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Abstract 
 
Localization of sensor nodes is crucial in Wireless Sensor Network because of applications like surveillance, 
tracking, navigation etc. Various optimization techniques for localization have been proposed in literature by 
different researchers. In this paper, we propose a two phase hybrid approach for localization using Multidi- 
mensional Scaling and trilateration, namely, MDS with refinement using trilateration. Trilateration refines 
the estimated locations obtained by the MDS algorithm and hence acts as a post optimizer which improves 
the accuracy of the estimated positions of sensor nodes. Through extensive simulations, we have shown that 
the proposed algorithm is more robust to noise than previous approaches and provides higher accuracy for 
estimating the positions of sensor nodes. 
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1. Introduction 
 
The field of Wireless Sensor Network (WSN) is a mul-
tidisciplinary area of research offering a wide variety of 
applications ranging from home to industry, medical to 
military. Sensors integrated to structures [1], spread 
across a battlefield [2], and embedded in forest [3]; de-
liver the sensed information efficiently, to take further 
action for a particular application. Generally, these ap-
plications require large scale networks with hundreds of 
very small, battery powered and wirelessly connected 
nodes. 

Intrinsically nodes have limitations of battery power, 
constrained communication computations and storage 
capability. When a large number of nodes are to be used 
in the applications, these sensor nodes are required to be 
cheaper, smaller in size, and robust to sustain environ- 
mental changes. Considering all these limitations, i.e., 
scalability, storage, power; developing accurate and effi-
cient localization algorithm is a challenging task. 

Localization algorithm should possess characteristics 
of energy efficiency, distributed computation, scalability, 
and high precision. Radio signal propagation and mes-
sage exchange consume considerable amount of energy 
of nodes, so algorithms need to run with least communi-
cation between nodes due to energy scarcity. The life-
time of network increases if there is balanced energy 

consumption of every node, and this requires an algo-
rithm should preferably be distributed in nature. Also, it 
should be robust enough to noisy input, immune to node 
failure. Another important factor is that, it should be 
scalable, and even if the number of nodes is increased, 
algorithm’s efficiency should not be hampered. Similarly, 
the localization algorithm needs to have high precision. 
The precision is measured by a ratio of position error and 
communication radius. Also, the algorithm should work 
with minimum density of reference nodes. 

The reference nodes are known as anchor nodes. Usu-
ally, anchor nodes use GPS or are disposed manually. 
Manual disposition of large number of anchors is impos-
sible for large scale WSNs. Also, as GPS nodes are ex-
pensive, there is limitation on use of more number of 
anchors, and so the algorithm should provide accurate 
estimation with low density of anchor nodes. 

Considering all these factors, determining precise po-
sition of each node is a daunting task for a network with 
large number of nodes. It is unlikely that localization of 
each node can be done accurately. Hence a lot of re-
search is being carried out for finding out accurate or 
near to accurate positions without using GPS support. 
Few techniques were developed to localize the nodes 
with GPS free positioning [4]. These algorithms yield a 
relative map of the nodes spread across the physical area. 
Such technique is useful in applications like direction 
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based routing [5,6]. Few applications like geographical 
routing [7], target tracking [8], and localization [9], need 
exact positions of nodes. Multidimensional Scaling 
(MDS) is one of the techniques which yield two types of 
output maps called relative and absolute map [10]. The 
initial output of MDS is relative map and is converted to 
absolute map with sufficient known location of nodes. 

MDS has its origin in psychometrics and psychophys-
ics [11,12]. In literature, a number of localization tech-
niques have been reported which use Multidimensional 
scaling. It is a set of data analysis techniques which dis-
play distance like data as geometric structure. This me-
thod is used for visualizing dissimilarity data. It is often 
used as a part of data exploratory technique or informa-
tion visualization technique. MDS based algorithms are 
energy efficient as communication among different 
nodes is required only initially for obtaining the in-
ter-node distances of the network. Once all distances are 
obtained, further computation for finding positions does 
not need communication among nodes. In this paper, we 
present an energy efficient hybrid algorithm for localiza-
tion of nodes using MDS and trilateration. MDS is not 
only energy efficient but also provide good initial or 
starting points for any optimization technique [13]. 

In our proposed algorithm, initial locations are ob-
tained using MDS and later these locations are refined 
using optimization method of trilateration by adjustment. 
Trilateration is basically a surveying technique which 
involves the determination of absolute or relative posi-
tions of points by measurement of distances, using the 
geometry of spheres or triangles [14]. Advantage of us-
ing trilateration by adjustment is that, it estimates loca-
tions accurately given good initial points. We have 
shown that, our proposed approach provides higher ac-
curacy in estimating the sensor node positions as com-
pared to previous approaches reported in the literature.  

The next section presents a brief overview of related 
work in this area. In Section 3, the proposed algorithm is 
presented. Section 4 deals with the simulations results for 
isotropic topology. Conclusion is described in Section 5. 
 
2. Related Works 
 
Location awareness is of great importance for several 
wireless sensor network applications. Precise and quick 
self localization capability is highly desirable in wireless 
sensor network. Localization algorithms have been de-
veloped with various approaches. A detailed survey of 
localization techniques is provided in [15,16]. Localiza-
tion techniques can be classified as range free or range 
based, depending on whether the range measurement 
methods are used or connectivity information is used. 
Range based methods require range measurement infor-

mation, such as Received Signal Strength Indicator 
(RSSI) [17], Angle of Arrival (AOA) [18], Time of Ar-
rival (TOA) [18] and Time Difference of Arrival (TDOA) 
[18] etc. However, the measurement accuracy of these 
methods can be affected by the environmental interfer-
ence [15]. Though, range free methods [19] cannot pro-
vide accurate location estimation, they are cost effective 
and robust to noise since range measurements are not 
involved in it. The range-based methods have connec-
tivity or proximity information between neighbor nodes 
who can communicate with each other directly. 

A triangulation based method is presented in “Adhoc 
Positioning System” (APS) by Niculescue and Nath [20]. 
Three methods are proposed by authors namely, DV- 
Hop, DV-Distance and Euclidean distance. In DV-Hop 
method only connectivity information is used, whereas in 
DV-Distance, the distance measurements between neigh- 
boring nodes are used, and Euclidean uses the local ge-
ometry of the nodes. Initially anchors flood their location 
to all the nodes in the network and every unknown re-
ceiver node performs triangulation to three other anchor 
nodes to estimate the position. These methods do not 
perform well with anisotropic or irregular network to-
pology. Savarese [21] improved Niculescu’s algorithm 
by introducing refinement phase. In this phase, distance 
measurements between neighboring nodes are used to 
improve localization accuracy. Though accuracy is im-
proved significantly, it only works for well connected 
nodes. In another triangulation based approach [22], a 
technique of iterative multiplication is used. It provides 
good results if the number of anchor nodes is high. 
Nodes connected to 3 or more anchors compute their 
position by triangulation and upgrade their location. This 
position information is used by the other unknown nodes 
for their position estimation in the next iteration. Ni-
culescue and Nath’s algorithm of APS [20] is refined 
using trilateration by adjustment by Feng Tian and Wei 
Gao, called as LATN [23]. In this method with DV-Hop 
or DV-Distance the positions are estimated and trilatera-
tion is performed on unknown nodes for reducing the 
localization error.  

Savvides [24] used least squares estimation with Kal-
man filter to locate the positions of sensor nodes to re-
duce error accumulation in the same algorithm. This 
method needs more anchors to work well than other me-
thods. Doherty [25] used approach of convex optimiza-
tion using semidefinite programming (SDP). The con-
nectivity of the network has been represented as a set of 
convex localization constraints for the problem of opti-
mization. This method works well, if anchor nodes are 
placed on the outer boundary, preferably at the corners. 
When all anchors are placed in the interior of the net-
work, a large estimation error is obtained due to the shift 
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of position estimate of outer nodes towards the center. 
Biswas [26] has extended the technique of Doherty’s 
algorithm [25] by taking the non- convex inequality con-
straints. Basically, this technique converts the non- con-
vex quadratic distance constraints into linear constraints 
with introduction of relaxation to remove the quadratic 
term of the equation. The distance measurements among 
nodes are modeled as convex constraints, and semidefi-
nite programming (SDP) methods were adopted to esti-
mate the location of nodes. Biswas's method was further 
improved by Tzu-Chen Liang [27], using a gradient 
search technique. The main disadvantage of semidefinite 
programming is amount of computation, which is O(n3 + 
c3), where n is the number of rows (or columns) of the 
matrix and c is the number of constraints [28]. 

Shang et al. [13] presented a centralized algorithm 
based on MDS, namely, MDS-MAP(C). Initially, using 
the connectivity or distance information, a rough esti-
mate of relative node distances is obtained. Then, MDS 
is used to obtain a relative map of the node positions and 
finally an absolute map is obtained with the help of an-
chor nodes. The initial location estimation is refined us-
ing least square technique in MDS-MAP(C,R) [13]. Both 
techniques work well with few anchors and reasonably 
high connectivity.  
 
3. Proposed MDS-RT Algorithm 
 
The refinement step in MDS-MAP(C,R) is slower than 
MDS itself. To further improve the accuracy and com-
plexity of localization, we are proposing a hybrid algo-
rithm here, namely, MDS with refinement using trilat-
eration by adjustment (MDS-RT). 

As discussed earlier in this paper, MDS is energy effi-
cient localization method, so it has been used in the pro-
posed algorithm. The accuracy of estimates obtained 
using MDS depends upon the accuracy of sensor obser-
vations. The poor accuracy of sensor observations results 
into poor estimates of locations. To overcome this prob-
lem, the method of trilateration by adjustment is used as 
an optimization tool. The estimates obtained using MDS 
are refined using trilateration method which increases the 
precision of estimates. The MDS-RT algorithm is de-
scribed in the following section. 

First, MDS technique is reviewed and introduced in 
brief. There are many types of MDS techniques and usu-
ally classified according to the way similarity/ dissimi-
larity data or matrix is formed. One way of classification 
is whether the similarities data are qualitative or quanti-
tative. Qualitative and quantitative MDS are also known 
as Nonmetric, and Metric MDS respectively [10]. The 
Non-metric MDS (NMDS), also called as ordinal MDS, 
is developed by Shepard [12]. In NMDS, a monotonic 

relationship between inter-point distance and desired 
distance is established and assumed that data is measured 
at ordinal level. 

According to the number of similarity matrices and the 
nature of the MDS model, MDS is classified as classical 
MDS (CMDS), replicated MDS (RMDS), and weighted 
MDS (WMDS). In CMDS single matrix is used whereas, 
RMDS and WMDS require several matrices. The RMDS 
uses unweighted matrices, whereas WMDS uses 
weighted matrices [10]. The distance model of weighted 
MDS uses different weight to each dimension. Another 
way of classification of MDS is deterministic or prob-
abilistic [11]. In deterministic MDS each object is repre- 
sented as single point whereas probabilistic MDS uses 
probability distribution in the MDS space. 

In our proposed algorithm, we have used CMDS, 
where data is quantitative and object proximities are dis-
tances in Euclidean space. This algorithm consists of two 
phases; first phase is localization using MDS and second 
refinement using trilateration by adjustment. 
 
3.1. Localization Using MDS  
 
Nodes are randomly scattered in the region of considera-
tion. Let pij refer to the proximity measure between ob-
jects i and j. The simplest form of proximity can be rep-
resented using Euclidean distance between two objects. 
This distance in m dimensional space is given by (1)  

 2

1

m

ij ak bk
k

d X X


              (1) 

Where,  1 2, , ,a a a amX x x x    and  1 2, , ,b b b bmX x x x    
are distance vectors. 

The steps of localization using MDS are illustrated as 
follows: 

STEP 1: Obtain the distance between all pair of nodes 
using any ranging technique to construct distance matrix 
for MDS. Run the shortest path algorithm such as 
Floyd’s or Dijktra’s algorithm to get all distances and 
complete the distance matrix.  

STEP 2: Compute the matrix of squared distances of 
proximities namely D2. 
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STEP 3: Apply double centering to matrix of D2. 
In CMDS, proximity matrix P i.e. D2 is shifted to the 

center. Centering is placing the centroid of the configu-
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ration of points at origin. It is required to overcome the 
indeterminacy of the solution due to arbitrary translation. 

Double centering is done by multiplying both sides of 
(2) by centering matrix, 

T1
=

n
J I 11                 (3) 

Here, I is Identity matrix of n × n size, where n is 
number of nodes and 1 is a vector of ones. 

Double centering of squared distance matrix leads to 
equation (4) 

2
dc B JD J                 (4) 

STEP 4: Compute singular value decomposition (SVD) 
of double centered matrix Bdc.. Perform SVD on B- 

TB QAQ               (5) 

Where 1 2diag( , , , )n   A  ; is the diagonal matrix 
of eigen values and Q is the matrix of corresponding 
eigenvectors. 

STEP 5: Modify SVD output of matrix B according to 
dimensions. 

To get solution in lower dimension we have to retain 
the first m largest eigenvalues and eigenvectors. This is 
the best low rank approximation in the least-squares 
sense. For example, for a 2D network, consider the first 2 
largest eigenvalues and eigenvectors to construct the best 
2D approximation. 

The modified dcB  now becomes B 
T

1 1 1B Q A Q                 (6) 

STEP 6: Obtain coordinates from matrix B.  
The coordinate matrix can be estimated from B using 

Q1 and A1 as shown in following equation 
1 2

1 1X Q A               (7) 

This coordinate matrix gives relative map. 
STEP 7: Transform relative map to absolute map us-

ing anchor nodes. 
The recovered matrix X is rotated, translated, shifted 

as it has different orientation than original. 
 
3.2. Refinement Using Trilateration by 

Adjustment 
 
Once the estimation of distance matrix using RSSI and 
consequently the location estimation by MDS are per-
formed, the next step is to refine the locations. For this 
task the technique of trilateration by adjustment is used 
as post optimization tool. The trilateration refines the 
estimates using successive adjustments. Here, every link 
is assigned a weight according to the signal quality.  

First, trilateration by adjustment is reviewed in brief 
and then steps of refinement are illustrated. 

Consider Figure 1, consisting of two points P and Q. 

 

Figure 1. Link PQ. 
 
Let the estimated coordinates of P and Q be P( , )p pX Y  , 

)q q( ,X Y Q  and true coordinates be ( , )p pX YP , )q q( ,X YQ  
respectively. The distance between them is link value of 
PQ expressed as L . The true distance i.e. Euclidean dis-
tance can be expressed as in (8)- 

   2

i p q p qL X X Y Y   
2

        (8) 

The relation between pX  and p  and remaining 
coordinates is given by following set of equations. 

′X

,

,

p p p p p

q q q q q q

pX X x Y Y y

X X x Y Y y

    

    
           (9) 

In (9), variables , , ,p p q qx y x y  are the corrections in 
estimated coordinates, which give us adjusted values in 
link L. 

i iL L v  i                 (10) 

Where vi is correction in i . According to Taylor’s 
expansion, above equation can be written as: 

L

   q p q p
i pq q p q p

pq pq

X X Y Y
L Z x x y y

Z Z

         
 

 (11) 

Where  

   2 2

pq p q p qZ X X Y Y            (12) 

Let the correction in link PQ be l, and relation be-
tween l and v can be obtained using (10) and (11): 

    q p q p
i i q p q p

pq pq

X X Y Y
v l x x y y

Z Z

          
 

   (13) 

Where  i i pql L Z     

Consider Figure 2, consisting of known nodes A(X1, 

Y1), B(X2, Y2), and C(X3, Y3) and unknown node D(X4, Y4). 
The links between nodes are ad, bd, cd, ab, ac, and bc. 

As seen before, the link value obtained by ranging de-
vice may not be equal to Euclidean distance due to pres-
ence of noise. Let variances of the link ad, bd, cd be σad , 

σbd σcd, and σ0 be the variance of unit weight which is 
selected arbitrarily. 

From these values link weight can be computed as - 
2
0
2i
i

σ
W

σ
    (i = ad, bd, cd)     (14)  

STEP 1: Form a cluster of four nodes as shown in 
Figure 2, Obtain the weight matrix W.  
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Figure 2. Trilateration. 
 
The Euclidean distance between known and unknown 

nodes of Figure 2 can be expressed as- 

   2

4 4i id X X Y Y    2

i        (15) 

Where i vary from 1 to 3.  
The objective function can be formed from (15). 

   2 2

4 4 0i i i if d X X Y Y          (16) 

STEP 2: The first estimate of positions is obtained 
with first phase. These values are used as initial values of 
non-anchor node (X4, Y4). 

STEP 3: Using link value between all the four nodes 
and objective function as given in (16), obtain Jacobian 
matrix J and f vector of objective functions. 
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B           (17) 

Functions F1, F2, F3 are evaluated at X4 and Y4. The 
vector matrix f can be obtained by: 
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f 
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Now, we will compute corrections in coordinates (Δ) 
and in link value (v). 

STEP 4: Obtain correction vector Δ, of the coordinates 
(X4, Y4). Solving (16) for finding corrections Δ in (X4, Y4), 
we get  

 4c 4c,X Y                (19) 

Where Δ is computed by following equation  

  1T T
 B WB B Wf          (20) 

The final estimated coordinates are- 

   4 4 4 4, ,
new old

X Y X Y         (21) 

STEP 5: Obtain correction vector v to the link 
The corresponding correction in distance v can be ob-

tained from above equation as- 

* v f B Δ              (22) 

So the estimated values of distance for correction in 
(X4, Y4) is  

ˆ
i id d v  i               (23) 

Here v can also be obtained by following equation 

   2 2

4 4 4 4i new old new oldv X X Y Y           (24) 

STEP 6: Estimate new link value for (X4, Y4) 

     4 4 4 4 4 4,  ,    ,new new c c X Y X Y X Y        (25) 

STEP 7: Keep iterating for new values of (X4, Y4) till Δ 
vector values i.e. correction in coordinates does not reach 
the predetermined precision value or given number of 
iterations are not completed.  

The refined estimate of position of a non-anchor node 
obtained using the steps described above allow us to use 
this node as an anchor node for refining the positions of 
other non-anchor nodes. 

STEP 8: Repeat steps 1 to 7 for remaining non-anchor 
nodes. 

Thus, correction in position is determined by link 
measurement error and number of iterations is deter-
mined by initial position error of nodes. If this error is 
less, number of iterations required is less. Also, if link 
measurement precision is high, the final position error 
will be low. The trilateration method itself suffers from 
poor accuracy due to errors in ranging measurements. 
Our proposed algorithm overcomes this problem as ini-
tial locations are estimated by MDS algorithm and this 
serve as good initial estimates for trilateration method. 

The advantages of our proposed algorithm are: 
1) The position accuracy is high. 
2) The algorithm relies on no explicit communication 

other than that between immediate neighbors, which 
avoids excessive communication. 

3) It is robust even when the measured distance be-
tween the neighboring nodes is degraded with noise. 
 
3.3. Complexity Analysis 
 
First Phase (MDS-MAP(C)): In this algorithm, to com-
plete the distance matrix, shortest path (Floyd’s) algo-
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rithm is applied. Its time complexity is O(N3), where N is 
the number of nodes. MDS uses singular value decom-
position (SVD) of matrix B. The complexity of SVD is 
O(N3). The result of MDS is a relative map that gives 
location of nodes, relative to each other. The relative 
map is transformed to absolute map through a linear 
transformation, which may include scaling, rotation and 
reflection. Computing the transformation parameters 
takes O(k3) time, where k is the number of anchors. Ap-
plying the transformation to the whole relative map to 
obtain absolute map takes O(N) time. 

Refinement Phase (MDS-MAP(C,R)): Refinement 
phase use Levenberg-Marquardt algorithm. Its complex-
ity is O (N3), where N is number of nodes.  

Refinement Phase (MDS-RT): The basic trilateration 
algorithm does j iterations (here 10) in worst case. For N 
number of nodes j(N-3) times the algorithm will run. If 
the radio range of anchor is less and all nodes are not in 
range of three anchors, then nearest (at a distance of sin-
gle hop) localized node will start acting as pseudo anchor 
node. Thus in worst case the complexity will be O(jN2) 
as the algorithm will run for j(N-3)(N-3) times and in 
best case complexity will be O(jN). 
 
4. Experimental Results 
 
We have performed exhaustive simulations with varying 
number of nodes. Typically, the number of nodes is var-
ied from 50 to 200. These nodes are placed randomly 
with a uniform distribution in a square area of 10l × 10l 
of l unit length. The performance of MDS-RT has been 
examined for various radio ranges with different range 
errors, anchors and node densities. Radio range is blurred 
with noise to introduce error in radio link. Presently the 
distance-only case of MDS-MAP is considered, where 
each node knows distance to each neighbor node. An 
uniform radio propagation is considered. The perform-
ance measure used for evaluation is root mean square 
error (RMSE), as shown in (26). 

   2 2
RMSE i j i jX X Y Y       N   (26) 

Where (Xi, Yi) are estimated locations, (Xj, Yj) are cor-
responding true locations, and N is number of nodes. 

As radio range increases, connectivity increases, lead-
ing to connecting more number of nodes of the network. 
For observing effect of increase in range error and con-
nectivity on RMS error, the range error is increased from 
5% to 50% of communication range and connectivity is 
increased from 21.5 to 45 for 200 nodes. This allows 
evaluating our proposed method with worst scenarios. 
The simulations are performed with varying number of 
anchor nodes from 4 to 10. Following section describes 

the effect of various factors like different node density, 
range error, connectivity and anchor nodes on RMSE. 
We performed Monte-Carlo simulations and the number 
of simulations for each experiment is set to 50. Errors are 
normalized with radio range. We have simulated and 
compared performance of our proposed algorithm MDS- 
RT with standard algorithms MDS-MAP(C) and MDS- 
MAP(C,R) respectively. 

Figure 3 shows 50 and 100 nodes randomly placed in 
10l × 10l square area. Lines between points show con-
nectivity of nodes at connectivity level of 29 and 26.1. 

Above figure shows connectivity of 50 and 100 nodes 
with 20% error in radio range. Here, the connectivity or 
connectivity level represents the average number of 
nodes connected with each other in the network, i.e., the 
average number of nodes within the radio range of a par-
ticular node. 

Figure 4 shows the connectivity information for 200 
nodes with connectivity level of 21.5 and 10% range 
error. Figure 3 & 4 represent the scenarios with low 
node density to high node density. In these figures, line 
joining nodes are connectivity links. 

Figure 5(a) & (b) show scatter-plots of 200 nodes  
 

 
(a) 

 

 
(b) 

Figure 3. Network connectivity with (a) 50 and (b) 100 
nodes. 
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Figure 4. 200 nodes placed randomly at connectivity of 21.5 
and 10% error. 
 

 
(a) 

 

 
(b) 

Figure 5. Scatter plot of 200 localized nodes with (a) MDS- 
MAP(C) and (b) MDS-RT. 

with connectivity of 21.6 and range error of 20% for 
MDS-MAP(C) and MDS-RT respectively. Original posi-
tions are shown by symbol “O”, estimated positions by 
“*” (asterisk) and anchor positions by solid diamonds. 
Black lines show error. Longer the line, larger is the er-
ror. Same nomenclature is applicable to all the remaining 
scatter-plots. The RMSE obtained in Figure 5(a) is 
18.5% with MDS-MAP(C) and in Figure 5(b), it is 
0.04% with MDS-RT. 

With increase in radio range, connectivity between 
nodes is increased and more number of nodes partici-
pates in network formation. Figure 6 shows connectivity 
Vs RMSE with 4 anchor nodes and 5% error in radio 
range for all the three algorithms. RMS Error decreases 
from 11.4% to 2.7% for MDS-MAP(C) when connec-
tivity level is increased from 21.63 to 43.19. Similarly, 
reduction in RMSE can be observed for MDS-MAP(C,R) 
and MDS-RT as well. The RMSE obtained for MDS- 
MAP(C,R) and MDS-RT at connectivity of 26.2 are 
1.25% and 0.27% respectively. With connectivity level 
of 43.19 these values are 0.83% and 0.033% respec-
tively. 

As the number of anchor nodes is increased the total 
RMSE decreases. Figure 7 shows a comparative plot of 
RMSE vs. connectivity with 5% noise and 6 anchors. 
The average RMSE obtained at connectivity of 39.06 for 
MDS-MAP(C,R) is 1.11% and for MDS-RT it is 0.05% 
respectively which is a very large reduction in RMSE 
using our proposed algorithm. This result shows that our 
proposed MDS-RT outperforms MDS-MAP(C,R) algo-
rithm. 

A significant amount of reduction is observed in 
RMSE of MDS-RT as the anchor nodes are increased 
from 6 to 10 which is depicted in Figure 8. At connec-
tivity of 26.2 and 43.19 the amount of RMS Error is 
[1.67%, 0.68%] for MDS-MAP(C,R) and [0.129%,  

 

 

Figure 6. RMSE vs. connectivity with 5% range error and 4 
anchors. 
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Figure 7. RMSE vs. connectivity with 5% error and 6 an-
chors. 

 

 

Figure 8. RMSE vs. connectivity level with 5% range error 
and 10 anchors. 

 
0.0002%] for MDS-RT respectively. Thus the accuracy 
increases by about 45% for connectivity of 43.19. 

The efficiency and excellent performance of the pro-
posed algorithm is very much evident from these graphs. 

Specifically when number of anchor nodes is 10, RMS 
error obtained is negligible and it is shown as zero here. 
When simulations were performed for 10% range error, 
RMSE obtained at connectivity of 21.6 is 4.2e-04, and as 
the radio range goes on increasing, the error goes on de-
creasing. At connectivity level of 45, error is reduced to 
2.1e-05. 

Next, we will analyze performance of algorithm in 
presence of various levels of noise. It is obvious that with 
increase in noise level, RMSE will also increase. The 
comparative plot of effect of increase in range error on 
RMSE using all three methods is shown in Figure 9. It is 
obtained at connectivity level of 29.1 with 6 anchors.  

 

Figure 9. Effect of increase in rage error on RMSE. 
 
When the range error is increased from 5% to 50% 
(worst scenario), the RMSE increases from 3.9% to 8.1% 
for MDS-MAP(C), 0.87% to 4.45% for MDS-MAP(C,R) 
and 0.067% to 2.35% for MDS-RT respectively. 

With increase in the number of anchors, the location 
estimate is more accurate and reduction in RMSE is ob-
served. 

When range error is increased to 10% the effect on 
RMSE is seen as shown in Figure 11. Comparing Fig-
ures 10 and 11, it can be observed that, the RMSE of 
MDS-MAP(C) increases to 9.6% from 9.2%, when error 
increases from 5% to 10% with 4 anchors. With 
MDS-MAP(C,R), RMSE increases from 1.3% to 1.5%, 
and with MDS-RT it increases from 0.4% to 0.7% re-
spectively. With 10 anchors, RMSE of MDS-RT increa- 
ses from 0.028% to 0.038% whereas MDS-MAP(C,R) 
increases from 0.5% to 0.9% respectively. 

Table 1 shows the performance of all three algorithms 
with 4, 6, and 10 anchors. The data shows the effect on 
RMSE with 5% and 10% range error at connectivity of  

 

 

Figure 10. Effect of increase in number of anchors on RMSE 
with 5% range error. 
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Figure 11. Effect of increase in number of anchors on RMSE 
with 10% range error. 

 
Table 1. Performance comparison at connectivity of 26.2. 

 Range Error (%) RMSE(%) 

MDS-MAP(C) 
4 Anchors 5 9.2 
 10 9.54 
6 Anchors 5 5.3 
 10 7.3 
10 Anchors 5 3.5 
 10 3.7 

MDS-MAP(C,R) 
4 Anchors 5 1.25 
 10 1.8 
6 Anchors 5 0.9 
 10 1.35 
10 Anchors 5 0.6 
 10 0.83 

MDS_RT 
4 Anchors 5 0.26 
 10 1.01 
6 Anchors 5 0.21 
 10 0.83 
10 Anchors 5 0.023  
 10 0.031 

 
26.2. The RMSE is normalized to radio range and per-
centage error is computed. 

As it is clear from above figures and Table 1, our 
proposed method performs better than MDS-MAP(C,R). 
As can be seen from Figure 11, the error approaches 
nearly to zero even in the case of 10% range error. The 
remarkable difference is seen when number of anchor 
nodes are high i.e. > 5 and connectivity > 26.1. 

We have also performed the simulation of placing an-
chor nodes colinearly for 50, 100 and 200 nodes. Place-
ment of anchors plays a very important role in any local-
ization algorithm. This is very important to note that the 
trilateration method fails, if anchor nodes are collinearly 
located. The proposed algorithm MDS-RT overcomes 

this problem. As MDS provides good initial estimate of 
locations, even though the anchor nodes are collinearly 
located, trilateration refines the estimated locations only. 
If anchors are not in radio range of each other or 
non-anchor nodes are not in the range of anchor nodes 
then algorithm may give erroneous results. However, this 
problem can be overcome with dense network topology. 

Figure 12 shows the localization using MDS-MAP(C) 
and MDS-RT for 50 nodes when nodes are placed colin-
early. At connectivity of 21.6, with 20% range error and 
4 number of anchor nodes, the RMS Error is 50% for 
MDS-MAP(C) and 15% for MDS-RT. As the density of 
nodes increases, with less radio range also nodes start 
communicating as they get enough connectivity. 

Figure 13 and 14 show simulation for 100 and 200 
nodes with 20% range error. At connectivity of 26.1 with 
range error of 20%, RMSE obtained is 37% and 0.2% for 
MDS-MAP(C) and MDS-RT respectively for 200 nodes. 

From all the graphs and scatter-plots, it is clear that 
our proposed algorithm MDS-RT outperforms MDS- 
MAP(C,R) algorithm. If accuracy is not to be compro- 

 

 
(a) 

 

 
(b) 

Figure 12. (a)(b): Scatter plot of 50 nodes for MDS-MAP(C), 
and MDS-RT. 
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(a) 

 

 
(b) 

Figure 13. (a)(b): Scatter plot of 50 nodes with MDS- 
MAP(C), MDS-RT. 
 

 
(a) 

 
(b) 

Figure 14. (a)(b): Scatter plot of 200 nodes localized with 
MDS-MAP(C) and MDS-RT. 
 
mised, then at the cost of increased radio range or more 
anchors, the algorithm performs best. 
 
5. Conclusions 
 
Localization using Multidimensional Scaling is one of 
the robust algorithms in the literature of localization in 
sensor network. MDS-MAP(C) has proved its efficiency 
as compared to other algorithms like SDP, APS etc. Er-
ror in basic MDS-MAP(C) has been improved in 
MDS-MAP(C,R) algorithm. However, MDS-MAP(C,R) 
is computationally intensive. We have shown that, if 
refinement step is performed using trilateration by ad-
justment (MDS-RT), the algorithm not only becomes 
computationally light weight but also significant error 
reduction is observed and more accurate results are ob-
tained. The current work assumes that the network is 
isotropic. The proposed method may be extended to a 
network with irregular topology as a future work. 
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