
Journal of Cancer Therapy, 2011, 2, 148-156 
doi:10.4236/jct.2011.22017 Published Online June 2011 (http://www.SciRP.org/journal/jct) 

Copyright © 2011 SciRes.                                                                                  JCT 

Identification of a 12-Gene Signature for Lung 
Cancer Prognosis through Machine Learning 

Erin Bard, Wei Hu 
 

Department of Computer Science, Houghton College, Houghton, USA. 
Email: Wei.Hu@houghton.edu 
 
Received March 18th, 2011; revised April 20th, 2011; accepted April 28th, 2011. 

 
ABSTRACT 

Personalized medicine is critical for lung cancer treatment. Different gene signatures that can classify lung cancer pa-
tients as high- or low-risk for cancer recurrence have been found. The aim of this study is to identify a novel gene sig-
nature that has higher recurrence risk prediction accuracy for non-small cell lung cancer patients than previous re-
search, which can clearly differentiate the high- and low-risk groups. To accomplish this we employed an ensemble of 
feature selection algorithms, an ensemble of classification algorithms, and a genetic algorithm, an evolutionary search 
algorithm. Compared to one previous study, our 12-gene signature more accurately classifies the patients in the train-
ing set (n = 256), 57.32% compared to 50.78%, as well as in the two test sets (n = 104 and n = 82), 67.07% compared 
to 54.9% and 57.32% compared to 54.8%; where the prediction accuracy was determined by the average of the four 
classifiers. Through Kaplan-Meier analysis on high- and low-risk patients our 12-gene signature revealed statistically 
significant risk differentiation in each data set: the training set had a p-value less than 0.001 (log-rank) and the two test 
sets had (log-rank) p-values less than 0.05. Analysis of the posterior probabilities revealed strong correlation between 
5-year survival and the 12-gene signature. Also, functional pathway analysis uncovered associations between the 
12-gene signature and cancer causing genes in the literature. 
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1. Introduction 

The National Cancer Institute and the Centers for Dis-
ease Control and Prevention have confirmed that lung 
cancer is responsible for the majority of cancer-related 
deaths. In 2007 (the most recent year with verified na-
tional statistics), the number of lung cancer deaths was 
greater than the combined total of breast cancer, pros-
tate cancer, and colon cancer deaths [1,2].  

Lung cancer is typically classified into two subcate-
gories: either non-small cell lung cancer (NSCLC), the 
most common type of lung cancer, or small cell lung 
cancer. The two most important distinguishing factors 
between NSCLC and small cell lung cancer are initial 
tumor size and rate of growth [3,4]. In NSCLC the ma-
lignant cells do not clump together and thus are not 
easily observed under a microscope; instead they must 
be detected through bronchial or mucus cultures [4]. 
Also, NSCLC does not typically spread as fast as small 
cell lung cancer, which can grow so fast that, by the 
time of detection, surgical removal is impossible or has 

an extremely low success rate [3]. In small cell lung 
cancer the malignant cells tend to clump together and 
form masses which are readily identified visually 
through an x-ray or other scanning methods [3]. Be-
cause small cell lung cancer spreads so rapidly and is 
essentially untreatable through surgery, research tends 
to focus on NSCLC patients where the goal is to cor-
rectly predict the patients’ risk of cancer recurrence 
within 3 to 5 years (depending on the study). This en-
ables patients who are at low-risk for recurrence to 
receive surgery while those at high-risk for cancer re-
currence may receive more aggressive treatment plans, 
such as chemotherapy or radiation therapy.  

In order to accomplish this classification, researchers 
have sought to identity gene signatures that can accu-
rately predict lung cancer patients’ risk status (high or 
low) and which clearly differentiate the high- and 
low-risk groups [5-8]. This classification process can 
be accomplished with the application of gene expres-
sion profiling or machine learning algorithms [5-12].  
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One such approach to predicting patient classifica-
tion and finding a significantly deterministic gene sig-
nature involves pairing a genetic algorithm with Sup-
port Vector Machines (a classification algorithm) [9]. 
Another method includes the use of gene expression 
profiling in concert with statistical analysis, specifi-
cally Cox proportional hazards modeling [7]. A simpler 
approach is to use only a genetic algorithm, which is 
highly effective at identifying new prognostic gene 
signatures [10]. 

In [6], a multi-step gene search was conducted using 
both statistical tests and machine learning techniques. 
In the first step, unsupervised clustering of the gene 
dataset identified two clusters that significantly differ-
entiated patients (p = 0.036) according to their recur-
rence risk. Also in the first step, the dataset was ana-
lyzed with a Cox proportional hazards model in order 
to select the most significant genes. Then, quantitative 
reverse transcription polymerase chain reaction and 
immunohistochemistry techniques were used to vali-
date individual gene candidates from the tissue mi-
croarrays. Kaplan-Meier analysis on the resulting gene 
signature showed significant stratification of high- and 
low-risk patients (p = 0.04). In the second step of the 
analysis the cluster-based classifier and the haz-
ards-based classifier were combined and implemented 
on a test set; the resulting gene signature yielded a sig-
nificant differentiation between high- and low-risk pa-
tients (p = 0.0002). 

Another study, [8], paired genetic algorithm with 
one of several classification algorithms (OneR, Naïve 
Bayes, Decision Tree, and Support Vector Machines) 
in order to identify the algorithm combination which 
yielded the highest prediction accuracy on a previously 
labeled dataset. The goal of their research was not to 
identify a new gene signature but rather to analyze the 
average accuracy of the classifiers. 

The above research methodology first specified that 
the genetic algorithm be run on the dataset, in order to 
choose the genes which are the best predictors of pa-
tient risk status. In order to yield a more diverse set of 
genes between iterations, the genetic algorithm pa-
rameters were randomized within each iteration of the 
program; this also significantly reduced the possibility 
of gene favoritism in the study. Then in each iteration, 
once a set of genes was selected, the machine learning 
classifiers analyzed the set and reported their respec-
tive prediction scores. The classifiers were then ranked 
according to the average accuracy of their predictions 
over the duration of the study. The prognostic models 
built by the combination of the genetic algorithm with 
Naïve Bayes or the genetic algorithm with Support 
Vector Machines were found to consistently be the two 

most accurate predictors of patient risk status. 
In [5], the gene datasets previously published in [7] 

were assessed with SAM Statistics and unequal vari-
ance t-tests. The genes selected by both tests were 
ranked by the Relief algorithm, which ranked the genes 
according to their prognostic accuracy and then exe-
cuted a forward selection process where the top genes 
were added one at a time to the final gene signature 
until the next gene to be added did not increase classi-
fication accuracy. This process resulted in a twelve 
gene signature. This signature was then used with the 
Naïve Bayes classifier to build a prognostic model, 
based on the data from the censored training set (UM& 
HLM, n = 229), which was then tested on all three un-
censored datasets: UM&HLM (n = 256), MSK (n = 
104), and DFCI (n = 82). 

The goal of our study is to identify a novel gene 
signature that can be used to distinguish between lung 
cancer patients with high- and low-risk for cancer re-
currence within 5 years. We also added the constraint 
that our signature must have better classification accu-
racy than the signature reported in [5]. 

2. Materials and Methods 

2.1. Patient Data 

The clinical data used in this study was first published in 
[7]. There are 22,282 gene probes provided for each pa-
tient in each of the datasets (the probe 207140_at was 
excluded from this study as it had only null values). The 
training set samples came from the University of Michi-
gan Cancer Center (UM) and the Moffitt Cancer Center 
(HLM) and has 256 samples (or 229 if censored—see 
below). The two test sets came from the Memorial 
Sloan-Kettering Cancer Center (MSK, n = 104) and the 
Dana-Farber Cancer Institute (DFCI, n = 82). Since the 
three datasets came from the same study and were col-
lected and processed with exactly the same procedures in 
the four affiliated research labs, they are particularly well 
suited for use in this study. Furthermore, this dataset is 
the largest lung cancer dataset currently available. Addi-
tional information regarding the data and its collection is 
available in [7], as well as the actual data. 

During preprocessing of the data, 27 samples from the 
training set were censored because those patients left the 
study before the 5 year mark and thus we cannot accu-
rately classify them as either high- or low-risk since we 
do not know their survival status at the 5 year mark. 
These 27 censored cases were then re-added to the 
UM&HLM test set during validation of the gene signa-
ture, in order to provide additional test data, following 
standard practice in the literature. 
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2.2. Algorithms 

In this study, three types of algorithms were employed to 
find a gene signature: feature selection, genetic, and clas-
sification algorithms. 

Feature selection algorithms function under the prem-
ise that not all the attributes of the instances are neces-
sary for accurate classification; thus these algorithms 
seek to identify a subset of the attributes which still ac-
curately represents the characteristics of the instances. 
There are two common methods to accomplish this: fil-
tering and wrapping. Filtering is typically applied as a 
preprocessing technique that assigns a score to each at-
tribute and only keeps the attributes which exceed a score 
threshold. Wrappers select an attribute subset based on 
the prediction accuracy of a particular classification 
model [9,13]. 

Related to feature selection algorithms are genetic al-
gorithms: heuristic search algorithms based on the con-
cepts of biological evolution, such as mutation, crossover, 
and inheritance. These concepts are applied across each 
generation (iteration) of a given population. 

In genetic algorithms, the population refers to the col-
lection of individuals that compose the set of possible 
solutions to the given problem (typically represented as 
an array of bits). Thus the goal of genetic algorithms is to 
have the population of each generation improve upon the 
previous until the algorithm finds the individual (mean-
ing the solution) with the desired fitness score within that 
population (depending on the problem being studied, the 
fitness score can be calculated in several different ways). 
Genetic algorithms are remarkable in the field of ma-
chine learning due to their ability to search a large space 
efficiently; consequently, they have found wide applica-
tions in many different fields [8,9,13-15]. 

Classification algorithms seek to assign a class label to 
each instance in a dataset. To achieve this, the dataset is 
divided into two non-overlapping subsets: a training set 
and a test set; alternatively, multiple datasets may be 
used, one for training and the rest for testing. Classifica-
tion of the data is completed through a two phase process. 
In the training phase the algorithm associates the attri- 
butes of an instance in the training set with the instance’s 
known class label; this association defines a prediction 
model. In the testing phase the model is applied to the 
instances in the test set in order to evaluate the effective-
ness of the model at correctly predicting class labels. 
This process of training and testing is known as super-
vised learning [13,16]. 

2.3. Software 

Most of the research completed in this study was carried 
out using WEKA 3.4 [17], a collection of open source 

machine learning algorithms for data mining (supported 
by the University of Waikato, New Zealand). Custom 
Java programs were written which used WEKA’s feature 
selection, genetic, and classification algorithms. 

All statistical analysis for this study was performed 
with the use of the program R [18], the PAMR package 
of R, and Microsoft Excel 2007. In R, the PAMR func-
tion plotsurvival was used to determine the survival 
curves and plot them for Kaplan-Meier analysis. Also the 
built-in function t.test was used to implement the unequal 
variance t-tests (by default it is a two-tailed test and uses 
the Welch-Satterthwaite equation to find the degrees of 
freedom automatically). Excel was used to generate all 
graphs and the confidence function was used to find and 
plot the 95% confidence interval for Figure 4. The SAM 
plug-in for Excel was used to perform SAM analysis. 
Functional pathway analysis was carried out through 
Ingenuity Pathway Analysis (IPA) [19]. 

2.4. Statistical Methods 

Three statistical methods were used in our study: two for 
selecting significant genes and one for validation of our 
signature, following the methodology used in [5]. 

The two methods used for selecting significant genes 
were Significance Analysis of Microarrays (SAM) and 
unequal variance t-tests. Unequal variance t-tests check 
the null hypothesis that a gene has the same means for 
high- and low-risk groups of patients. From the test’s 
resulting t-value, a p-value is calculated. This p-value 
represents the probability of the two means to be equal. 
Typically a gene with p-value < 0.05 is said to have sta-
tistically different means for high- and low-risk patients. 
SAM also checks the null hypothesis that a gene has 
equal means for high- and low-risk patients. However, 
SAM additionally provides a tuning parameter, delta, 
which is used for determining the significance threshold 
(and thus the number of significant genes identified by 
SAM) and which influences the false discover rate (FDR) 
[20]. These two tests work well in tandem to ensure that 
the genes selected are significant in risk status differen-
tiation. 

The third statistical method used was Kaplan-Meier 
analysis, which creates a survival curve for a given data-
set. The main benefit of using Kaplan-Meier analysis is 
the support it offers for data censoring. Typically Kap-
lan-Meier analysis is used in conjuncture with the log- 
-rank test in order to compare survival curves. The 
log-rank test produces a (log-rank) p-value, which re- 
presents the measure of how much evidence we have 
against the null hypothesis of no difference between the 
two survival curves. If the p-value is less than 0.05 it is 
considered to be statistically significant and we reject the 
null hypothesis. 

Copyright © 2011 SciRes.                                                                                  JCT 
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2.5. High- and Low-Risk Determination 2.6. Gene Selection Method 

In order to determine the accuracy of our classification 
predictions, we need to define what “high-risk for cancer 
recurrence” means in our study. We defined it following 
the typical definition found in the literature: any patient 
who has cancer recurrence within 5 years of initial treat-
ment will be labeled as “high-risk”; all other patients are 
labeled ‘low-risk’. This is also the primary definition used 
in [5], allowing for better comparison between our results. 

Learning from the approach in [5], we used the following 
methodology (summarized in Figure 1). First, an ensem-
ble of seven feature selection algorithms was chosen to 
select the genes that are most significant for accurate 
classification of patient survival. We used the following 
feature selection algorithms: FilteredAttributeSelection, 
InfoGain, Relief, SymmetricalUncertainty, InfoGainRa-
tio, OneR, and ChiSquared. 

 

 

Figure 1. Search process for identification of the 12-gene signature. 
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To limit the number of genes selected, only the genes 

that were chosen by at least five of the feature selection 
algorithms were carried through to the next step (we 
chose five algorithms because it was the largest number 
of algorithms that returned a large set of genes; the inter-
section of six and of seven algorithms returned fewer 
than 13 genes—which we felt was too specific a set). 
This process produced a set of 190 genes. 

To find the significant genes, SAM statistics (using 
delta = 0.461 with FDR < 0.25) and unequal variance 
t-tests (with p ≤ 0.05) were independently run on the set 
of 190 genes. These two statistical tests enabled us to 
reduce the number of genes to only those which are the 
best predictors of patient risk. The intersection of the 
tests’ results yielded a set of 26 genes. 

Next, the genetic algorithm was applied to the set of 
26 genes to find the gene subsets which produce the 
highest prognostic classification accuracy. For each gene 
subset selected as a candidate signature by the genetic 
algorithm, we took the average of the classification re-
sults for our four classifiers (Naïve Bayes, Random For-
est, J48, and SMO) on the training dataset (UM&HLM, n 
= 229). If the gene subset’s accuracy exceeded a thresh-
old, set equal to the accuracy reported in [5] for the 
training set, then that gene subset was recorded in a log 
file for further analysis. 

We next confirmed that each recorded gene subset had 
better prediction accuracy for the test sets (UM&HLM, n 
= 256; MSK, n = 104; and DFCI, n = 82) than reported in 
[5] (again computed by taking the average of the predic-
tion accuracy reported by the four classifiers). For the 
gene subsets that passed this test, we then computed the 
differentiation of each gene-set’s low- and high-risk sur-
vival curves, found through Kaplan-Meier analysis, pro-
ducing a p-value (log-rank) for each dataset.  

Of the gene sets examined, only the 12-gene signature 
(Table 1) had both higher prediction accuracy than the 
signature reported in [5] and statistically significant risk 
differentiation (p < 0.05) for all three datasets. 

The parameters for the genetic algorithm which yielded 

the final 12-gene signature were nine generations, a pop-
ulation size of 16, a crossover probability of 48.5%, and 
a mutation probability of 20.3%. 

3. Results 

3.1. Overview 

In order to determine the prediction accuracy reported by 
each classifier for a given dataset, the WEKA API was 
called from a custom Java program which also stored the 
WEKA output. If the average of the four classifiers’ pre-
diction accuracy for the training set (UM&HLM, n = 229) 
exceeded the given threshold, then the results were also 
logged in a text file. 

The text file logs contained the detailed results for all 
four classifiers and their average for the training set and 
all three test datasets: UM&HLM (n = 256), MSK (n = 
104), and DFCI (n = 82). Next, all the text file logs were 
manually reviewed and compared in order to identify the 
gene signatures most likely to yield the desired signature 
characteristics (highest prediction accuracy and smallest 
p-value). After that, a posteriori probabilities histogram 
and the survival curves were generated for the most 
promising gene signatures. These further results were 
then manually compared to select the gene signature with 
the highest overall prognostic accuracy and the lowest 
(log-rank) p-value for the three test datasets. 

3.2. Classification Accuracy 

The classification performance of our 12-gene signature 
for all three datasets was higher than in [5]. Specifically, 
we observed average prediction accuracy scores 6.58%, 
12.17%, and 2.52% higher than [5] for the UM&HLM, 
MSK, and DFCI datasets respectively; full prediction 
results can be found in Table 2. 

Using Kaplan-Meier analysis on patient high- and 
low-risk groups, we were able to plot the two respective 
survival curves (Figure 2—the prediction results used to 
generate the survival curves came from the Random Forest 
classifier, which yielded the highest accuracy predictions 

 
Table 1. The 12-gene signature. Gene name, protein function, and classification obtained from IPA literature. 

Gene Probe Set Id Protein Functions Classification 

CNGB1 207342_at Nucleotide binding Cell Maintenance 
DOC2B 207311_at Vesicle regulation Unknown 
HMX1 207353_s_at DNA transcription, binding Multicellular development 
HTR1E 207404_s_at Cell proliferation Replication 
KDM6A 203992_s_at Chromatin modification Unknown 
KIR3DL1 207313_x_at Cell death activator Immune system 
MASP2 207041_at Protein binding Unknown 
MEIS2 207480_s_at DNA transcription Maintenance 
PTPRM 207487_at Cellular regulator Maintenance 
RUNX1T1 205529_s_at DNA transcription, binding Replication 
SLC22A14 207408_at Membrane transporter Transportation 
ZNF343 207296_at DNA binding Unknown 
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Table 2. Comparison of prediction accuracy between our 12-gene signature and the gene signature from [5]. 

 

Classification Scores 
UM & HLM 
(n = 256) 

MSK  
(n = 104) 

DFCI  
(n = 82) 

SMO Correctly Classified Instances 154 75 45 
SMO Percent Correctly Classified 60.16% 72.12% 54.88% 
SMO P-value (log-rank) 0.0001911 0.0258 0.31314 
Random Forest Correctly Classified Instances 132 66 50 
Random Forest Percent Correctly Classified 51.56% 63.46% 60.97% 
Random Forest P-value (log-rank) 0 0.036 0.04226 
Naïve Bayes Correctly Classified Instances 149 73 47 
Naïve Bayes Percent Correctly Classified 58.20% 70.19% 57.32% 
Naïve Bayes P-value (log-rank) 0.0000016 0.0385 0.2038 
J48 Correctly Classified Instances 152 65 46 
J48 Percent Correctly Classified 59.38% 62.5% 56.10% 
J48 P-value (log-rank) 0 0.0237 0.83375 
Ensemble Average Correctly Classified Instances 146.75 69.75 47 
Ensemble Average Percent Correctly Classified 57.32% 67.07% 57.32% 
Percent Correctly Classified by the Gene Signature Reported In [5] 50.78% 54.9% 54.8% 

 

Figure 2. Kaplan-Meier survival graphs for the three datasets, created using the prediction results of the Random Forest 
classifier from our ensemble of classifiers. 
 
and the lowest p-values). The differentiation between the 
curves yielded the (log-rank) p-values for each dataset. 

The training set achieved a p-value < 0.001 and the 
test sets both achieved p-values < 0.05; meaning that the 
high- and low-risk curves were very well differentiated 
and we rejected the null hypothesis that the risk groups 
were identical. 

This shows that our 12-gene signature is valid for pa-
tient risk status differentiation. 

3.3. Correlation of Posterior Probability with 
Survival 

The histogram presented in Figure 3 reveals the frequency 
of the distribution of posterior probabilities amongst the 
different bins. Observe that the classifier was more likely 
to classify an instance as high-risk than low-risk and that 
the distribution slightly resembles an inverse bell-curve 
(except on the lowest posterior probabilities). 

The graph in Figure 4 establishes the connection be-
tween the 12-gene signature posterior probabilities and 
the average rate of death at five years. Note that the 95%  

 

Figure 3. Posterior probabilities histogram generated from 
Random Forest classifier results. 

 
confidence margin is wide for the lower posterior prob-
abilities due to small bin sizes but is very narrow for the 
higher posterior probabilities, where the bin sizes in-
creased by two or three times those of the lower posterior  
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Figure 4. Average rate of death at 5 years based on poste-
rior probabilities generated from Random Forest classifier 
(with 95% confidence margin). 
 
probabilities—this is a result of the unequal frequency 
distribution presented in Figure 3 which favored high- 
risk predictions. 

3.4. Functional Pathway Analysis 

Using Ingenuity Pathway Analysis (IPA) [19], we found 
that the 12-gene signature is strongly associated with 
other genes responsible for cancer growth in the litera-
ture (Figure 5). In particular CDH1, Histone h3, and 
beta-estradiol have been linked to cancer growth and, as 
can be seen in Figure 5, they serve as the center nodes 
that our signature genes connect to in the network of 
gene interactions. 

The functional pathway analysis also revealed signifi- 
 

 

Figure 5. Functional pathway analysis of the 12-gene signa-
ture, generated through core analysis from Ingenuity 
Pathway Analysis. Genes present in our signature are high-
lighted. 

cant correlation with other diseases, such as Crohn’s dis-
ease, Huntington’s disease, hypertension, diabetes, schi-
zophrenia, and bipolar disorder. In every case, three or 
more genes from the 12-gene signature were associated 
with each of the above diseases, according to the litera-
ture available through IPA. While we do not know the 
significance of these results, and they lie outside the 
scope of this research, we feel they are worth reporting. 

3.5. Survival Covariate Decision Tree 

As part of this study we also sought to determine which 
clinical covariates had the strongest connection with pa-
tient survival and then display this information in an easy 
to understand graphical form. Our work was motivated 
by [5], where a multivariate Cox hazards analysis on the 
clinical variables was presented in a table format. 

To this end, we evaluated the original clinical data 
published in [7] with the J48 decision tree algorithm. 
Specifically, we used the censored MSK (n = 65) and 
censored DFCI (n = 64) datasets; a collection of 129 pa-
tients with known survival status. As with the training set 
censored patients, these patients were censored because 
they left the study before the 5 year mark and thus we do 
not know their survival status at the 5 year mark. 

The resultant decision tree, in Figure 6 below, indi-
cates that the age at diagnosis and the tumor differentia-
tion are the two most important covariate predictors for 
patient survival. 

4. Discussion 

In this paper we identified a novel gene signature for 
lung cancer risk prediction which has higher classifica-
tion accuracy than previous research. While our results 
are an improvement in classification over those presented 

 

 

Figure 6. Survival decision tree for clinical covariates. 
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in [5], which was in turn an improvement over previous 
research, there are still several potential problems with 
the application of the 12-gene signature in clinical set-
tings.  

Although we were able to achieve an increase in over-
all classification accuracy, we still are incorrectly classi-
fying 30% - 40% of patients. This means that while the 
majority of patients will receive well tailored treatment 
plans, there are still many patients who will receive too 
aggressive treatment or, worse, who won’t receive strong 
enough treatment to stop their cancer.  

There are several possibilities for further research that 
could improve the accuracy of the methodology pre-
sented in this paper. One avenue for improvement would 
be to not re-include any of the censored patients in the 
test sets. Though this goes against the common practice 
in the literature and reduces the sizes of our test sets, it 
would likely lead to higher accuracy results. Another 
possibility for improvement would be to focus on identi-
fying a larger gene signature, say in the range of 20 - 35 
genes. While this would be on the large side of the range 
typically presented in the literature, it stands to reason 
that such a signature would be more accurate at predict-
ing patient risk status. A third option for increasing the 
accuracy of our methodology would be to use genetic 
algorithms first, before the feature selection algorithms 
and the statistical tests. This could yield much more di-
verse sets of genes for analysis, one of which might have 
better accuracy. 

5. Conclusions 

In this study we successfully identified a novel gene sig-
nature for lung cancer risk prognosis that has greater 
prognostic classification accuracy than signatures re-
ported by previous research, such as [5], and is also sta-
tistically significant at differentiating between high- and 
low-risk patients.  

In the comparison, our 12-gene signature outper-
formed previous research in terms of classification accu-
racy and is also statistically significant in differentiating 
between the high- and low-risk groups in the UM&HLM, 
MSK, and DFCI datasets under Kaplan-Meier analysis.  
In addition, posterior probability calculations showed a 
direct correlation between the 12-gene signature and pa-
tient survival at 5 years. Furthermore, functional pathway 
analysis revealed strong connection between the signa-
ture and known cancer causing genes from the literature. 
The analysis also suggested that our 12-gene signature 
may be associated with several other well known dis-
eases. 

These results, observed during validation, imply that 
our 12-gene signature is appropriate for use in lung can-
cer patient risk determination. 
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