rfloor$; then, the edge labels are distinct and are from $\{1,2, \cdots, q\}$. Then f is called a root square mean labeling of G. In this paper, we prove root square mean labeling of some degree splitting graphs.

Keywords

Graph, Path, Cycle, Degree Splitting Graphs, Root Square Mean Graphs, Union of Graphs

1. Introduction

The graphs considered here are simple, finite and undirected. Let $V(G)$ denote the vertex set and $E(G)$ denote the edge set of G. For detailed survey of graph labeling we refer to Gallian [1]. For all other standard terminology and notations we follow Harary [2]. The concept of mean labeling on degree splitting graph was introduced in [3]. Motivated by the authors we study the root square mean labeling on degree splitting graphs. Root square mean labeling was introduced in [4] and the root square mean labeling of some standard graphs was proved in [5]-[11]. The definitions and theorems are useful for our present study.

Definition 1.1: A graph $G=(V, E)$ with p vertices and q edge is called a root square mean graph if it is possible to label the vertices $x \in V$ with distinct labels $f(x)$ from $1,2, \cdots, q+1$ in such a way that when

[^0]each edge $e=u v$ is labeled with $f(e=u v)=\left[\sqrt{\frac{f(u)^{2}+f(v)^{2}}{2}}\right\rceil$ or $\left\lfloor\sqrt{\frac{f(u)^{2}+f(v)^{2}}{2}}\right\rfloor$, then the edge labels are distinct and are from $\{1,2, \cdots, q\}$. In this case f is called root square mean labeling of G.

Definition 1.2: A walk in which $u_{1} u_{2} \cdots u_{n}$ are distinct is called a path. A path on n vertices is denoted by P_{n}.
Definition 1.3: A closed path is called a cycle. A cycle on n vertices is denoted by C_{n}.
Definition 1.4: Let $G=(V, E)$ be a graph with $V=S_{1} \cup S_{2} \cup \cdots \cup S_{t} \cup T$, where each S_{i} is a set of vertices having at least two vertices and having the same degree and $T=V-\bigcup S_{i}$. The degree splitting graph of G is denoted by $D S(G)$ and is obtained from G by adding the vertices $w_{1}, w_{2}, \cdots, w_{t}$ and joining w_{i} to each vertex of $S_{i}, 1 \leq i \leq t$. The graph G and its degree splitting graph $D S(G)$ are given in Figure 1.

Definition 1.5: The union of two graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ is a graph $G=G_{1} \cup G_{2}$ with vertex set $V=V_{1} \cup V_{2}$ and the edge set $E=E_{1} \cup E_{2}$.

Theorem 1.6: Any path is a root square mean graph.
Theorem 1.7: Any cycle is a root square mean graph.

2. Main Results

Theorem 2.1: $n D S\left(P_{3}\right)$ is a root square mean graph.
Proof: The graph $D S\left(P_{3}\right)$ is shown in Figure 2.
Let $G=n D S\left(P_{3}\right)$. Let the vertex set of G be $V=V_{1} \cup V_{2} \cup \cdots \cup V_{n}$ where $V_{i}=\left\{v_{1}^{i}, v_{2}^{i}, v_{3}^{i}, w_{i}, 1 \leq i \leq n\right\}$. Define a function $f: V(G) \rightarrow\{1,2, \cdots, q+1\}$ by

Figure 1. The graph G and its degree splitting graph $D S(G)$.

Figure 2. The graph $\operatorname{DS}\left(P_{3}\right)$.

$$
\begin{aligned}
& f\left(v_{1}^{i}\right)=4 i-3,1 \leq i \leq n \\
& f\left(v_{2}^{i}\right)=4 i-2,1 \leq i \leq n \\
& f\left(v_{3}^{i}\right)=4 i-1,1 \leq i \leq n \\
& f\left(w_{i}\right)=4 i, 1 \leq i \leq n
\end{aligned}
$$

Then the edges are labeled as

$$
\begin{aligned}
& f\left(v_{1}^{i} v_{2}^{i}\right)=4 i-3,1 \leq i \leq n-1 \\
& f\left(v_{2}^{i} v_{3}^{i}\right)=4 i-1,1 \leq i \leq n-1 \\
& f\left(v_{1}^{i} w_{i}\right)=4 i-2,1 \leq i \leq n-2 \\
& f\left(v_{3}^{i} w_{i}\right)=4 i, 1 \leq i \leq n-2
\end{aligned}
$$

Then the edge labels are distinct and are from $\{1,2, \cdots, q\}$. Hence by definition $1.1, G$ is a root square mean graph.

Example 2.2: Root square mean labeling of $4 D S\left(P_{3}\right)$ is shown in Figure 3.
Theorem 2.3: $4 D S\left(P_{4}\right)$ is a root square mean graph.
Proof: The graph $D S\left(P_{4}\right)$ is shown in Figure 4.
Let $G=n D S\left(P_{3}\right)$. Let the vertex set of G be $V=V_{1} \cup V_{2} \cup \cdots \cup V_{n}$ where $V_{i}=\left\{v_{1}^{i}, v_{2}^{i}, v_{3}^{i}, v_{4}^{i}, w_{1}^{i}, w_{2}^{i}, 1 \leq i \leq n\right\}$.
Define a function $f: V(G) \rightarrow\{1,2, \cdots, q+1\}$ by

Figure 3. Root square mean labeling of $4 D S\left(P_{3}\right)$.

Figure 4. The graph $D S\left(P_{4}\right)$.

$$
\begin{aligned}
& f\left(v_{1}^{i}\right)=7 i-5,1 \leq i \leq n \\
& f\left(v_{2}^{i}\right)=7 i-3,1 \leq i \leq n \\
& f\left(v_{3}^{i}\right)=7 i-1,1 \leq i \leq n \\
& f\left(v_{4}^{i}\right)=7 i-4,1 \leq i \leq n \\
& f\left(w_{1}^{i}\right)=7 i-6,1 \leq i \leq n \\
& f\left(w_{2}^{i}\right)=7 i, 1 \leq i \leq n
\end{aligned}
$$

Then the edges are labeled as

$$
\begin{aligned}
& f\left(v_{1}^{i} v_{2}^{i}\right)=7 i-4,1 \leq i \leq n \\
& f\left(v_{2}^{i} v_{3}^{i}\right)=7 i-2,1 \leq i \leq n \\
& f\left(v_{3}^{i} v_{4}^{i}\right)=7 i-3,1 \leq i \leq n \\
& f\left(v_{1}^{i} w_{1}^{i}\right)=7 i-6,1 \leq i \leq n \\
& f\left(w_{1}^{i} v_{4}^{i}\right)=7 i-5,1 \leq i \leq n \\
& f\left(v_{2}^{i} w_{2}^{i}\right)=7 i-1,1 \leq i \leq n \\
& f\left(v_{3}^{i} w_{2}^{i}\right)=7 i, 1 \leq i \leq n
\end{aligned}
$$

Then the edge labels are distinct and are from $\{1,2, \cdots, q\}$. Hence by definition $1.1, G$ is a root square mean graph.

Example 2.4: Root square mean labeling of $4 D S\left(P_{3}\right)$ is shown in Figure 5.
Theorem 2.5: $n D S\left(P_{2} \odot K_{1}\right)$ is a root square mean graph.
Proof: The graph $\operatorname{DS}\left(P_{2} \odot K_{1}\right)$ is shown in Figure 6.
Let $G=n D S\left(P_{2} \odot K_{1}\right)$. Let the vertex set of G be $V=V_{1} \cup V_{2} \cup \cdots \cup V_{n}$ where $V_{i}=\left\{v_{1}^{i}, v_{2}^{i}, v_{3}^{i}, v_{4}^{i}, w_{1}^{i}, w_{2}^{i}, 1 \leq i \leq n\right\}$. Define a function $f: V(G) \rightarrow\{1,2, \cdots, q+1\}$ by

Figure 5. Root square mean labeling of $4 D S\left(P_{3}\right)$.

$$
\begin{aligned}
& f\left(v_{1}^{i}\right)=7 i-5,1 \leq i \leq n \\
& f\left(v_{2}^{i}\right)=7 i-4,1 \leq i \leq n \\
& f\left(v_{3}^{i}\right)=7 i-2,1 \leq i \leq n \\
& f\left(v_{4}^{i}\right)=7 i-1,1 \leq i \leq n \\
& f\left(w_{1}^{i}\right)=7 i-6,1 \leq i \leq n \\
& f\left(w_{2}^{i}\right)=7 i, 1 \leq i \leq n
\end{aligned}
$$

Then the edges are labeled as

$$
\begin{aligned}
& f\left(v_{1}^{i} v_{3}^{i}\right)=7 i-4,1 \leq i \leq n \\
& f\left(v_{3}^{i} v_{4}^{i}\right)=7 i-2,1 \leq i \leq n \\
& f\left(v_{4}^{i} v_{2}^{i}\right)=7 i-3,1 \leq i \leq n \\
& f\left(v_{1}^{i} w_{1}^{i}\right)=7 i-6,1 \leq i \leq n \\
& f\left(v_{2}^{i} w_{1}^{i}\right)=7 i-5,1 \leq i \leq n \\
& f\left(v_{3}^{i} w_{2}^{i}\right)=7 i-1,1 \leq i \leq n \\
& f\left(v_{4}^{i} w_{2}^{i}\right)=7 i, 1 \leq i \leq n
\end{aligned}
$$

Then the edge labels are distinct and are from $\{1,2, \cdots, q\}$. Hence by definition $1.1, G$ is a root square mean graph.

Example 2.6: The labeling pattern of $4 D S\left(P_{2} \odot K_{1}\right)$ is shown in Figure 7.
Theorem 2.7: $n D S\left(P_{2} \odot K_{2}\right)$ is a root square mean graph.
Proof: The graph $D S\left(P_{2} \odot K_{2}\right)$ is shown in Figure 8.
Let $G=n D S\left(P_{2} \odot K_{2}\right)$. Let the vertex set of G be $V=V_{1} \cup V_{2} \cup \cdots \cup V_{n}$ where
$V_{i}=\left\{v_{1}^{i}, v_{2}^{i}, v_{3}^{i}, v_{4}^{i}, v_{5}^{i}, v_{6}^{i}, w_{1}^{i}, w_{2}^{i}, 1 \leq i \leq n\right\}$. Define a function $f: V(G) \rightarrow\{1,2, \cdots, q+1\}$ by

$$
\begin{aligned}
& f\left(v_{1}^{i}\right)=11 i-5,1 \leq i \leq n \\
& f\left(v_{2}^{i}\right)=11 i-3,1 \leq i \leq n
\end{aligned}
$$

Figure 7. The labeling pattern of $4 D S\left(P_{2} \odot K_{1}\right)$.

Figure 8. The graph $D S\left(P_{2} \odot K_{2}\right)$.

$$
\begin{aligned}
& f\left(v_{3}^{i}\right)=11 i-2,1 \leq i \leq n \\
& f\left(v_{4}^{i}\right)=11 i-1,1 \leq i \leq n \\
& f\left(v_{5}^{i}\right)=11 i-9,1 \leq i \leq n \\
& f\left(v_{6}^{i}\right)=11 i-7,1 \leq i \leq n \\
& f\left(w_{1}^{i}\right)=11 i, 1 \leq i \leq n \\
& f\left(w_{2}^{i}\right)=11 i-10,1 \leq i \leq n
\end{aligned}
$$

Then the edges are labeled as

$$
\begin{aligned}
& f\left(v_{5}^{i} v_{6}^{i}\right)=11 i-8,1 \leq i \leq n \\
& f\left(v_{5}^{i} v_{1}^{i}\right)=11 i-7,1 \leq i \leq n
\end{aligned}
$$

$$
\begin{aligned}
& f\left(v_{5}^{i} v_{2}^{i}\right)=11 i-6,1 \leq i \leq n \\
& f\left(v_{6}^{i} v_{3}^{i}\right)=11 i-5,1 \leq i \leq n \\
& f\left(v_{6}^{i} v_{4}^{i}\right)=11 i-4,1 \leq i \leq n \\
& f\left(v_{1}^{i} w_{1}^{i}\right)=11 i-3,1 \leq i \leq n \\
& f\left(v_{2}^{i} w_{1}^{i}\right)=11 i-2,1 \leq i \leq n \\
& f\left(v_{3}^{i} w_{1}^{i}\right)=11 i-1,1 \leq i \leq n \\
& f\left(v_{4}^{i} w_{1}^{i}\right)=11 i, 1 \leq i \leq n \\
& f\left(v_{5}^{i} w_{2}^{i}\right)=11 i-10,1 \leq i \leq n \\
& f\left(v_{6}^{i} w_{2}^{i}\right)=11 i-9,1 \leq i \leq n
\end{aligned}
$$

Then the edge labels are distinct and are from $\{1,2, \cdots, q\}$. Hence by definition $1.1, G$ is a root square mean graph.

Example 2.8: The labeling pattern of $2 D S\left(P_{2} \odot K_{2}\right)$ is shown in Figure 9.
Theorem 2.9: $n D S\left(P_{2} \odot \overline{K_{3}}\right)$ is a root square mean graph.
Proof: The graph $D S\left(P_{2} \odot \overline{K_{3}}\right)$ is shown in Figure 10.
Let $G=n D S\left(P_{2} \odot \overline{K_{3}}\right)$. Let the vertex set of G be $V=V_{1} \cup V_{2} \cup \cdots \cup V_{n}$ where $V_{i}=\left\{v_{1}^{i}, v_{2}^{i}, v_{3}^{i}, v_{4}^{i}, v_{5}^{i}, v_{6}^{i}, v_{7}^{i}, v_{8}^{i}, w_{1}^{i}, w_{2}^{i}, 1 \leq i \leq n\right\}$.

Define a function $f: V(G) \rightarrow\{1,2, \cdots, q+1\}$ by

$$
\begin{aligned}
& f\left(v_{1}^{i}\right)=15 i-11,1 \leq i \leq n \\
& f\left(v_{2}^{i}\right)=15 i-8,1 \leq i \leq n \\
& f\left(v_{3}^{i}\right)=15 i-6,1 \leq i \leq n \\
& f\left(v_{4}^{i}\right)=15 i-5,1 \leq i \leq n \\
& f\left(v_{5}^{i}\right)=15 i-3,1 \leq i \leq n \\
& f\left(v_{6}^{i}\right)=15 i-2,1 \leq i \leq n \\
& f\left(w_{1}^{i}\right)=15 i, 1 \leq i \leq n \\
& f\left(w_{2}^{i}\right)=15 i-14,1 \leq i \leq n \\
& f\left(v_{7}^{i}\right)=15 i-13,1 \leq i \leq n \\
& f\left(v_{8}^{i}\right)=15 i-12,1 \leq i \leq n
\end{aligned}
$$

Then the edges are labeled as

$$
\begin{aligned}
& f\left(v_{7}^{i} v_{1}^{i}\right)=15 i-11,1 \leq i \leq n \\
& f\left(v_{7}^{i} v_{2}^{i}\right)=15 i-10,1 \leq i \leq n \\
& f\left(v_{7}^{i} v_{3}^{i}\right)=15 i-9,1 \leq i \leq n
\end{aligned}
$$

Figure 9. The labeling pattern of $2 D S\left(P_{2} \odot K_{2}\right)$.

Figure 10. The graph $D S\left(P_{2} \odot \overline{K_{3}}\right)$.

$$
\begin{aligned}
& f\left(v_{8}^{i} v_{4}^{i}\right)=15 i-8,1 \leq i \leq n \\
& f\left(v_{8}^{i} v_{5}^{i}\right)=15 i-7,1 \leq i \leq n \\
& f\left(v_{8}^{i} v_{6}^{i}\right)=15 i-6,1 \leq i \leq n \\
& f\left(v_{7}^{i} w_{2}^{i}\right)=15 i-14,1 \leq i \leq n \\
& f\left(v_{8}^{i} w_{2}^{i}\right)=15 i-13,1 \leq i \leq n \\
& f\left(v_{1}^{i} w_{1}^{i}\right)=15 i-5,1 \leq i \leq n \\
& f\left(v_{2}^{i} w_{1}^{i}\right)=15 i-4,1 \leq i \leq n \\
& f\left(v_{3}^{i} w_{1}^{i}\right)=15 i-3,1 \leq i \leq n \\
& f\left(v_{4}^{i} w_{1}^{i}\right)=15 i-2,1 \leq i \leq n \\
& f\left(v_{5}^{i} w_{1}^{i}\right)=15 i-1,1 \leq i \leq n \\
& f\left(v_{6}^{i} w_{1}^{i}\right)=15 i, 1 \leq i \leq n \\
& f\left(v_{7}^{i} v_{8}^{i}\right)=15 i-12,1 \leq i \leq n
\end{aligned}
$$

Then the edge labels are distinct and are from $\{1,2, \cdots, q\}$. Hence by definition $1.1, G$ is a root square mean graph.

Example 2.10: The root square mean labeling of $2 D S\left(P_{2} \odot \overline{K_{3}}\right)$ is shown in Figure 11.
Theorem 2.11: $n D S\left(P_{3} \odot K_{1}\right)$ is a root square mean graph.
Proof: The graph $D S\left(P_{3} \odot K_{1}\right)$ is shown in Figure 12.
Let $G=n D S\left(P_{3} \odot K_{1}\right)$. Let its vertex set be $V=V_{1} \cup V_{2} \cup \cdots \cup V_{n}$ where $V_{i}=\left\{v_{1}^{i}, v_{2}^{i}, v_{3}^{i}, v_{4}^{i}, v_{5}^{i}, v_{6}^{i}, w_{1}^{i}, w_{2}^{i}, 1 \leq i \leq n\right\}$.

Define a function $f: V(G) \rightarrow\{1,2, \cdots, q+1\}$ by

$$
\begin{aligned}
& f\left(v_{1}^{i}\right)=10 i-3,1 \leq i \leq n \\
& f\left(v_{2}^{i}\right)=10 i-2,1 \leq i \leq n \\
& f\left(v_{3}^{i}\right)=10 i-1,1 \leq i \leq n \\
& f\left(v_{4}^{i}\right)=10 i-8,1 \leq i \leq n \\
& f\left(v_{5}^{i}\right)=10 i-5,1 \leq i \leq n \\
& f\left(v_{6}^{i}\right)=10 i-6,1 \leq i \leq n \\
& f\left(w_{1}^{i}\right)=10 i, 1 \leq i \leq n \\
& f\left(w_{2}^{i}\right)=10 i-9,1 \leq i \leq n
\end{aligned}
$$

Figure 11. The root square mean labeling of $2 D S\left(P_{2} \odot \overline{K_{3}}\right)$.

Figure 12. The graph $D S\left(P_{3} \odot K_{1}\right)$.

Then the edges are labeled as

$$
\begin{aligned}
& f\left(v_{4}^{i} v_{1}^{i}\right)=10 i-5,1 \leq i \leq n \\
& f\left(v_{5}^{i} v_{2}^{i}\right)=10 i-4,1 \leq i \leq n \\
& f\left(v_{6}^{i} v_{3}^{i}\right)=10 i-3,1 \leq i \leq n \\
& f\left(v_{1}^{i} w_{1}^{i}\right)=10 i-2,1 \leq i \leq n \\
& f\left(v_{2}^{i} w_{1}^{i}\right)=10 i-1,1 \leq i \leq n \\
& f\left(v_{3}^{i} w_{1}^{i}\right)=10 i, 1 \leq i \leq n \\
& f\left(v_{4}^{i} w_{2}^{i}\right)=10 i-9,1 \leq i \leq n \\
& f\left(v_{6}^{i} w_{2}^{i}\right)=10 i-8,1 \leq i \leq n
\end{aligned}
$$

Then the edge labels are distinct and are from $\{1,2, \cdots, q\}$. Hence by definition $1.1, G$ is a root square mean graph.

Example 2.12: The labeling pattern of $3 D S\left(P_{3} \odot K_{1}\right)$ is shown in Figure 13.
Theorem 2.13: $n D S\left(K_{1,3}\right)$ is a root square mean graph.
Proof: The graph $D S\left(K_{1,3}\right)$ is shown in Figure 14.

Figure 13. The labeling pattern of $3 D S\left(P_{3} \odot K_{1}\right)$.

Figure 14. The graph $D S\left(K_{1,3}\right)$.

Let $G=n D S\left(K_{1,3}\right)$. Let its vertex set be $V=V_{1} \cup V_{2} \cup \cdots \cup V_{n}$ where $V_{i}=\left\{v_{1}^{i}, v_{2}^{i}, v_{3}^{i}, v_{4}^{i}, w^{i}, 1 \leq i \leq n\right\}$.

Define a function $f: V(G) \rightarrow\{1,2, \cdots, q+1\}$ by

$$
\begin{aligned}
& f\left(v_{1}^{i}\right)=6 i-5,1 \leq i \leq n \\
& f\left(v_{2}^{i}\right)=6 i-4,1 \leq i \leq n \\
& f\left(v_{3}^{i}\right)=6 i-2,1 \leq i \leq n \\
& f\left(v_{4}^{i}\right)=6 i-1,1 \leq i \leq n \\
& f\left(w^{i}\right)=6 i, 1 \leq i \leq n
\end{aligned}
$$

Then the edges are labeled as

$$
\begin{aligned}
& f\left(v_{1}^{i} v_{2}^{i}\right)=6 i-5,1 \leq i \leq n \\
& f\left(v_{1}^{i} v_{3}^{i}\right)=6 i-4,1 \leq i \leq n \\
& f\left(v_{1}^{i} v_{4}^{i}\right)=6 i-3,1 \leq i \leq n \\
& f\left(v_{2}^{i} w^{i}\right)=6 i-2,1 \leq i \leq n \\
& f\left(v_{3}^{i} w^{i}\right)=6 i-1,1 \leq i \leq n \\
& f\left(v_{4}^{i} w^{i}\right)=6 i, 1 \leq i \leq n
\end{aligned}
$$

Then the edge labels are distinct and are from $\{1,2, \cdots, q\}$. Hence by definition $1.1, G$ is a root square mean graph.

Example 2.14: The labeling pattern of $4 D S\left(K_{1,3}\right)$ is shown in Figure 15.
Theorem 2.15: $n D S\left(C_{3} \hat{O} K_{1,2}\right)$ is a root square mean graph.
Proof: The graph $D S\left(C_{3} \hat{O} K_{1,2}\right)$ is shown in Figure 16.
Let $G=n D S\left(C_{3} \hat{O} K_{1,2}\right)$. Let its vertex set be $V=V_{1} \cup V_{2} \cup \cdots \cup V_{n}$

Figure 15. The labeling pattern of $4 D S\left(K_{1,3}\right)$.

Figure 16. The graph $D S\left(C_{3} \hat{O} K_{1,2}\right)$.
where $V_{i}=\left\{v_{1}^{i}, v_{2}^{i}, v_{3}^{i}, v_{4}^{i}, v_{5}^{i}, w_{1}^{i}, w_{2}^{i}, 1 \leq i \leq n\right\}$.
Define a function $f: V(G) \rightarrow\{1,2, \cdots, q+1\}$ by

$$
\begin{aligned}
& f\left(v_{1}^{i}\right)=9 i-7,1 \leq i \leq n \\
& f\left(v_{2}^{i}\right)=9 i-5,1 \leq i \leq n \\
& f\left(v_{3}^{i}\right)=9 i-4,1 \leq i \leq n \\
& f\left(v_{4}^{i}\right)=9 i-2,1 \leq i \leq n \\
& f\left(v_{5}^{i}\right)=9 i-1,1 \leq i \leq n \\
& f\left(w_{1}^{i}\right)=9 i-8,1 \leq i \leq n \\
& f\left(w_{2}^{i}\right)=9 i, 1 \leq i \leq n
\end{aligned}
$$

Then the edges are labeled as

$$
\begin{aligned}
& f\left(w_{1}^{i} v_{1}^{i}\right)=9 i-8,1 \leq i \leq n \\
& f\left(w_{1}^{i} v_{2}^{i}\right)=9 i-7,1 \leq i \leq n \\
& f\left(v_{1}^{i} v_{2}^{i}\right)=9 i-6,1 \leq i \leq n \\
& f\left(v_{1}^{i} v_{3}^{i}\right)=9 i-5,1 \leq i \leq n \\
& f\left(v_{2}^{i} v_{3}^{i}\right)=9 i-4,1 \leq i \leq n \\
& f\left(v_{3}^{i} v_{4}^{i}\right)=9 i-3,1 \leq i \leq n \\
& f\left(v_{3}^{i} v_{5}^{i}\right)=9 i-2,1 \leq i \leq n \\
& f\left(v_{4}^{i} w_{2}^{i}\right)=9 i-1,1 \leq i \leq n \\
& f\left(v_{5}^{i} w_{2}^{i}\right)=9 i, 1 \leq i \leq n
\end{aligned}
$$

Then the edge labels are distinct and are from $\{1,2, \cdots, q\}$. Hence by definition $1.1, G$ is a root square mean graph.

Figure 17. The root square mean labeling of $4 D S\left(C_{3} \hat{O} K_{1,2}\right)$.
Example 2.16: The root square mean labeling of $4 D S\left(C_{3} \hat{O} K_{1,2}\right)$ is given in Figure 17.

References

[1] Gallian, J.A. (2012) A Dynamic Survey of Graph Labeling. The Electronic Journal of Combinatories.
[2] Harary, F. (1988) Graph Theory. Narosa Publishing House Reading, New Delhi.
[3] Sandhya, S.S., Jayasekaran, C. and Raj, C.D. (2013) Harmonic Mean Labeling of Degree Splitting Graphs. Bulletin of Pure and Applied Sciences, 32E, 99-112.
[4] Sandhya, S.S., Somasundaram, S. and Anusa, S. (2014) Root Square Mean Labeling of Graphs. International Journal of Contemporary Mathematical Sciences, 9, 667-676.
[5] Sandhya, S.S., Somasundaram, S. and Anusa, S. (2015) Some More Results on Root Square Mean Graphs. Journal of Mathematics Research, 7.
[6] Sandhya, S.S., Somasundaram, S. and Anusa, S. (2014) Root Square Mean Labeling of Some New Disconnected Graphs. International Journal of Mathematics Trends and Technology, 15, 85-92. http://dx.doi.org/10.14445/22315373/IJMTT-V15P511
[7] Sandhya, S.S., Somasundaram, S. and Anusa, S. (2014) Root Square Mean Labeling of Subdivision of Some More Graphs. International Journal of Mathematics Research, 6, 253-266.
[8] Sandhya, S.S., Somasundaram, S. and Anusa, S. (2014) Some New Results on Root Square Mean Labeling. International Journal of Mathematical Archive, 5, 130-135.
[9] Sandhya, S.S., Somasundaram, S. and Anusa, S. (2015) Root Square Mean Labeling of Subdivision of Some Graphs. Global Journal of Theoretical and Applied Mathematics Sciences, 5, 1-11.
[10] Sandhya, S.S., Somasundaram, S. and Anusa, S. (2015) Root Square Mean Labeling of Some More Disconnected Graphs. International Mathematical Forum, 10, 25-34.
[11] Sandhya, S.S., Somasundaram, S. and Anusa, S. (2015) Some Results on Root Square Mean Graphs. Communicated to Journal of Scientific Research.

[^0]: How to cite this paper: Sandhya, S.S., Somasundaram, S. and Anusa, S. (2015) Degree Splitting of Root Square Mean Graphs. Applied Mathematics, 6, 940-952. http://dx.doi.org/10.4236/am.2015.66086

