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Abstract 
A state feedback method of reduced order for eigenvalue assignment is developed in this paper. It 
offers immediate assignment of m  eigenvalues, with freedom to assign the remaining n m−  ei-
genvalues. The method also enjoys a systematic one-step application in the case where the system 
has a square submatrix. Further simplification is also possible in certain cases. The method is 
shown to be applicable to uncontrollable systems, offering the simplest control law when having 
maximum uncontrollable eigenvalues.  
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1. Introduction 
The problem of eigenvalue assignment is well established in control theory where numerous methods have been 
proposed—each with certain advantages and disadvantages. However, a need still arises for methods which are 
simple in concept and can be easily implemented. A fulfillment to such need is contributed by this paper. 

As compared with some previous methods for eigenvalue assignment, this method doesn’t require specific 
transformations, knowledge of the open loop eigenvalues or the determination of the closed loop eigenvectors. 
The method utilizes submatrices stemming from a particular state transformation. The transformation is only 
needed in the development of the method and not the actual assignment of the eigenvalues. 

The proposed method tackles eigenvalue assignment by manipulating lower order matrices, hence enjoying 
some numerical advantages. Furthermore, m  eigenvalues are assigned independently of the remaining n m−  
eigenvalues. The method is simplified when 2n m= , where m  is the rank of B , resulting in a systematic 
feedback law requiring only the specification of two mxm  matrices. It can be further simplified in cases where 
the columns of B  and AB  constitute an invertible matrix. 
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The method is also shown to apply to uncontrollable systems where certain features of some submatrices are 
pointed out, thus providing additional degrees of freedom in the control law. Furthermore, in the case of maxi-
mum number of uncontrollable eigenvalues, the controller is shown to exhibit its simplest form and offer arbi-
trariness which may be utilized in fulfilling a myriad of design objectives.  

Finally, the systematic and straightforward nature of the method is demonstrated by two examples. 

2. The Nonrecursive Feedback Law 
The assignment law considered is a state feedback law of the form u Kx= −  applied to the system 

x Ax Bu= +                                            (2.1) 

where nx∈ , mu∈ , the rank of B  is m , ( ).R  and ( ).null  refer to the range and null spaces of ( ). . 
For the development of the simplified methods, a state transformation T is used where x Tz= , leading to 

system and input matrices of the form conformal with those in [1]. 

zz Fz B u= +                                        (2.2) 

where 

1 21 1

3 4

such that
0

m
z

mxm

F F I
F T AT B T B

F F
− −   

= = = =   
   

                         (2.3) 

Such requirement on 1T B−  necessitates [ ]T B N=  where N  is an nxn m−  matrix chosen to ensure the 
nonsingularity of T . The inverse of T  is represented by 

1
g

g

BT
N

−  
=  
 

                                          (2.4) 

where gB , and gN  can be looked upon as a name for that partition of 1T −  related to B  and N  or as 
unique generalized inverses of matrices [2] [3]. The generalized inverses are unique in our case since they satis-
fy the additional conditions 

, , 0, and 0g g g g
r n rB B I N N I B N N B−= = = =                          (2.5) 

Using the terminology above, the submatrices become 

1 2 3 4, , , andg g g gF B AB F B AN F N AB F N AN= = = =                        (2.6) 

In addition 
g g

nBB NN I+ =                                         (2.7) 

With reference to the recursive method of Hassan et al. [1], m  eigenvalues are assigned through an mxm  
matrix mΛ  while the remaining n m−  eigenvalues are assigned through the reduced order matrix pair 
( )4 3,F F  i.e. the n m−  eigenvalues to be assigned are eigenvalues of 4 3F F K ∗− . The reduced order matrix 
K ∗  is determined independently of .mΛ  

The recursive method [1] is now manipulated to result in a non-recursive feedback law. 
According to [1]; having undergone all recursive steps the final feedback matrix is given by 

( ) 1
mK D F D T −= −Λ                                      (2.8) 

where 

[ ]mD I K=                                         (2.9) 

i.e. 

( )* * 1
m m mK I K F I K T −   = −Λ     

substituting F  as given in (2.3) and 1T −  as given in (2.4) yields 
* * * 1

1 3 2 4m mK F K F F K F K T − = + −Λ + −Λ   
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* * *
1 3 2 4

g g
m mK F K F B F K F K N   = + −Λ + + −Λ     

Substituting the values of 1 2 3 4, , , andF F F F  as in (2.6), gives 
* * *g g g g g g g g g g

m mK B ABB K N ABB B B ANN K N ANN K N= + −Λ + + −Λ  

( ) ( ) ( )* *   ?           g g g g g g g g
mK B A BB NN K N A BB NN B K N= + + + −Λ +  

Using the fact that  g g
nBB NN I+ =  as in (2.7), the equation can be finally put in the form 

( ) ( )* * ?  g g g
m

gK B K N A B K N= + −Λ +                          (2.10) 

The advantage of this feedback law as given in (2.10) is that assignment of n eigenvalues is split into inde-
pendent assignment of m  eigenvalues through mΛ  and assignment of n m−  eigenvalues of 4 3F F K ∗−  
through a suitable K ∗ . Existing non-recursive methods not requiring state transformation like [4] and [5] or any 
other eigenvalue assignment method can be used to determine K ∗ . In addition, since 4F  has dimension 
n m− , the matrix K ∗  has a reduced dimension mxn m− . Further utilization of (2.10) is to be followed in 
Section 6 when it comes to assignment of uncontrollable eigenvalues, where it is shown that a further reduction 
in the order of K ∗  is possible to the extent that K ∗  can be taken as zero in certain cases. 

3. A Simplified Method When 2n m=  and the System Is Controllable 
Although the previous development resulted in a controller which manipulates lower order matrices; the selec-
tion of K ∗  remains an eigenvalue problem to be solved. Known methods of eigenvalue assignment can be used 
with the benefit of dealing with reduced order matrices, see [6]. However, further simplification can be made in 
the case where 2n m=  and 3F  is invertible as developed below. 

Due to the presence of identical terms within the parenthesis’s, we simplify one term in the state feedback 
matrix 

( ) ( )* *   m
g g g gK B K N A B K N= + −Λ +                             (2.10) 

where mΛ  assigns m  eigenvalues and K ∗  assigns the remaining n m−  eigenvalues through 
*

4 3 n mF F K −− = Λ                                        (3.1) 

Assuming the nonsingularity of 3F  and that the remaining n m−  eigenvalues are eigenvalues of the matrix 
n m−Λ , then 

( )* 1
3 4      n mK F F−

−= − Λ                                      (3.2) 

Substituting the value of K ∗  in any term within a parenthesis of (2.10) gives 

( )1 1 1
3 4 3 4 3

1 1
3 3

                     

        

g g g g g
n m n m

g g g g
n m

B F F N B F F N F N

B F N AN N F N

− − −
− −

− −
−

+ −Λ − Λ

+ − Λ

=

=

+
 

Using (2.7), and recalling 3
gF N AB=  

( )

1 1 1
3 3 3

1

1
3

3

1
3

   ?  

   

g g g g g
n m

g

g g
m

g
n m

n

B F N A F N ABB F N

F N A F N

F N A N−
−

− − −
−

− −
−

+= − − Λ

−=

Λ

Λ

= −
                       (3.3) 

substituting this value for the two terms in the parenthesis’s in Equation (2.10) gives 

( ) ( )1 1
3 3

g g g g
n m m n mK F N A N A F N A N− −
− −= − Λ − Λ −Λ                      (3.4) 

Some remarks regarding the control law are stated below. 
 A necessary condition for the invertibility of 3F  is the controllability of the system. 

To see this, suppose 3F  is nonsingular and the system is uncontrollable, then according to (3.4) it is possible 
to change all n  eigenvalues of A , contradicting the established fact that uncontrollable eigenvalues cannot be 
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changed by state feedback. Hence, only if the system is controllable will 3F  be nonsingular. 
 No need to do the state transformation. The determination of (2.4) is only needed to extract gN  and to 

subsequently evaluate the inverse of 3F  (equals gN AB ). 

 Assignment of n  eigenvalues is achieved through 
2 2
n n
×  lower order mΛ  and n m−Λ  matrices, which 

can be diagonal, Jordan forms, or skew–symmetric when it comes assignment of complex eigenvalues. 
 As compared with other assignments laws the highest power of A  involved is two while it’s n  for certain 

celebrated methods like Ackermann’s method [7]. This gives numerical advantages in terms of reducing ma-
trix multiplication rounding errors, as demonstrated by Petkov [8], who showed that matrix multiplications is 
ill conditioned. 

4. Further Simplification 
Additional simplification can be done to the form of (3.4). By replacing mΛ  by 1

3 3F M F− Λ  where mΛ , MΛ , 
and 1

3 3F M F− Λ  have the same set of eigenvalues, 

( ) ( )1 1 1
3 3 3 3

g g g g
n m M n mK F N A N A F F F N A N− − −
− −= − Λ − Λ −Λ  

( )1 2
3

g g g g
n m M M n mK F N A N A N A N−
− −= − Λ − Λ +Λ Λ  

Ending up with a compact form for K as 

( )1 2
3 ( )g g g

M n m M n mK F N A N A N−
− −= − Λ + Λ +Λ Λ                         (4.1) 

 If N  is chosen as a matrix representation of ( )Tnull B , then gN  can be obtained independently of B , 

see Lancaster [9] and Schott [10]. Also, theorem 6.4.5 pp 115 of Graybill’s book [2] states, if [ ]   T B N=  

and   0TB N = , then andg gB N  can be determined independently as ( )–1
    g T TB B B B=  and  

( )–1
  g T TN NN N=  respectively. The left inverse of gN  now involves an inverse of an n mxn m− −   

symmetric TN N  matrix instead of the inverse of the generally non-symmetric nxn  T  matrix needed to 
extract gN . 

 The choice of ( ) matrix representation of  TN null B=  has many advantages. 

 The selection of N is systematic. 

 Such choice gives the advantage of inverting an nxn  matrix through inversion of symmetric 
2 2
n n
×  ma-

trices; thus providing numerical advantages.  
 Further computational advantages are gained if the Gram-Schmidt ortho-normalization procedure is used 

(can be easily programmed on a digital computer and is already within the MATLAB function library). In 
this case, if ( ) matrix representation of  TN null B=  is orthonormal, then g TN N= .  

A further simplification to (4.1) is possible in the case where N  is taken as AB . In which case, 3F  be-
comes the unity matrix offering a more simplified form given by.  

( ) ( )( ) ( )2g g g
M n m M n mK AB A AB A AB− −= − Λ + Λ +Λ Λ                       (4.2) 

So, the design process now reduces to the selection of andm n m−Λ Λ  which specify the desired eigenvalues 
and the calculation of ( )gAB  according to (2.5). 

5. The Uncontrollable Case 
The non-recursive feedback law can still be applied when the system is uncontrollable. In our case, and as has 
been shown by [11], the pair 4F  and 3F  is the uncontrollable pair, i.e. the uncontrollable eigenvalues are ei-
genvalues of 4F . 
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For the case 2n m= , the uncontrollability of the system implies the following: 
a) The matrix 3F  has to be a singular matrix, otherwise an 3F  exists which can reassign arbitrarily all ei-

genvalues of 4F . This, together with the m  arbitrary eigenvalues assigned by mΛ  makes the total number of 
arbitrarily assigned eigenvalues n , an impossibility for an uncontrollable system as proved in the control lite-
rature.  

b) Since 3F  has to be singular, then it has columns which are scalar multiple of each other, or linear combi- 
nations of each other. To see this, due to uncontrollability, the matrix [ ]  B AB  is an nxn  square matrix which 
can never have the full rank n . Since B  has necessarily rank 2m n= , this leaves AB  with a rank less than 

m , indicating a dependence of ( ) ( ) on RR AB B  and since 3    and 0g gF N AB N B= =  then gN  may annihi- 
late AB . In the case of annihilation, 3F  will have at least a zero column, say the qth  column. Such fact 
renders the qth  row of K ∗  immaterial since the product 3F K ∗  will not depend on that row. This provides 
arbitrariness in the qth row of K ∗  which can be utilized further in the design of the controller. It can lead to 
manipulating lower order matrices within K ∗ , gaining calculation efficiency. 

In the light of the above facts since a nonsingular 3F  doesn’t exists, the formula given in (3.4) cannot be 
used. Instead, any eigenvalue assignment method available in the control literature (see [12]-[14]) can be used to 
calculate K ∗  with the advantage of dealing with matrices of reduced order. 

6. Justification of 0K ∗ =  for the Case of Maximum Number of  
Uncontrollable Eigenvalues 

If the system has the maximum number of n m−  uncontrollable eigenvalues, then 3F  is identically the zero 
matrix. This has to be the case, otherwise, a nonzero 3F  is capable of changing some of these eigenvalues, an 
impossibility since the total number of uncontrollable is assumed to be n m− .  

However, although (3.4) cannot be used to get the final feedback matrix K , a most simple form of (2.10) is 
now considered. The simplicity hinges on letting 0K ∗ = . That is.  

g g
mK B A B= −Λ                                      (6.1) 

The justification for this form stems from the fact that in our case all uncontrollable eigenvalues are those of 
4F , and can be specified by n m−Λ  which can be 4F  itself, in which case, and according to (3.1), 3F K ∗  will 

be zero, in which case K ∗  can be taken as zero. Substituting 0K ∗ =  in (2.10) results in (6.1). 
Seeing it differently, since in our case 3F  is identically zero, this makes the product of 3F K ∗  zero. This 

renders the value of K ∗  immaterial, so any K ∗  can be taken including the case 0K ∗ = . 
Note that K  in (6.1) doesn’t depend on 

gN , so we can relax the uniqueness of gB ; just requiring /2
g

nB B I= . 

This is because there always exists a nonunique gB  with a corresponding N  such that 0gB N =  as required by 

conditions (2.4). A systematic choice for gB  is ( )–1
    g T TB B B B= .  

Note that K ∗  can still be totally arbitrary. Such choice can be used to satisfy certain design requirements 
like controller matrix norm, sensitivity studies, eigenvector specifications, etc. For such cases, one has to resort 
to (2.10). 

7. Examples 
Example 1: Consider the controllable system given by 

5 4 2 1 3 3
4 4 1 2 0 2
4 6 2 4 3 3
1 0

a

2

d

3 1 2

n BA

−   
   −   =
   
   
   

=  

It is required to assign the eigenvalues −2, −3 and −5 ± j4. 
To extract F3, MATLAB was used with N  taken as an orthonormal representation of ( ) Tnull B , resulting 

in 
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0.9091 0.3636 1.0482 1.1472
6.5 10.5 1.4487 1.1094

4.1983 4.4348 2.514 2.378
2.7735 9.4299 1.312 1.9231

F

− − 
 − =
 
 
− − − 

 

Hence, to five significant digits 

1
3 3

4.1983 4.4348 0.3455 0.1625
and

2.7735 9.4299 0.1016 0.1538
F F −   

= =   − − −   
 

The matrices and m n m−Λ Λ  may be chosen as 

0 1 5 4
   and

6 5 4 5m n m−

−   
Λ = Λ =   − − − −   

 

Using the control law given by (3.4) results in the following state feedback matrix 

6.5185 0.526 3.9503 11.6531
4.4848 2.3398 6.853 0.1 3

  
9

 K
− 

 − − 
=  

To check, the system closed loop matrix   –cA A BK=  is 

38.0097 1.4414 30.4098 35.3804
12.9696 0.6797 14.7059 2.3859
37.0097 0.5586 30.4098 30.3804
23.0065 3.6276 18.6065 21.9203

cA

− − − 
 − − =
 − −
 

− − − 

 

Which has the eigenvalues −2, −3, −5 + j4 and −5 − j4. 
Example 2: Consider the following system [15] where

 
2 3 2 1 0 1
2 3 0 0 1 2

; and 
2 2 4 0 2 1
2 2 2 5 1 0

A B

   
   − − −   = =
   − − − −
   
− − − −   

 

This system is uncontrollable with −1 and −4 being the uncontrollable eigenvalues. It is desired to assign the 
two eigenvalues −4 and −5. 

So let 

4 0
0 5m

− 
Λ =  − 

 

To expose the controllable and uncontrollable eigenvalues, we may take 
T0 0 1 0

0 0 0 1
N  
=  
 

 
Yielding 

3 0 4 2 1 0
0 2 2 1 0 1

; and
0 0 2 3 0 0
0 0 6 7 0 0

zF B

−   
   −   = =
   
   

− −   

 

Which shows that 3 0F = , −2 and −3 are the controllable eigenvalues and that the uncontrollable eigenvalues 

are those of 
2 3
6 7

 
 − − 

; i.e. −1 and −4. In fact, we need not bother finding them as they aren’t needed in the 

calculation of K. 

Besides, the inverse of T isn’t needed to extract gB . Instead, gB  can be taken as ( ) 1g T TB B B B
−

=  giving 
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0.2 0.1 0.4 0.3
0.3 0.4 0.1 0.2

gB
− − 

=  − − 
 

Using K as in (6.1) yields a state feedback K matrix, say 1K K=  

1

1.6 0.7 0.2 0.1
2.7 0.1 0.1 0.3

K
− − 

=  − 
 

Another gB , just satisfying g
mB B I=  with no regard to any N may be 

0 0 0 1
1 0 0 0

gB  
=  
 

 

Which results in a different state feedback K matrix, say 2K K=  

2

2 2 2 1
7 3 2 1

K
− − − − 

=  
 

 

Both 1K  and 2K  result in the assignment of two eigenvalues −4 and −5 and the uncontrollable eigenvalues 
−1 and −4. 

8. Conclusion 
The paper has considered a method for eigenvalue assignment based on a scheme of recursive nature. The me-
thod involves algebraic manipulation of lower order matrices with an advantage of not requiring state transfor-
mation or eigenvectors determination. The method is further simplified in the case where 2n m= . The method 
is extended to deal with uncontrollable systems where it is shown that K ∗  exhibits a certain degree of arbitra-
riness, to the extent of resulting in the simplest form for the state feedback law. The examples considered dem-
onstrate the ease of use of the method. 

References 
[1] Hassan, M.M. and Amin, M.H. (1987) Recursive Eigenstructure Assignment in Linear Systems. International Journal 

of Control, 45, 291-310. http://dx.doi.org/10.1080/00207178708933729 
[2] Graybill, F.A. (1983) Matrices with Applications in Statistics. Wadsworth Publishing Company, Belmont. 
[3] Green, P.E. and Carroll, J.D. (1976) Mathematical Tools for Applied Multivariate Analysis. Academic Press, New York. 
[4] El-Ghezawi, O.M.E. (1991) A Two-Stage Method for Eigenvalueigen Vector Assignment. Dirasat, 17, 65-77. 
[5] D’azzo, J.J. and Houpis, C.H. (1995) Linear Control Systems: Analysis and Design. 4th Edition, McGraw-Hill, New 

York. 
[6] El-Ghezawi, O.M.E. (2010) Unification and Improvement of Certain Methods for Eigenvalue Assignment. Dirasat, 37, 

206-213. 
[7] Ackermann, J. and Utkin, V.I. (1998) Sliding Mode Control Design Based on Ackermann’s Formula. IEEE Transac-

tions on Automatic Control, 43, 234-237. http://dx.doi.org/10.1080/00207178708933729 
[8] Petkov, P., Christov, N. and Konstantinov, M. (1991) Computational Methods for Linear Control Systems. Prentice 

Hall, Upper Saddle River. 
[9] Lancaster, P. and Tismentasky, M. (1985) The Theory of matrices with Applications. 2nd Edition, Academic Press, 

New York. 
[10] Schott, J.R. (1997) Matrix Analysis for Statistics. John Wiley, Hoboken. 
[11] El-Ghezawi, O.M.E. (1997) Recursive and Modified Recursive Eigenstructure Assignment of Uncontrollable Systems. 

Dirasat, 24, 620-628. 
[12] Liu, G.P. and Patton, R.J. (1998) Eigenstructure Assignment for Control System Design. John Wiley & Sons, New York. 
[13] White, B.A. (1995) Eigenstructure Assignment: A Survey. Proceedings of the Institution of Mechanical Engineers, 209, 

1-11. http://dx.doi.org/10.1243/pime_proc_1995_209_357_02 
[14] Sobel, K.M., Shapiro, E.Y. and Andry, A.N. (1994) Eigenstructure Assignment. International Journal of Control, 59, 

13-37. http://dx.doi.org/10.1080/00207179408923068 
[15] Friedland, B. (2005) Control System Design: Introduction to State Space Methods. Dover Publications, New York.  

http://dx.doi.org/10.1080/00207178708933729
http://dx.doi.org/10.1080/00207178708933729
http://dx.doi.org/10.1243/pime_proc_1995_209_357_02
http://dx.doi.org/10.1080/00207179408923068

	Simplified Methods for Eigenvalue Assignment
	Abstract
	Keywords
	1. Introduction
	2. The Nonrecursive Feedback Law
	3. A Simplified Method When  and the System Is Controllable
	4. Further Simplification
	5. The Uncontrollable Case
	6. Justification of  for the Case of Maximum Number of Uncontrollable Eigenvalues
	7. Examples
	8. Conclusion
	References

