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Abstract 
Let ( ) { }: 1, 2, , 1f V G q→ +

 be an injective function. For a vertex labeling f, the induced edge 

labeling ( )f e uv∗ =  is defined by, ( ) ( ) ( ) 
 
 
 

2 2

2
f u f v

f e uv∗ +
= =  or ( ) ( )

;
 
 
 
 

2 2

2
f u f v+

 then, 

the edge labels are distinct and are from { }1,2, ,q
. Then f is called a root square mean labeling of 

G. In this paper, we prove root square mean labeling of some degree splitting graphs. 
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1. Introduction 
The graphs considered here are simple, finite and undirected. Let ( )V G  denote the vertex set and ( )E G  de-
note the edge set of G. For detailed survey of graph labeling we refer to Gallian [1]. For all other standard ter-
minology and notations we follow Harary [2]. The concept of mean labeling on degree splitting graph was in-
troduced in [3]. Motivated by the authors we study the root square mean labeling on degree splitting graphs. 
Root square mean labeling was introduced in [4] and the root square mean labeling of some standard graphs was 
proved in [5]-[11]. The definitions and theorems are useful for our present study. 

Definition 1.1: A graph ( ),G V E=  with p vertices and q edge is called a root square mean graph if it is 
possible to label the vertices x V∈  with distinct labels ( )f x  from 1,2, , 1q +  in such a way that when  
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each edge e uv=  is labeled with ( ) ( ) ( )2 2

2
f u f v

f e uv
 + = =
 
 

 or 
( ) ( )2 2

2
f u f v + 

 
 

, then the edge  

labels are distinct and are from { }1,2, , q
. In this case f is called root square mean labeling of G. 

Definition 1.2: A walk in which 1 2 nu u u  are distinct is called a path. A path on n vertices is denoted by 
nP . 
Definition 1.3: A closed path is called a cycle. A cycle on n vertices is denoted by nC . 
Definition 1.4: Let ( ),G V E=  be a graph with 1 2 tV S S S T=     , where each iS  is a set of vertices 

having at least two vertices and having the same degree and iT V S= − . The degree splitting graph of G is 
denoted by ( )DS G  and is obtained from G by adding the vertices 1 2, , , tw w w  and joining iw  to each vertex 
of ,1 .iS i t≤ ≤  The graph G and its degree splitting graph ( )DS G  are given in Figure 1. 

Definition 1.5: The union of two graphs ( )1 1 1,G V E=  and ( )2 2 2,G V E=  is a graph 1 2G G G=   with 
vertex set 1 2V V V=   and the edge set 1 2E E E=  . 

Theorem 1.6: Any path is a root square mean graph. 
Theorem 1.7: Any cycle is a root square mean graph. 

2. Main Results 
Theorem 2.1: ( )3nDS P  is a root square mean graph. 

Proof: The graph ( )3DS P  is shown in Figure 2. 
Let ( )3G nDS P= . Let the vertex set of G be 1 2 nV V V V=     where { }1 2 3, , , ,1i i i

i iV v v v w i n= ≤ ≤ . De-
fine a function ( ) { }: 1, 2, , 1f V G q→ +

 by 
 

 
Figure 1. The graph G and its degree splitting graph ( )DS G .                                                   

 

 
Figure 2. The graph ( )3DS P .                             
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( )1 4 3, 1if v i i n= − ≤ ≤  

( )2 4 2, 1if v i i n= − ≤ ≤  

( )3 4 1, 1if v i i n= − ≤ ≤  

( ) 4 , 1if w i i n= ≤ ≤  

Then the edges are labeled as 

( )1 2 4 3, 1 1i if v v i i n= − ≤ ≤ −  

( )2 3 4 1, 1 1i if v v i i n= − ≤ ≤ −  

( )1 4 2, 1 2i
if v w i i n= − ≤ ≤ −  

( )3 4 , 1 2i
if v w i i n= ≤ ≤ −  

Then the edge labels are distinct and are from { }1,2, , q
. Hence by definition 1.1, G is a root square mean 

graph. 
Example 2.2: Root square mean labeling of ( )34DS P  is shown in Figure 3. 
Theorem 2.3: ( )44DS P  is a root square mean graph. 
Proof: The graph ( )4DS P  is shown in Figure 4. 
Let ( )3G nDS P= . Let the vertex set of G be 1 2 nV V V V=     where { }1 2 3 4 1 2, , , , , ,1i i i i i i

iV v v v v w w i n= ≤ ≤ . 
Define a function ( ) { }: 1, 2, , 1f V G q→ +

 by 
 

 
Figure 3. Root square mean labeling of ( )34DS P .                                         

 

 
Figure 4. The graph ( )4DS P .                    
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( )1 7 5, 1if v i i n= − ≤ ≤  

( )2 7 3, 1if v i i n= − ≤ ≤  

( )3 7 1, 1if v i i n= − ≤ ≤  

( )4 7 4, 1if v i i n= − ≤ ≤  

( )1 7 6, 1if w i i n= − ≤ ≤  

( )2 7 , 1if w i i n= ≤ ≤  

Then the edges are labeled as  
( )1 2 7 4, 1i if v v i i n= − ≤ ≤  

( )2 3 7 2, 1i if v v i i n= − ≤ ≤  

( )3 4 7 3, 1i if v v i i n= − ≤ ≤  

( )1 1 7 6, 1i if v w i i n= − ≤ ≤  

( )1 4 7 5, 1i if w v i i n= − ≤ ≤  

( )2 2 7 1, 1i if v w i i n= − ≤ ≤  

( )3 2 7 , 1i if v w i i n= ≤ ≤  

Then the edge labels are distinct and are from { }1,2, , q
. Hence by definition 1.1, G is a root square mean 

graph. 
Example 2.4: Root square mean labeling of ( )34DS P  is shown in Figure 5. 
Theorem 2.5: ( )2 1nDS P K  is a root square mean graph. 
Proof: The graph ( )2 1DS P K  is shown in Figure 6. 
Let ( )2 1G nDS P K= 

. Let the vertex set of G be 1 2 nV V V V=     where  
{ }1 2 3 4 1 2, , , , , ,1i i i i i i

iV v v v v w w i n= ≤ ≤ . Define a function ( ) { }: 1, 2, , 1f V G q→ +
 by 

 

 
Figure 5. Root square mean labeling of ( )34DS P .                                           
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Figure 6. The graph ( )2 1DS P K .                 

 

( )1 7 5, 1if v i i n= − ≤ ≤  

( )2 7 4, 1if v i i n= − ≤ ≤  

( )3 7 2, 1if v i i n= − ≤ ≤  

( )4 7 1, 1if v i i n= − ≤ ≤  

( )1 7 6, 1if w i i n= − ≤ ≤  

( )2 7 , 1if w i i n= ≤ ≤  

Then the edges are labeled as  

( )1 3 7 4, 1i if v v i i n= − ≤ ≤  

( )3 4 7 2, 1i if v v i i n= − ≤ ≤  

( )4 2 7 3, 1i if v v i i n= − ≤ ≤  

( )1 1 7 6, 1i if v w i i n= − ≤ ≤  

( )2 1 7 5, 1i if v w i i n= − ≤ ≤  

( )3 2 7 1, 1i if v w i i n= − ≤ ≤  

( )4 2 7 , 1i if v w i i n= ≤ ≤  

Then the edge labels are distinct and are from { }1,2, , q
. Hence by definition 1.1, G is a root square mean 

graph. 
Example 2.6: The labeling pattern of ( )2 14DS P K  is shown in Figure 7. 
Theorem 2.7: ( )2 2nDS P K  is a root square mean graph. 
Proof: The graph ( )2 2DS P K  is shown in Figure 8. 
Let ( )2 2G nDS P K= 

. Let the vertex set of G be 1 2 nV V V V=     where  
{ }1 2 3 4 5 6 1 2, , , , , , , ,1i i i i i i i i

iV v v v v v v w w i n= ≤ ≤ . Define a function ( ) { }: 1, 2, , 1f V G q→ +
 by 

( )1 11 5, 1if v i i n= − ≤ ≤  

( )2 11 3, 1if v i i n= − ≤ ≤
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Figure 7. The labeling pattern of ( )2 14DS P K .                                        

 

 
Figure 8. The graph ( )2 2DS P K .                          

 
( )3 11 2, 1if v i i n= − ≤ ≤  

( )4 11 1, 1if v i i n= − ≤ ≤  

( )5 11 9, 1if v i i n= − ≤ ≤  

( )6 11 7, 1if v i i n= − ≤ ≤  

( )1 11 , 1if w i i n= ≤ ≤  

( )2 11 10, 1if w i i n= − ≤ ≤  

Then the edges are labeled as  

( )5 6 11 8, 1i if v v i i n= − ≤ ≤  

( )5 1 11 7, 1i if v v i i n= − ≤ ≤  
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( )5 2 11 6, 1i if v v i i n= − ≤ ≤  

( )6 3 11 5, 1i if v v i i n= − ≤ ≤  

( )6 4 11 4, 1i if v v i i n= − ≤ ≤  

( )1 1 11 3, 1i if v w i i n= − ≤ ≤  

( )2 1 11 2, 1i if v w i i n= − ≤ ≤  

( )3 1 11 1, 1i if v w i i n= − ≤ ≤  

( )4 1 11 , 1i if v w i i n= ≤ ≤  

( )5 2 11 10, 1i if v w i i n= − ≤ ≤  

( )6 2 11 9, 1i if v w i i n= − ≤ ≤  

Then the edge labels are distinct and are from { }1,2, , q
. Hence by definition 1.1, G is a root square mean 

graph. 
Example 2.8: The labeling pattern of ( )2 22DS P K  is shown in Figure 9. 
Theorem 2.9: ( )2 3nDS P K  is a root square mean graph. 
Proof: The graph ( )2 3DS P K  is shown in Figure 10. 

Let ( )2 3G nDS P K= 
. Let the vertex set of G be 1 2 nV V V V=     where  

{ }1 2 3 4 5 6 7 8 1 2, , , , , , , , , ,1i i i i i i i i i i
iV v v v v v v v v w w i n= ≤ ≤ . 

Define a function ( ) { }: 1, 2, , 1f V G q→ +
 by 

( )1 15 11, 1if v i i n= − ≤ ≤  

( )2 15 8, 1if v i i n= − ≤ ≤  

( )3 15 6, 1if v i i n= − ≤ ≤  

( )4 15 5, 1if v i i n= − ≤ ≤  

( )5 15 3, 1if v i i n= − ≤ ≤  

( )6 15 2, 1if v i i n= − ≤ ≤  

( )1 15 , 1if w i i n= ≤ ≤  

( )2 15 14, 1if w i i n= − ≤ ≤  

( )7 15 13, 1if v i i n= − ≤ ≤  

( )8 15 12, 1if v i i n= − ≤ ≤  

Then the edges are labeled as  

( )7 1 15 11, 1i if v v i i n= − ≤ ≤  

( )7 2 15 10, 1i if v v i i n= − ≤ ≤  

( )7 3 15 9, 1i if v v i i n= − ≤ ≤  
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Figure 9. The labeling pattern of ( )2 22DS P K .                                                         

 

 

Figure 10. The graph ( )2 3DS P K .                             

 
( )8 4 15 8, 1i if v v i i n= − ≤ ≤  

( )8 5 15 7, 1i if v v i i n= − ≤ ≤  

( )8 6 15 6, 1i if v v i i n= − ≤ ≤  

( )7 2 15 14, 1i if v w i i n= − ≤ ≤  

( )8 2 15 13, 1i if v w i i n= − ≤ ≤  

( )1 1 15 5, 1i if v w i i n= − ≤ ≤  

( )2 1 15 4, 1i if v w i i n= − ≤ ≤  

( )3 1 15 3, 1i if v w i i n= − ≤ ≤  

( )4 1 15 2, 1i if v w i i n= − ≤ ≤  

( )5 1 15 1, 1i if v w i i n= − ≤ ≤  

( )6 1 15 , 1i if v w i i n= ≤ ≤  

( )7 8 15 12, 1i if v v i i n= − ≤ ≤  

 
947 



S. S. Sandhya et al. 
 

Then the edge labels are distinct and are from { }1,2, , q
. Hence by definition 1.1, G is a root square mean 

graph. 
Example 2.10: The root square mean labeling of ( )2 32DS P K  is shown in Figure 11. 

Theorem 2.11: ( )3 1nDS P K  is a root square mean graph. 
Proof: The graph ( )3 1DS P K  is shown in Figure 12. 
Let ( )3 1G nDS P K= 

. Let its vertex set be 1 2 nV V V V=     
where { }1 2 3 4 5 6 1 2, , , , , , , ,1i i i i i i i i

iV v v v v v v w w i n= ≤ ≤ . 

Define a function ( ) { }: 1, 2, , 1f V G q→ +
 by 

( )1 10 3, 1if v i i n= − ≤ ≤  

( )2 10 2, 1if v i i n= − ≤ ≤  

( )3 10 1, 1if v i i n= − ≤ ≤  

( )4 10 8, 1if v i i n= − ≤ ≤  

( )5 10 5, 1if v i i n= − ≤ ≤  

( )6 10 6, 1if v i i n= − ≤ ≤  

( )1 10 , 1if w i i n= ≤ ≤  

( )2 10 9, 1if w i i n= − ≤ ≤  
 

 

Figure 11. The root square mean labeling of ( )2 32DS P K .                                                   

 

 
Figure 12. The graph ( )3 1DS P K .                     
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Then the edges are labeled as 
( )4 1 10 5, 1i if v v i i n= − ≤ ≤  

( )5 2 10 4, 1i if v v i i n= − ≤ ≤  

( )6 3 10 3, 1i if v v i i n= − ≤ ≤  

( )1 1 10 2, 1i if v w i i n= − ≤ ≤  

( )2 1 10 1, 1i if v w i i n= − ≤ ≤  

( )3 1 10 , 1i if v w i i n= ≤ ≤  

( )4 2 10 9, 1i if v w i i n= − ≤ ≤  

( )6 2 10 8, 1i if v w i i n= − ≤ ≤  

Then the edge labels are distinct and are from { }1,2, , q
. Hence by definition 1.1, G is a root square mean 

graph. 
Example 2.12: The labeling pattern of ( )3 13DS P K  is shown in Figure 13. 
Theorem 2.13: ( )1,3nDS K  is a root square mean graph. 
Proof: The graph ( )1,3DS K  is shown in Figure 14. 

 

 
Figure 13. The labeling pattern of ( )3 13DS P K .                                         

 

 
Figure 14. The graph ( )1,3DS K .               
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Let ( )1,3G nDS K= . Let its vertex set be 1 2 nV V V V=     
where { }1 2 3 4, , , ,, 1i i i i i

iV v v v v w i n= ≤ ≤ . 

Define a function ( ) { }: 1, 2, , 1f V G q→ +
 by 

( )1 6 5, 1if v i i n= − ≤ ≤  

( )2 6 4, 1if v i i n= − ≤ ≤  

( )3 6 2, 1if v i i n= − ≤ ≤  

( )4 6 1, 1if v i i n= − ≤ ≤  

( ) 6 , 1if w i i n= ≤ ≤  

Then the edges are labeled as  
( )1 2 6 5, 1i if v v i i n= − ≤ ≤  

( )1 3 6 4, 1i if v v i i n= − ≤ ≤  

( )1 4 6 3, 1i if v v i i n= − ≤ ≤  

( )2 6 2, 1i if v w i i n= − ≤ ≤  

( )3 6 1, 1i if v w i i n= − ≤ ≤  

( )4 6 , 1i if v w i i n= ≤ ≤  

Then the edge labels are distinct and are from { }1,2, , q
. Hence by definition 1.1, G is a root square mean 

graph. 
Example 2.14: The labeling pattern of ( )1,34DS K  is shown in Figure 15. 
Theorem 2.15: ( )3 1,2ÔnDS C K  is a root square mean graph. 

Proof: The graph ( )3 1,2ÔDS C K  is shown in Figure 16. 

Let ( )3 1,2ÔG nDS C K= . Let its vertex set be 1 2 nV V V V=     

 

 
Figure 15. The labeling pattern of ( )1,34DS K .                                               
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Figure 16. The graph ( )3 1,2ÔDS C K .                                   

 
where { }1 2 3 4 5 1 2, , , , , , ,1i i i i i i i

iV v v v v v w w i n= ≤ ≤ . 

Define a function ( ) { }: 1, 2, , 1f V G q→ +
 by 

( )1 9 7, 1if v i i n= − ≤ ≤  

( )2 9 5, 1if v i i n= − ≤ ≤  

( )3 9 4, 1if v i i n= − ≤ ≤  

( )4 9 2, 1if v i i n= − ≤ ≤  

( )5 9 1, 1if v i i n= − ≤ ≤  

( )1 9 8, 1if w i i n= − ≤ ≤  

( )2 9 , 1if w i i n= ≤ ≤  

Then the edges are labeled as  

( )1 1 9 8, 1i if w v i i n= − ≤ ≤  

( )1 2 9 7, 1i if w v i i n= − ≤ ≤  

( )1 2 9 6, 1i if v v i i n= − ≤ ≤  

( )1 3 9 5, 1i if v v i i n= − ≤ ≤  

( )2 3 9 4, 1i if v v i i n= − ≤ ≤  

( )3 4 9 3, 1i if v v i i n= − ≤ ≤  

( )3 5 9 2, 1i if v v i i n= − ≤ ≤  

( )4 2 9 1, 1i if v w i i n= − ≤ ≤  

( )5 2 9 , 1i if v w i i n= ≤ ≤  

Then the edge labels are distinct and are from { }1,2, , q
. Hence by definition 1.1, G is a root square mean 

graph. 
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Figure 17. The root square mean labeling of ( )3 1,2
ˆ4 ODS C K .                                    

 
Example 2.16: The root square mean labeling of ( )3 1,2

ˆ4 ODS C K  is given in Figure 17. 
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