
Journal of Applied Mathematics and Physics, 2015, 3, 545-555 
Published Online May 2015 in SciRes. http://www.scirp.org/journal/jamp 
http://dx.doi.org/10.4236/jamp.2015.35067  

How to cite this paper: Barceló, G. (2015) Theory of Dynamic Interactions: The Flight of the Boomerang II. Journal of Ap-
plied Mathematics and Physics, 3, 545-555. http://dx.doi.org/10.4236/jamp.2015.35067  

 
 

Theory of Dynamic Interactions: The Flight 
of the Boomerang II 
Gabriel Barceló 
Advanced Dynamics S.A., Madrid, Spain 
Email: gestor@advanceddynamics.net    
 
Received 25 February 2015; accepted 24 May 2015; published 27 May 2015 

 
Copyright © 2015 by author and Scientific Research Publishing Inc. 
This work is licensed under the Creative Commons Attribution International License (CC BY). 
http://creativecommons.org/licenses/by/4.0/ 

    
 

 
 

Abstract 
On Volume 2, Number 7, June 2014 of this Journal of Applied Mathematics and Physics, I proposed 
a new interpretation of the dynamic behavior of the boomerang and, in general, of the rigid bodies 
exposed to simultaneous non-coaxial rotations. I proposed the boomerang as a paradigmatic ex-
ample of bodies in rotation. Accordingly, I propose a new Theory of Dynamic Interactions. The aim 
of this paper is to present an audiovisual of the Theory of Dynamic Interactions, and the dynamic 
behavior of the boomerang, as an extension of the referred paper, asserting that the boomerang is 
a clear example of the application of this theory. 
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1. Introduction 
On Volume 2, Number 7, June 2014 of this Journal of Applied Mathematics and Physics [1], I proposed a new 
interpretation of the dynamic behavior of the boomerang and, in general, of the rigid bodies exposed to simulta-
neous non-coaxial rotations. I proposed a new rotational non-inertial dynamics hypothesis, which I called 
Theory of Dynamic Interactions, which could be applied to understand the flight of the boomerang as well as 
patterns of behavior found in celestial mechanics. It is found applicable in general to all bodies subject to simul-
taneous no-coaxial rotations. 

The Theory of Dynamic Interactions (TDI) claims that the boomerang returns to its origin as a result of being 
a body that is subject to two simultaneous rotations on different axes, and that a new interpretation of the beha-
vior of the rotational dynamics is required. 

Therefore, this paper is an audiovisual presentation of an already published article on June 2014, of the same 
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title, in the Journal of Applied Mathematics and Physics. 

2. Display 
The aforementioned article was accompanied by a slide show, in order to facilitate understanding of the con-
ducted research project. We believe that this video presentation on the behavior of the boomerang is an im-
provement in the explanation and understanding the dynamic hypothesis exposed in the TDI. The video is dis-
played at the following address:  
https://www.dropbox.com/s/stng5b2co1441hk/Boomerang_ENG_mini.mp4?dl=0 [2]. 

In Annex I of this paper, the script of the video is incorporated. The video explains and justifies the TDI, and 
addresses many issues: the boomerang’s path, why do boomerangs not fall, why do boomerangs return, lift 
forces, physico-mathematical TDI model, the boomerang tilt, velocity field coupling, and experimental tests. 

3. About the Theory of Dynamic Interactions 
Following the publication referred, we have carried out further investigation on rotating bodies under the TDI. 
On the paper entitled On Motion, Its Relativity and the Equivalence Principle [3], this author suggests that an 
observer can identify the prior situation of absolute rest or absolute non-rotation of a body, thus leading to the 
conclusion that movement does not necessarily have to be a relative concept. 

But we also gather that the potential technological applications of the theory are of great interest. In addition 
to possible applications already expressed in previous articles [4], on Dynamic Interaction Confinement [5] I 
propose new dynamic hypotheses to enhance our understanding of the behaviour of the plasma in the fusion re-
actor.  

This author suggests that these new dynamic hypotheses, which we hold applicable to particle systems accel-
erated by rotation, be used in the interpretation and design of fusion reactors. This proposal could, in addition to 
magnetic confinement, achieve confinement by simultaneous and compatible dynamic interaction. Accordingly, 
we are of the opinion that it would be possible to get better performance and results in the design of fusion reac-
tors by way of simultaneous magnetic and dynamic interaction confinement.These hypothesis are supported in 
the observed plasma spontaneousrotation phenomenon, which is not totally yet explained by the complex gyro 
kinetic theory. 

The paper Dynamic Interactions in the Atmosphere [6] explains why the criteria of classical dynamics that are 
applied to vortex systems in the atmosphere should be rigorously reviewed; and proposes to establish the new 
hypotheses in the field of dynamics, in order to better interpret rotation in nature. This author proposes to use the 
TDI to interpret the behaviour of systems undergoing successive rotations around different axes; for example, to 
interpret the behavior of air masses and groups of particles in suspension that are accelerated by rotations. Ac-
cordingly, the theory might be used to interpretthe behaviour of tornadoes, cyclones and hurricanes. This pro-
posal could enhance our understanding of these atmospheric phenomena and improve predictions about them. 

Therefore, our interest in showing the behavior of the boomerang, according to the dynamic hypothesis of 
TDI, is based on it being a clear example of rotational dynamics.This dynamic model for accelerated non-iner- 
tial systems, has been verified experimentally. Moreover, numerical simulations have been successfully con-
ducted.  

Thus, in addition to explaining the behaviour of the boomerang, this model allows us to conceive a different 
rotational mechanics, which we have defined as Theory of Dynamic Interactions, and which we believe has nu-
merous technological and dynamic applications. 

Anyone interested in submitting opinions or views on this independent research project is invited to request 
additional information from Advanced Dynamics C.B. or check out our site at www.advanceddynamics.net. 
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Annex I 
Video Script 
The Flight of the Boomerang II 

1) The boomerang’s path 
The boomerang is a particularly significant, intriguing and widely known example of a rotating body. Nu-

merous texts have been written to try and explain the flight of the boomerang. Indeed, there are more than a few 
Internet portals given over to this topic. Nonetheless, the reason behind its path and for its behaviour in flight are 
questions which to date remain unanswered in the context of Classical Mechanics. 

The boomerang, on being thrown, is endowed with an initial rotation on its vertical axis of symmetry, perpen-
dicular to its plane. This rotation is maintained on that same axis throughout its flight, as it travels along its orbit, 
in accordance with a closed path, thus returning to its point of origin. 

It must be understood that boomerang dynamics, like that of all flying objects with intrinsic rotation, are not 
explained by the laws of Classical Mechanics, but rather form part of the dynamics of non-inertial systems and, 
more exactly, that of systems accelerated by rotation, in which the moving object is subject, at one and the same 
time, to numerous non-coaxial rotations.  

The author states in his book The Flight of the Boomerang that after its launch: “The boomerang begins to 
rise practically vertically and rotate like a disk. It then drops gradually travelling in a circular path, doing a 
complete turn, without ever ceasing to rotate on itself. It is this peculiar closed path that some experts find more 
complicated to explain than how a rocket is put into orbit.” 

The illustration shows the theoretical, closed path of the boomerang, which is completed without stopping ro-
tating around itself (Figure A1).  

In the 1970s, Felix Hess conducted an in-depth theoretical and experimental study at the University of Gron-
ingen in the Netherlands, which has come to be regarded as the benchmark study in this field. He revealed that 
the flight of the boomerang is somewhat more complex than the theory holds. The video shows a real flight as 
studied by Hess. 

The typical, real flight path of a wooden boomerang seen from the top and side, according to Hess. 
Nevertheless, in our study we will analyse that theoretical, circular path in which the boomerang is always at 

a tangent to the flight path and which results from the proposed mathematical formula; albeit aware that, in real-
ity, the boomerang flight is more complex, given that it would be subject to more variables. 

2) Why does it not fall?  
In the June edition (Volume 2, Number 7, 2014) of the scientific magazine: Journal of Applied Mathematics 

and Physics (Figure A2), the author’s article entitled: Theory of dynamic interactions: The flight of the boo-
merang, is published which reveals to us the key elements of its dynamic behaviour. 

 

 
Figure A1. Theoretical, closed path of the boomerang under the assump-
tion that all variables are constant and there is no initial momentum.                   
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Figure A2. Volume 2, Number 7, 2014, of the Jour-
nal of Applied Mathematics and Physics.                     

 
On being thrown, the boomerang does not follow the path of any other weighted body that rises while still 

subject to the thrust of the throwing action, then quickly falling to the ground owing to its weight. It rises at the 
start of its flight, not only because of the impulse received, but also because of another force that makes it rise. 
The reason for this behaviour lies in the peculiar characteristics of its construction, which enable it to glide in 
the air. 

A boomerang must be made of two or more blades, each with an appropriate shape, to which the author adds 
in his book: “The blades of a boomerang are lift surfaces, just like an aeroplane’s wings. Their shape generates 
a lifting force on moving through the air”. 

It is precisely the shape of the blades, like the aeroplane’s wings when gliding in the air, that causes the aero-
dynamic phenomenon that enables their lifting. This animation highlights the different sections of the boomer-
ang according to its relative position. 

By looking at the different boomerang sections, we can see how these vary in accordance with its relative po-
sition. The central section is symmetrical, thus no lift is generated there. However, along the length of each 
blade the section is the same as that of a glider wing. Notwithstanding, the section is different and asymmetric 
on each blade, in keeping with its translational velocity. 

These construction characteristics are the key to the peculiar flight of the boomerang and explain its lift, but 
they fail to explain its closed path; the fact that it can return to its place of origin. 

Its characteristic closed path is due to another dynamic phenomenon, which does not occur in bodies thrown 
without their own rotation, which is why it differs from them: the secret lies in its peculiar initial rotation. 

The Theory of Dynamic Interactions holds that the boomerang returns to its origin because it is a body that is 
subject to two simultaneous rotations on different axes. 

3) Different speeds 
If we analyse the speeds that affect a boomerang’s path that moves its centre of mass at a velocity of V, and 

rotates at the same time around a hypothetical axis perpendicular to its plane at a velocity of ω, we will see how 
each blade moves at a different relative velocity (Figure A3). 

The blade at point A will have a total velocity of V + αω, whereas the blade at point B will have a velocity of 
V − αω. Given that the blade in the top position is moving faster with respect to the air, the lift effect will be 
greater at this point: The blade rotating forwards experiences a faster relative wind speed and a correspondingly  
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Figure A3. Each blade moves at a different relative velocity.              

 
greater lift force than the blade that is moving backwards. 

The different relative velocity of each blade causes an imbalance in the lift forces generated, a phenomenon 
that does not occur in the cases of aeroplanes or gliders. The two blades receive a lift force that causes the boo-
merang to glide, or even rise, but each blade is driven by different, never equal forces (Figure A4). 

4) Lift forces 
Because the speeds of the blades are not equal, and as the lift forces are proportional to their speed, as we 

have seen, these will be very different for each blade. Consequently, we can imagine two imbalanced, lift forces 
FA and FB, which would oblige the boomerang to rotate on a new axis. 

The illustration shows a side view of the lift forces generated on the boomerang’s blades. 
This imbalance of forces increases with the weight of the boomerang itself, which will also tend to tilt it onto 

a new axis in the direction of its flight. 
The illustration shows the acting torques and forces. These imbalanced lift forces are equivalent to a lifting 

force at its centre and a torque (Figure A5). 
Nevertheless, the most startling fact is that, despite lift forces causing a new rotation of the boomerang on a 

new axis, and that its own weight further increases this imbalance, the boomerang does not tilt or rotate during 
flight on account of this new torque, nor does it appreciably modify its plane with respect to the ground (Figure 
A6). 

Moreover, the lift forces are not constant; they fluctuate in accordance with the different air variables. Con-
sequently, the boomerang will tend to oscillate in the face of the changes caused by them. Notwithstanding, the 
weight strengthens the torque that will tend to right the boomerang plane. 

Whatever the case, these forces generate a non-uniform velocity field in the boomerang itself. This velocity 
field plays a leading role in the boomerang’s new path. 

The illustration shows a velocity field generated by the imbalance of the weight and the lift forces. 
In accordance with the Theory of Dynamic Interactions: The anisotropic distribution of the velocities gener-

ated by the torque, that is to say, the velocity field Vc shall be compounded with the initial velocity field VT, thus 
enabling the curved path of the boomerang. 

The VT translational velocities are added to the non-homogenous Vc velocities created by the weight and im-
balanced lift forces at each point of the boomerang’s mass, thus creating the new VR path. 

5) Rotations 
Once again, different section views of the boomerang where you can see how they vary depending on their 

relative position. We have seen above how, after the initial impulse that projects it and obliges it to turn, the 
boomerang rises due to the aerodynamic lift effect that is generated by its own blades. We stated that, as a force 
opposing the weight, the lift is generated by the shape of its blades, as is the case with aeroplanes wings, and 
that while it moves through the air, it maintains its rotation on its axis, blue in our illustration.  

However, we have emphasised how, at the same time, it is being excited by the imbalance of lift and weight 
forces, on making it rotate on a new axis that is other than the previous one—in red in the illustration—and 
which we will call non-coaxial with the initial rotation. 
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Figure A4. Resulting lift and weight forces.                                                  

 

 
Figure A5. The imbalance of the lift and weight forces determines the appearance of a re-
sulting lift force and a non-coaxial torque.                                                 

 

 
Figure A6. Subject to the torque generated by the weight and the resulting lift forces, which 
is non-coaxial with its intrinsic rotation, the boomerang will oscillate on a new axis.               

 

A 

B 
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As we can see, the boomerang is being subject to two simultaneous rotations on different axes. Indeed, it is its 
dynamic response to these excitations that determines its characteristic path. 

According to the Theory of Dynamic Interactions, the boomerang returns in free flight to the place from 
where it was thrown because it is a body subject to two simultaneous rotations on different axes (Figure A7). 

It is important to bear in mind that a characteristic of the flight of the boomerang is that its plane always 
maintains the same tilt throughout its path. This is a constant feature in these dynamic phenomena, as was al-
ready pointed out in the 19th century, on observing the behaviour of the first, scientific precursor, to the gyro-
scope. 

The figure illustrates the recommended throwing angle to the vertical plane. This tilt on its plane is essential 
to understanding boomerang dynamics. The boomerang must be thrown with this particular tilt, otherwise there 
would be no torque or sufficient lift: if it is thrown vertically, it will fall due to a lack of lift force. 

6) Velocity field coupling 
In the book that we mentioned earlier, The Flight of the Boomerang, a new dynamic hypothesis is put forward 

for non-inertial systems that can explain the true nature of the dynamics of boomerang flight. 
The author carefully studied the dynamic phenomena of rotation in bodies when subject to new, non-coaxial 

rotations, thus identifying the existence of dynamic interactions. He did tests with imbalanced aluminium cylin-
ders floating on water and conducted experiments with moving objects in rotation in water, which were sub-
jected to the new rotations that did not coincide with the initial rotation. 

His experimental tests led to his putting forward the Theory of Dynamic Interactions, described in the text: A 
Rotating World, where it can be seen how this theory has a far-reaching effect not only on the basic principles of 
dynamics, but on numerous other branches of physics. 

The theory holds that when a rigid body is subject to different rotations on different rotating axes, the first 
will cause rotation on an axis, but the subsequent excitations, if non-coaxial ones, will generate a non-homoge- 
nous velocity field. This velocity field conditions the behaviour of the body, while its variations generate, in turn, 
an acceleration field, the distribution of which is also not homogenous. Thus it can be interpreted as an inertial 
force field.  

The boomerang is launched, as we have seen, with its own rotation, which is later subject to a torque created 
by the imbalance between lift and weight forces. It is therefore, a body subject to simultaneous, non-coaxial ro-
tations. The illustration shows the rotations generated by the change of the boomerang’s path as a result of the 
coupling of the velocity fields that act on its centre of mass. 

The key to the theory is that, if the body is also endowed with translational velocity, the author holds that this 
will lead to the coupling between the translational velocity field and the non-homogenous velocity field gener-
ated by these forces, thus obliging it to perform a new rotation on another axis. 

 

 
Figure A7. The boomerang maintains the same tilt throughout its path. This is a 
constant feature in these dynamic phenomena.                                     
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Instead of performing this new rotation on a new axis, on adding both velocity fields together, what happens 
is that the boomerang changes its flight, following a new one: namely, that characteristic closed orbit path that 
enables it to return to its original point. The ideal path when not subject to any motive force is a circle. 

Consequently, because the lift forces are not the same on each blade, and also due to the effect of its weight, 
which would apparently oblige the boomerang to start a new rotation on a new axis, the coupling, or adding to-
gether of the velocity fields, modifies the path of the moving centre of mass, without having applied any exter-
nal force in that direction. Accordingly, the action of these tilt forces modifies the path of the centre of mass, the 
boomerang maintains the tilt of its plane throughout the flight, without this new rotation coming about. 

The key to the flight of the boomerang lies, according to the author, in the adding of the translational velocity 
fields to the non-homogenous velocity fields created by the weight and the unbalanced lift forces. 

This coupling of fields, and therefore, this behaviour, will hold as long as the initial rotation of the boomerang 
lasts.  

Even though, as we have said, the real path of the boomerang is somewhat more complex, owing to the vari-
ability of other factors that also comes into play. The illustration shows a typical, real boomerang path as de-
scribed by Walker in 1897. 

Furthermore, there will be a transfer of kinetic rotation energy to translation energy, and vice versa, in dy-
namic phenomena dealt with under this hypothesis. 

7) Mathematical formula 
It is easy to understand the behaviour of the boomerang if we accept the true inertial behaviour of bodies in 

which rotation on an axis of symmetry prevents the compounding of rotations that are not on the same axis 
(Figure A8). 

In addition to the translational inertia, rotational inertia has to be accepted, which would correspond to the in-
ertia of a body when subject to an inertial rotational movement on its main axis, by virtue of which it will tend to 
maintain this rotation even if the forces acting on it were to cease. 

However, the rotational inertia is such that it prevents any new, non-coaxial rotation being added to the 
movement of the particles, thus maintaining both rotations without vectorial addition. 

This behaviour is therefore explained by that inertial reaction of the mass we call: rotational inertia.  
The equation for movement proposed by the author in his theory of dynamic interactions for these non-inertial 

situations is very simple. It is based on the application of an operator Ψ that stands for a rotation in space, in 
such a way that the end speed of the boomerang is defined by the matrix multiplication of this operator by the 
initial translational velocity: 

By means of this simple formula it becomes possible to determine the path of the boomerang, or indeed, of 
any rigid body, in translation when it is simultaneously subject to two rotations on different axes. 

8) Physico-mathematical model 
The physico-mathematical model developed in the Theory of Dynamic Interactions for non-inertial acceler-

ated systems, has been proven by experiment, reflecting the expected behaviour, and by computer simulation. 
The illustration compares a representation of the boomerang path with that obtained by computer simulation 
(Figure A9 and Figure A10). 

The fact is we can easily interpret the flight of the boomerang with the Theory of Dynamic Interactions. This 
dynamic model is even valid to represent any other moving object in space with translational velocity, intrinsic 
rotation and subject to other forces obliging it to new rotations on new axes. 

This has led the author state in his book, A Rotating World, that: “A lot of texts claim that the boomerang is as 
much a glider as it is a gyroscope, but they fail to understand or fully explain the physical phenomena that are 
generated during its flight. Gliders and paper planes work to overcome air resistance. On their downward flight, 
both one and the other convert gravity’s potential energy into kinetic energy and, therefore, glide until ending 
up on the ground. Boomerangs are clearly like aeroplanes and gliders, their arms are wings that experience a 
lift force when in movement, but the boomerang rotates in the air at the same time, thus its lift force will be per-
pendicular to its wing, no matter what the latter’s position be.” 

He further adds: “The curved path of balls, bowls, disks and other elements, when endowed with rotation on 
their axis, the so-called “ping-pong or tennis ball effect”, were also for us undeniable indications of dynamic 
interactions. As indeed, was the resistance of radial saws to any rotational movement, which is described in 
numerous textbooks on physics. 
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Figure A8. The operator Ψ acts on the initial (travelling) speed in such a way, 
that the end speed will be defined by the matrix multiplication of the operator 
and the initial speed.                                                            

 

 
Figure A9. Representation of the boomerang path with that obtained by 
computer simulation.                                                            

 

 
Figure A10. Representation of two paths with computer simulation.                       

 
There have been examples of this peculiar behaviour in more specialised areas, such as that of the gyroscope 

and laboratory instruments which, since the 19th century, have been designed to conduct rotational mechanics 
experiments. Not to mention magnetic, electromagnetic or simply mechanical experimental physics divertisse-
ment revealing a clear divergence from the laws of classical mechanics.” 

9) The Theory of Dynamic Interactions 
The author goes on: “The interpretation of the dynamic behaviour of the boomerang, the spinning top, and of 

a host of other rotating objects, based on the re-interpretation of compound movements in accordance with the 
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Theory of Dynamic Interactions can, in our opinion, be generalised to include any free body in space. This way 
of understanding the movement of rotating bodies can be applied to other free bodies, or ones with support 
points, in space, whenever these are subject to new non-coaxial rotations.” 

The flight of the boomerang is a clear example of the dynamics of accelerated systems caused by rotation 
(Figure A11). The Theory of Dynamic Interactions generalises the idea of the gyroscopic torque, along with that 
of other inertial phenomena, bringing them together in a unified structure of a new, non-inertial rotational dy- 
namics. Notwithstanding, the Theory of Dynamic Interactions, which is simple in structure and easily applicable 
to, as yet, numerous, unexplained physical phenomena, calls for a new understanding of mechanics, proposing 
new inertial hypotheses for matter. 

The theory can also be used to explain other secrets of the universe, such as the why of the ecliptic plane and 
the wherefore of Saturn’s rings. The treatise entitled Imago Universi tells the fascinating history of human 
knowledge of the universe, while also proposing, developing and explaining the application of the Theory of 
Dynamic Interactions to afford us a better understanding, not only of the flight of the boomerang, but also of the 
dynamic enigmas that surround us. 

For all those wishing to learn more about the flight of the boomerang or the theory of dynamics that can ex-
plain it, or who would like to collaborate in this private research project, more information is to be had from Di-
namica Fundacion or Advanced Dynamics C.B. by consulting: www.dinamicafundacion.com and  
www.advanceddynamics.net. 

 

 
Figure A11. Representation of the arms of a spiral galaxy and the TID simu-
lations results.                                                                
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