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Abstract 
We propose and demonstrate an optical implementation of a quantum key distribution protocol, 
which uses three-non-orthogonal states and six states in total. The proposed scheme improves the 
protocol that is proposed by Phoenix, Barnett and Chefles [J. Mod. Opt. 47, 507 (2000)]. An addi-
tional feature, which we introduce in our scheme, is that we add another detection set; where each 
detection set has three non-orthogonal states. The inclusion of an additional detection set leads to 
improved symmetry, increased eavesdropper detection and higher security margin for our pro-
tocol. 
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1. Introduction 
Quantum key distribution (QKD) is a cryptographic protocol which allows two communicating parties, conven-
tionally called Alice and Bob, to distribute a secret key in such a way that the presence of an eavesdropper, Eve 
could be revealed [1]. QKD makes use of quantum mechanical concepts such as the Heisenberg uncertainty 
principle and the no-cloning theorem in order to ensure that Eve cannot gain non-negligible amount of informa-
tion without being detected, even if her computational power is unlimited [2]. Since the proposal of the BB84 
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protocol by Bennett and Brassard in 1984, both theorists and experimentalist have invented various protocols 
due to various security needs and applications. For example, in 1991, Ekert [3] extended the idea of the BB84 
protocol by introducing quantum entanglement and the violation of Bell’s theorem [1]. Several variations of 
these protocols include: Bennett 1992 (B92) [4], six states [5], the Scarani Acn Ribordy Gisin 2004 (SARG04) 
[6], the differential-phase shift (DPS) [7], the coherent-one-way (COW) [8] and the Phoenix Barnett and Chefles 
2000 (PBC00) protocol [9]. The PBC00 protocol is based on the B92 protocol, with the main difference between 
the two beings that the latter uses two states whilst the former uses three states. Consequently, the PBC00 pro-
tocol is more symmetrical (in the sense that either Alice or Bob, but not both, can declare unused observables) 
and shows lower qubit losses than the B92 protocol. Our proposed scheme improves the PBC00 protocol by 
making use of additional detection set which has three non-orthogonal states. Moreover, the additional detection 
states allow increased possibility for eavesdropper detection. As a result, this greatly improves the security of 
our protocol. 

2. Operation of Our Protocol 
In our scheme, Alice uses one of the three mutually non-orthogonal states in one set to encode her bit of infor- 
mation, and on the receiving side, Bob uses one of the three mutually non-orthogonal states of the other set to 
make measurements. The protocol is realized through the following steps, as shown in Table 1: 

1) Alice randomly and with equal probability prepares and sends quantum signals using any of the two detec- 
tion sets. Detection set0 is made up of the following mutually non-orthogonal states: 0A = ,  

1 30 1
2 2

B = −  and 1 30 1
2 2

C = − − , while detection set1 is made up of these states: 1A′ = ,  

3 10 1
2 2

B′ = +  and 3 10 1
2 2

C′ = − . 

2) Bob performs a positive operator valued measurement (POVM) on each received signal, using any of the 
two detector sets. He then announces to Alice which detection set he used. They discard signals corresponding 
to time slots where they used similar detection sets for both preparation and measurement, and keep the rest. 
This is shown as the first result in the table. 

3) On the remaining measured signals, Bob announces the time slots where he received no detections at all. 
Again, they discard the signals corresponding to these time slots and keep the rest.  

4) Alice then announces one of the states she did not send. After this, Bob would then know what state Alice 
sent, and the signals corresponding to such time slots would be used to construct the secret key. 
 
Table 1. An illustration of exchange of qubits between Alice and Bob showing some various possibilities and the result of 
the inferred bits.                                                                                           

Time slot 1 2 3 4 5 6 7 8 9 10 

Alice prepares A′  A  B′  C  A′  C′  B  A  A  C′  

Bob detection set 
choice 0 1 1 1 0 1 1 0 1 0 

Result 1 1 0 1 1 0 1 0 1 1 

Bob measures BM  BM   CM ′  BM   AM ′   BM ′  AM  

Result 1 1  0 1  1  1 1 

Alice says not in C′  C    B′   C   C  B′  

Bob says √  √    ×   √   √  √  

Sequence A C′ ′  AC      BC   AC  C B′ ′  

Inferred bit 1 1     0  1 1 
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Consider the states of detection set0 to be 0A = , 1 30 1
2 2

B = −  and 1 30 1
2 2

C = + , while  

detection set1, which has a set of states orthogonal to those in detection set0, has the states: 1A′ = ,  
3 10 1

2 2
B′ = +  and 3 10 1

2 2
C′ = − . 

In order to assign bit values shown in Table 1, the following procedure is followed. The signals that have not 
been eliminated are used for this protocol, and this is shown by the first result in the table. From this, Alice and 
Bob will know which state was sent and which state she announces that she did not send. Detection set0 is 
assigned the basis “0” and detection set1 is assigned basis state “1”. The major additional feature, which happens 
in our protocol, occurs when Alice sends signals in a particular detection set and Bob uses the same detection set 
to make measurements. During this time slot, they discard their results. This happens in time slots 3, 6 and 8. In 
time slot 1, Alice prepares the state A′  which in fact corresponds to basis in the detection set1, Bob uses 
detection set0 to make the measurements, since they use different detection sets, they use signals from this time 
slot and they record “1” (yes). Bob then performs some measurements on the signals, which he received. Since 
Alice has announced the result as not a C′  (this is two hops clockwise from A′ ), so they record a “1”. The 
sequence becomes A C′ ′  and then the inferred bit is “1”. If the state that Alice announces is one hop away in a 
clockwise direction they record a “0” as in time slot 3. Moreover, the bit inferred will also be “0”. 

3. Optimum Measurements 
In this section we begin by describing some of the most important aspects of information, i.e., measurement of 
information. Information can be measured according to its degree of uncertainty, i.e., if an event is likely then 
one gains little information in learning that it finally occurred and the converse is true. This brings us to the 
concept of entropy [10], specifically the Shannon entropy. The Shannon entropy is used to quantify the expected 
value of information contained in a message. It is defined as 

( ) ( ) ( )logX X
i

H X P i P i= −∑                                   (1) 

where X  is a discrete random variable. One can also describe the Shannon mutual information of two events 
X  and Y . The Shannon mutual information gives the amount of information that one can obtain from the 

bitstring shared between Alice ( )X  and Bob ( )Y . It is defined in terms of conditional probability ( )P j i  as: 

( ) ( ) ( )
( ) ( )

,
: , log XY

XY
ij X Y

P i j
I X Y P i j

P i P j
= ∑                          (2) 

where ( ),XYP i j  is the joint probability, and ( )XP i  and ( )YP j  are the marginal probabilities of the input 
and output letters ix  and jy , respectively. In the context of QKD, this can be interpreted as the amount of 
information that one (Eve) additionally obtains when considering both Alice and Bob’s source, and not only 
Alice’s source X. The eavesdropper can use any strategy in order to obtain any information shared between 
Alice and Bob. For example, Eve can obtain as much information as possible from the long strings by maxi- 
mizing the Shannon mutual information. On the other hand, if Eve wants to obtain as much information as 
possible from single measurements then she has to maximize the discrimination probability. The probability of 
correctly discriminating between states is given as 

( ),d j
j

P P j jχ= ∑                                      (3) 

where jχ  is the apriori probability of the state j  and ( ),P i j  refers to the probability that the state j  is 
sent and that the measurement performed by Eve shows the outcome j . In the case of six apriori equal likely 
symmetric states, the discrimination probability is expressed as  

max 5
6dP = .                                        (4) 

By introducing an extra detection set, we obtain a discrimination probability which is higher than that of the 
original scheme (where max 2 3dP = ). This means that the proposed protocol makes it difficult for Eve to dis- 
criminate between the states sent by Alice to Bob. The probability that the state is incorrectly detected as one of 
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the other five states is 1/30. The optimum measurement has six elements, which are defined as 

( )5ˆ ,    , , , , ,
6jE j j j A B C A B C′ ′ ′= =                          (5) 

Since these elements are positive semi-definite and form an identity, they are positive operator-valued mea- 
sures (POVMs). The maximum value of the mutual information can be achieved by a POVM with six elements 
described by 

( )5ˆ ,    , , , , ,
6jE j j j A B C A B C′ ′ ′= =                          (6) 

which implies that the system is not in one of the signal states. The signal states are the ones that carry the 
necessary information from which the secret key would be extracted. 

4. Eavesdropper Detection 
Alice and Bob can detect the presence of an eavesdropper during the classical communication. This is achieved 
when they realize that the bits sent by Alice and measured by Bob are different. Let’s consider the case where 
Alice sends the state A . When Eve performs optimal state discrimination measurement, she will obtain the 
measurement results , , , , ,A B C A B C′ ′ ′  with probabilities 5/6, 1/30, 1/30, 1/30, 1/30 and 1/30, respectively. 

If Alice sends the signal state A , the average state which Bob receives is then defined as  

5 1 1 1 1 1
6 30 30 30 30 30
4 1    .
5 25

A A A B B C C A A B B C C

A A

ρ ′ ′ ′ ′ ′ ′= + + + + +

= +
           (7) 

We have simplified the above equation by applying the fact that  

6 ˆ
5

A A B B C C A A B B C C′ ′ ′ ′ ′ ′+ + + + + =                       (8) 

By performing optimal mutual information measurement, it follows that Eve will obtain the results of  
1
5

B B , 1
5

C C , 1
5

A A′ ′ , 1
5

B B′ ′ , 1
5

C C′ ′ , each with probability 1/5. Then a density matrix  

that describes the average state received by Bob is written as  

1 1 1 1 1
5 5 5 5 5
6 1    
25 5
4 19    ,
5 25

A B B C C A A B B C C

A A

A A

ρ ′ ′ ′ ′ ′ ′= + + + +

= −

= +

                      (9) 

that is the state with a similar form as that obtained for the maximum state-discrimination measurement. 
For detection set0, the protocol will give a correct key bit if Bob measures BP , and CP  and gets the result 1 

and if Alice reveals that she didn’t send C  or B  respectively. Conversely, for detection set1, the protocol will 
give a correct key bit if Bob measures BP ′ , and CP ′  and gets the result 1 and if Alice reveals that she didn’t 
send C′  or B′  respectively. The probability for this to happen is  

( )
2 2 22 2

1 1 Tr
6 5
1 1 1 1 1 1 1    
6 25 5 5 5 5 5
11    ,

150

C A A A A AB BC A CP P P P P P

B A C A A A B A C A

ρ ρ ρ ρ ρ′′ ′= + + + +

 ′ ′ ′= + + + + + 
 

=

          (10) 
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where 1/6 is the probability for Bob to have chosen the given measurement and 1/5 is the probability that arises 
from Alice’s random choice of announcing which state she did not send. This probability is less than the one 
proposed in [9]. However, our scheme makes it easier for the presence of Eve to be detected. In detection set0, if 
Alice prepares state A , the probability that Eve’s activity will produce an incorrect key bit is simply the pro- 
bability that Bob chooses to measure AP  and obtains a non-zero number. The opposite also holds for detection 
set1. 

( )1 1 1 1Tr
6 6 25 150M AAP P ρ= = =                                  (11) 

As compared to the previous scheme, we realize that in our protocol, there is a higher chance that Eve will be 
detected. If Eve performs an intercept and resend attack, she will introduce errors in Alice’s and Bob’s shared 
key with the probability ( ) ( )( )1 6 1 6 11 150 61 150+ + = . 

Ultimately the average state received by Bob will be  

4 1 1 1 1 1
5 25 25 25 25 25
6 4    .

125 25

A A A B B C C A A B B C C

A A

ρ′ ′ ′ ′ ′ ′ ′= + + + + +

= +
        (12) 

For Bob, the probabilities of correct detection CP  and incorrect detection MP  are given by  

( )1 4 Tr
6 5
24    ,
625

C A A A A AB BC A CP P P P P Pρ ρ ρ ρ ρ′′ ′′ ′ ′ ′ ′= + + + +

=
                      (13) 

and ( )1 Tr 1 125
6M AAP P ρ′= = , respectively. This shows another improvement of our scheme since the pro-  

bability that Bob will generate an incorrect key bit is lower than in the original scheme. This means that most of 
the time Bob will be able to correctly generate the correct bit. 

5. Optical Implementation 
We provide an optical implementation of this scheme in Figure 1. Different trine and anti-trine measurement 
values for the proposed protocol are depicted in Table 2. In each arm three polarising beamsplitters and two 
half-wave plates are used. On the right had side, the polarising beamsplitters transmit horizontally polarised light 
and reflect the vertically polarised light. In the left arm, the opposite happens, the vertically polarised light is 
transmitted and the horizontally polarised one is reflected. In Table 2, we show the signal states at different 
locations. For each set, the input state after the non-polarising beamsplitter at position 2 goes through the 
polarising beamsplitter. On the right arm, between positions 3 and 4, we have a half-wave plate, which is given 
by the following unitary operator:  

0
1

1 3 2 3

2 3 1 3
U

 −
 =
 
 

.                                  (14) 

In a like manner, on the left arm, between positions 3 and 4, we have a half-wave plate, which is given by the 
following unitary operator: 

1
1

1 3 2 3

2 3 1 3
U

 
 =
 − 

.                                  (15) 

In both arms, these unitary operators are responsible for producing the states at position 4. On the right arm, 
the vertically polarised light at position 7, will be detected by D4, while on the left arm at the same position, the 
horizontally polarised light will be detected by D1. Between positions 8 and 9 of the right arm, the following 
unitary operator describes the half-wave plate: 
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Figure 1. An optical implementation of the proposed six-state QKD protocol. The 
part S is the signal from Alice, and this signal goes a non-polarising beamsplitter 
and either goes to the left arm or right arm. We assume the interferometers used in 
each arm are balanced. The left arm represents the set0 measurements and the right 
arm represents the set1 measurements. From position 2, the polarising beamsplitters 
are used together with half-wave plates. The signals states for the positions marked 
are shown in Table 2 and the single photon detectors are marked D1 - D6.             

 
Table 2. States at each location, as depicted in Figure 1.                                                         

1 2 3 4 7 8 9 10 11 

1
0
 
 
 

 
1
0
 
 
 

 
1
0
 
 
 

 
1 3

2 3

 
 
 
 

 
0

2 3
 
  
 

 1 3
0

 
  
 

 
1 6

1 6

 
  
 

 
0

1 6
 
  
 

 1 6
0

 
  
 

 

1 2

3 2
 
  − 

 
1 2

3 2
 
  − 

 
1 2
0

 
 
 

 
1 2 3

1 6

 
  
 

 
0

1 6
 
  
 

 
1 2 3

3 2

 
  − 

 
2 3

1 6

 
 
 − 

 
0

1 6
 
  − 

 2 3
0

 
  
 

 

1 2

3 2

− 
  − 

 
1 2

3 2

− 
  − 

 
1 2
0

− 
 
 

 
1 2 3

1 6

 −
  − 

 
0

1 6
 
  − 

 
1 2 3

3 2

 −
  − 

 
1 6

2 3

 
  − 

 
0

2 3
 
  − 

 1 6
0

 
  
 

 

0
1
 
 
 

 
0
1
 
 
 

 
0
1
 
 
 

 
2 3

1 3

 
 
 
 

 2 3
0

 
  
 

 
0

1 3
 
  
 

 
1 6

1 6

 
  
 

 1 6
0

 
  
 

 
0

1 6
 
  
 

 

3 2
1 2

 
  
 

 3 2
1 2

 
  
 

 
0

1 2
 
 
 

 
1 6

1 2 3

 
  
 

 1 6
0

 
  
 

 
3 2

1 2 3

 
  
 

 
2 6

1 6

 
  − 

 2 6
0

 
  
 

 
0

1 6
 
  − 

 

3 2
1 2

 
  − 

 3 2
1 2

 
  − 

 
0
1 2

 
 − 

 
1 6

1 2 3

 −
  − 

 1 6
0

 −
  
 

 
3 2

1 2 3

 
  − 

 
2

2 6

 −
  − 

 2
0

 −
  
 

 
0

2 6
 
  − 
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0
2

1 2 1 2

1 2 1 2
U

 −
=   
 

,                                      (16) 

while on the left arm the unitary operator is given as 

1
2

1 2 1 2

1 2 1 2
U

 
=   − 

.                                      (17) 

On the right arm, the vertically polarised light at position 10, will be detected by D5, while on the left arm at 
the same position, the horizontally polarised light will be detected by D2. The horizontally polarised light at 
position 11 for the right arm will be detected by D6 while the vertically polarised light on the left arm at position 
11 will be detected by D3.  

It is worth noting that in order to switch from set0 to set1, the following unitary is used:  

0 to 1

0 1
1 0

U
− 

=  
 

,                                          (18) 

Conversely, the unitary used for switching from set1 to set0 is given as: 

1 to 0

0 1
1 0

U  
=  − 

.                                          (19) 

Apart from our proposed protocol being more secure, the additional symmetry that exists in our protocol also 
allows the various security proofs methods to be applied for instance the post-selection technique which was 
proposed by Renner and Christandl [11] and has recently been applied in [12].  

6. Conclusion 
In this work, we have demonstrated an optical implementation of a six-state symmetric QKD protocol. Since our 
protocol uses additional detection set, this improves its symmetry, increases the discrimination probability and 
thereby improves the detection of Eve. In our proposed scheme, we have also demonstrated that the Bob’s pro- 
bability of generating error-free bitstring is lower than that of the original scheme. This shows that our proposed 
six-state symmetric QKD protocol is more secure. 
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