
Advances in Pure Mathematics, 2015, 5, 390-394 
Published Online June 2015 in SciRes. http://www.scirp.org/journal/apm 
http://dx.doi.org/10.4236/apm.2015.57038   

How to cite this paper: Garca-Planas, M.I. and Magret, M.D. (2015) Eigenvectors of Permutation Matrices. Advances in 
Pure Mathematics, 5, 390-394. http://dx.doi.org/10.4236/apm.2015.57038  

 
 

Eigenvectors of Permutation Matrices 

M. Isabel Garca-Planas, M. Dolors Magret 
Departament de Matemàtica Aplicada I, Universitat Politècnica de Catalunya, Barcelona, Spain  
Email: maria.isabel.garcia@upc.edu, m.dolors.magret@upc.edu 
 
Received 11 March 2015; accepted 26 May 2015; published 29 May 2015 

 
Copyright © 2015 by authors and Scientific Research Publishing Inc. 
This work is licensed under the Creative Commons Attribution International License (CC BY). 
http://creativecommons.org/licenses/by/4.0/ 

    
 

 
 

Abstract 
The spectral properties of special matrices have been widely studied, because of their applications. 
We focus on permutation matrices over a finite field and, more concretely, we compute the mi-
nimal annihilating polynomial, and a set of linearly independent eigenvectors from the decompo-
sition in disjoint cycles of the permutation naturally associated to the matrix. 
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1. Introduction 
As it is well known, permutations appear almost all in areas of mathematics. The study of permutation matrices 
has interest not only in matrix theory, but in other fields such as code theory, where they are a fundamental tool 
in construction of low-density parity-check codes (see [1]). 

Many properties are known of permutation matrices. In this work we focus on their spectral properties. More 
concretely, we obtain a formula for the minimal annihilating polynomial of a permutation matrix over a finite 
field and obtain a set of linearly independent eigenvectors of such a matrix. 

Permutation matrices are orthogonal matrices, and therefore its set of eigenvalues is contained in the set of 
roots of unity. The product of permutation matrices is again a permutation matrix. They are invertible, and the 
inverse of a permutation matrix is again a permutation matrix. Permutation matrices are also double stochastic; 
in fact the set of doubly stochastic matrices corresponds to the convex hull of the set of permutation matrices 
(see [2]). The characteristic polynomial of permutations matrices has also been studied (see, for example, [3]). 

Throughout the paper, we will denote by p  the finite field of p elements (p is a prime number), and assume 

2p ≠ . For any matrix ( )n pA M∈  , let us denote ( ) ( )detA nQ t A tI= −  the characteristic polynomial of A 

and by ( )AM t  the minimal annihilating polynomial of A. 
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2. Preliminaries  
Let us consider the set { }1, ,M m=  . Any permutation σ  of M can be written as a product of disjoint cycles 
(also called “orbits”). The usual notation ( )1, , ki i  of a k-cycle means that 1i  is replaced by 2i , 2i  by 3i , 
and so on being the last replacement ki  by 1i . A 1-cycle will be denoted by (i) and it means that this element 
remains unchanged (it is a fixed point of the permutation). 

There is not an only possibility of the decomposition since being the cycles disjoint they can be written in any 
order and, moreover, any rotation of a given cycle specifies the same cycle. 

See, for example, [4] and [5] for further reading about this topic. 
A monomial matrix of order n is a regular n n× -matrix which has in each row and in each column exactly 

one non-zero component. Permutation matrices are monomial matrices in which all non-zero components are 
equal to 1. Its rows are a permutation of the rows of the identity matrix. We will denote by ( )1, , nP i i  the 
permutation matrix associated to the permutation of M, ( )1, , ni i ; that is to say, the permutation matrix in 
which the non-zero components are in columns 1, , ni i . Equivalently, the permutation matrix in which the 
permutation applied to the rows of the identity matrix is ( )1, , ni i . Another property of permutation matrices is 
given below. 

The cycle type of a cycle is the data of how many cycles of each length are present in the cycle decomposition 
of the cycle. If the cycle is a product of 1m  1k -cycles, 2m  2k -cycles, ..., rm  rk -cycles, then we will write 
that its cycle type is 1 2 rm m m+ + + . Two permutations are conjugate in the symmetric group if and only if 
they have the same cycle type. 

Example 1. We list below all the permutations of the symmetric group of n elements for 2n = , 3n =  and 
4n = , expressing the decomposition of the cycle in disjoint cycles and the cycle type. For 4n > , analogous 

tables can be constructed. 
For 2n = : 

( )( )
( )

Permutation Disjoint cycles Cycle type
1 2 1 2 1 1
2 1 1,2 2

+  

For 3n = : 

( )( )( )
( )( )
( )( )
( )( )
( )
( )

Permutation Disjoint cycles Cycle type
1 2 3 1 2 3 1 1 1
2 1 3 1,2 3 1 2
3 2 1 1,3 2 1 2
1 3 2 1 2,3 1 2
2 3 1 1,2,3 3
3 1 2 1,3,2 3

+ +
+
+
+

 

For 4n = : 

( )( )( )( )
( )( )( )
( )( )( )
( )( )( )
( )( )( )

( )( )( )

Permutation Disjoint cycles Cycle type

1 2 3 4 1 2 3 4 1 1 1 1

2 1 3 4 1,2 3 4 1 1 2

3 2 1 4 1,3 2 4 1 1 2

4 2 3 1 1,4 2 3 1 1 2

1 3 2 4 2,3 1 4 1 1 2

1 4 3 2 (3, 4)(1)(3) 1 1 2

1 4 3 2 3, 4 1 3 1 1 2

+ + +

+ +

+ +

+ +

+ +

+ +

+ +
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( )( )
( )( )
( )( )
( )( )
( )( )
( )( )
( )( )
( )( )
( )( )
( )( )
( )( )
( )( )
( )
( )
( )

3 1 2 4 1,3,2 4 1 3
2 3 1 4 2,3,1 4 1 3
4 1 3 2 4,1,2 3 1 3
2 4 3 1 2,4,1 3 1 3
4 2 1 3 3,4,1 2 1 3
3 2 4 1 3,4,1 2 1 3
1 4 2 3 4,2,3 1 1 3
1 3 4 2 3,4,2 1 1 3
2 1 4 3 3,4 1,2 2 2
3 4 1 2 2,4 1,3 2 2
4 3 2 1 2,3 1,4 2 2
4 1 2 3 1,4 2,3 4
2 3 4 1 2,3,4,1 4
2 4 1 3 2,4,1,3 4
3 1 4 2 3,1,4,2 4
3 4 2 1 3,4,2,

+
+
+
+
+
+
+
+
+
+
+

( )
( )

1 4
4 3 1 2 4,3,1,2 4

 

2.1. Minimal Annihilating Polynomial of Permutation Matrices  
The minimal annihilating polynomial of a permutation matrix can be deduced from the permutation to which the 
matrix is associated. In the case where the permutation considered is the identity ( )( )1, ,P P n=   it is obvious 
that ( ) 1PM t t= − . 

In the non-trivial cases, the minimal annihilating polynomial can be determined by the decomposition of the 
permutation in disjoint cycles. This Section is devoted to prove this. 

Lemma 1. Lep 1P , 2P  be two permutation matrices associated to two permutations 2σ , 2σ  with the same 
cycle type (conjugate in the symmetric group). Then the minimal annihilating polynomials ( )

1P
M t  and 

( )
2PM t  coincide.  

Theorem 1. Let P be a permutation matrix associated to a permutation with cycle type  
31 2

1 1 2 2 3 3
rmm m m

r r+ + + + + + + + + + + +
  

     . That is to say, let us assume that P is the permutation matrix 
associated to a permutation which is disjoint product of 1m  1-cycles, 2m  2-cycles, 3m  3-cycles, ⋅⋅⋅, rm  r- 
cycles ( )1 2 3, , , , 0rm m m m ≥ . Then  

( ) ( ) ( ) ( ) ( ){ }2 31 2 31 , 1 , , 1 , , 1 rn n nn r
PM t MCM t t t t= − − − − 

 

where 0in =  if 0im =  and 1in =  if 0im > , 1 i r≤ ≤ .  
Proof. Taking into account that any permutation is written as a product of disjoint cycles, we can deduce that 

the minimal annihilating polynomials for each of the matrices associated to these disjoint cycles. It is 
straightforward to check that the permutation matrix associated to a k-cycle is annihilated by the polynomial  

( )( )11 1 1k kt t t t−− = − + + +  and thus the statement follows. 

Example 2. We list below the minimal annihilating polynomial of the permutation matrices associated to the 
permutations in the cases where 2,3,4n = . It is obvious that it depends only on the cycle-type of the cycle 
associated to the permutation matrix. 

For 2n = : 

( )( )

Cycle type Minimal annihilating polynomial
1 1 1

1 1
t

t t
+ −
− +

 



M. I. Garca-Planas, M. D. Magret 
 

 
393 

For 3n = : 

( )( )
( )( )2

Cycle type Minimal annihilating polynomial
1 2 1 1

3 1 1

t t

t t t

+ − +

− + +

 

For 4n = : 

( )( )
( )( )
( )( )
( )( )

2

3 2

Cycle type Minimal annihilating polynomial
1 1 1 1 1
1 1 2 1 1

1 3 1 1

2 2 1 1

4 1 1

t
t t

t t t

t t

t t t t

+ + + −
+ + − +

+ − + +

+ − +

− + + +

 

2.2. Eigenvectors of Permutation Matrices   
We will determine the set of eigenvectors of a permutation matrix from the decomposition of the permutation 
associated to it, in disjoint cycles. The proofs (not included) are based on straightforward computations. 

Theorem 2. Let P be a permutation matrix associated to a permutation which is a disjoint product of cycles. 
Let us assume that one of them, ( )1, , ki i  has length k, and let pλ ∈  be an eigenvalue of p, λ  an kth-root 
of unity. Then the vector having in positions 1 2, , , ki i i  as coefficients 2, , , 1kλ λ λ =  is an eigenvector of P.  

Illustrative examples 
We will consider the case where 5p =  in all the examples. Other cases can be handled analogously. 
1. Let us consider the 2-cycle ( )2,1  and the 2 2× -matrix associated to it. Then the eigenvector for the 

eigenvalue 5λ ∈ , 2 1λ = , is ( ),1λ . Since the roots of 2 1λ =  are 1 and 4, there are two linearly independent 
eigenvectors: ( )1,1  and ( )4,1 . 

2. If the permutation 3 3× -matrix is associated to the 2-cycle ( )2,3,1 , the eigenvector corresponding to the 
eigenvalue 5λ ∈ , 3 1λ = , is ( )2, ,1λ λ . The equation 3 1λ =  has only one root, 1, and therefore there is an 
unique eigenvector is: ( )1,1,1 . 

If we consider the 3 3× -permutation matrix is associated to the 2-cycle ( )3,2,1 , there is also an unique 
eigenvector: ( )1,1,1 . 

3. Let us consider now the case of 4 4× -permutation matrices associated to 4-cycles. Let λ  be a 4th-root of 
unity (there are four 4th-roots of unity: 1 1λ = , 2 2λ = , 3 3λ =  and 4 4λ = ). 

i) If the 4-cycle is ( )1,2,3,4 , the eigenvector corresponding to the eigenvalue 5λ ∈ , is ( )2 3, , ,1λ λ λ . That 
is to say, there are four linearly independent eigenvectors:  

( ) ( ) ( ) ( )1,1,1,1 , 2,4,3,1 , 3,4,2,1 , 4,1,4,1  

ii) If the 4-cycle is ( )1,3,2,4 , the eigenvector corresponding to the eigenvalue 5λ ∈ , 4 1λ = , is 
( )3 2, , ,1λ λ λ . That is to say, there are four linearly independent eigenvectors:  

( ) ( ) ( ) ( )1,1,1,1 , 2,3,4,1 , 3,2,4,1 , 4,4,1,1  

iii) If the 4-cycle is ( )1,4,3,2 , the eigenvector corresponding to the eigenvalue 5λ ∈ , 4 1λ = , is 
( )3 2,1, ,λ λ λ . That is to say, there are four linearly independent eigenvectors:  

( ) ( ) ( ) ( )1,1,1,1 , 2,1,3,4 , 3,1,2,4 , 4,1,4,1  

iv) If the 4-cycle is ( )1,2,4,3 , the eigenvector corresponding to the eigenvalue 5λ ∈ , 4 1λ = , is 
( )2 3, ,1,λ λ λ . That is to say, there are four linearly independent eigenvectors:  

( ) ( ) ( ) ( )1,1,1,1 , 2,4,1,3 , 3,4,1,2 , 4,1,1,4  

v) If the 4-cycle is ( )1,3,4,2 , the eigenvector corresponding to the eigenvalue 5λ ∈ , 4 1λ = , is 
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( )2 3,1, ,λ λ λ . That is to say, there are four linearly independent eigenvectors:  

( ) ( ) ( ) ( )1,1,1,1 , 2,1,4,3 , 3,1,4,2 , 4,1,1,4  

vi) If the 4-cycle is ( )1,4,2,3 , the eigenvector corresponding to the eigenvalue 5λ ∈ , 4 1λ = , is 
( )3 2, ,1,λ λ λ . That is to say, there are four linearly independent eigenvectors:  

( ) ( ) ( ) ( )1,1,1,1 , 2,3,1,4 , 3,2,1,4 , 4,4,1,1  

4. Let us consider the permutation matrix associated to a cycle of type 2 + 2 + 4 + 8. Then the minimal 
annihilating polynomial is: ( )( )( )( )4 21 1 1 1t t t t+ + + − . The eigenvalues in 5  are: 1 1λ = , 2 4λ = , 3 2λ =  
and 4 3λ = , being the algebraic multiplicities 4,4,2,2, respectively. 

Let us assume, for example, that the 2-cycles are: ( )9,16  and ( )13,15 , the 4-cycle is ( )1,3,5,14  and the 
8-cycle is ( )2,4,6,7,8,10,11,12 . Then the following linearly independent eigenvectors are obtained.  

( )
( )
( )
( )

( )
( )

1

2

1 0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0
0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1
1,0,1,0,1,0,0,0,0,0,0,0,0,1,0,0
0,1,0,1,0,1,1,1,0,1,1,1,0,0,0,0

4 0,0,0,0,0,0,0,0,0,0,0,0,4,0,1,0
0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,1
4,0,1,

λ

λ

=

=

( )
( )
( )
( )
( )
( )

3

4

0, 4,0,0,0,0,0,0,0,0,1,0,0
0,4,0,1,0,4,1,4,0,1,4,1,0,0,0,0

2 2,0,4,0,3,0,0,0,0,0,0,0,0,1,0,0
0,2,0,4,0,3,1,2,0,4,3,1,0,0,0,0

3 3,0,4,0,2,0,0,0,0,0,0,0,0,1,0,0
0,3,0,4,0,2,4,3,0,4,2,1,0,0,0,0

λ

λ

=

=

 

3. Conclusion 
We have found an easy way to write the minimal annihilating polynomial eigenvectors of a permutation matrix 
relating the permutation of its rows with its disjoint cycle decomposition. The results here can be generalized to 
monomial matrices, for example. 

References 
[1] Fossorier, M.P.C. (2004) Quasi-Cyclic Low-Density Parity-Check Codes from Circulant Permutation Matrices. IEEE 

Transactions on Information Theory, 50, 1788-1793. http://dx.doi.org/10.1109/TIT.2004.831841 
[2] Marshall, A.W., Olkin, I. and Arnold, B.C. (2011) Doubly Stochastic Matrices. Inequalities: Theory of Majorization 

and Its Applications. Springer, New York. http://dx.doi.org/10.1007/978-0-387-68276-1 
[3] Hamblya, B.M., Keevashc, P., O’Connella, N. and Starka, D. (2000) The Characteristic Polynomial of a Random Per-

mutation Matrix. Stochastic Processes and Their Applications, 90, 335-346.  
http://dx.doi.org/10.1016/S0304-4149(00)00046-6 

[4] Skiena, S. (1990) The Cycle Structure of Permutations 1.2.4. In: Implementing Discrete Mathematics: Combinatorics 
and Graph Theory with Mathematica, Addison-Wesley, Reading, 20-24. 

[5] Fripertinger, H. (2011) The Number of Invariant Subspaces under a Linear Operator on Finite Vector Spaces. Ad-
vances in Mathematics of Communications, 2, 407-416. http://dx.doi.org/10.3934/amc.2011.5.407 

http://dx.doi.org/10.1109/TIT.2004.831841
http://dx.doi.org/10.1007/978-0-387-68276-1
http://dx.doi.org/10.1016/S0304-4149(00)00046-6
http://dx.doi.org/10.3934/amc.2011.5.407

	Eigenvectors of Permutation Matrices
	Abstract
	Keywords
	1. Introduction
	2. Preliminaries 
	2.1. Minimal Annihilating Polynomial of Permutation Matrices 
	2.2. Eigenvectors of Permutation Matrices  

	3. Conclusion
	References

