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Abstract 
Cloud Computing as a disruptive technology, provides a dynamic, elastic and promising computing 
climate to tackle the challenges of big data processing and analytics. Hadoop and MapReduce are 
the widely used open source frameworks in Cloud Computing for storing and processing big data 
in the scalable fashion. Spark is the latest parallel computing engine working together with Ha-
doop that exceeds MapReduce performance via its in-memory computing and high level pro-
gramming features. In this paper, we present our design and implementation of a productive, do-
main-specific big data analytics cloud platform on top of Hadoop and Spark. To increase user’s 
productivity, we created a variety of data processing templates to simplify the programming ef-
forts. We have conducted experiments for its productivity and performance with a few basic but 
representative data processing algorithms in the petroleum industry. Geophysicists can use the 
platform to productively design and implement scalable seismic data processing algorithms 
without handling the details of data management and the complexity of parallelism. The Cloud 
platform generates a complete data processing application based on user’s kernel program and 
simple configurations, allocates resources and executes it in parallel on top of Spark and Hadoop. 
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1. Introduction 
Cloud computing as a disruptive technology, provides a dynamic, elastic and easy-to-use computing climate to 
tackle the challenges of big data processing and analytics. Three different services cloud can provide in this re-
gard, which are categorized as Software as a Service (SaaS), Platform as a Service (PaaS), and Infrastructure as 
a Service (IaaS) [1]. A cloud-based big data analytics platform is becoming important to support their daily 
work by delivering the required storage space, processing power, and intelligent analytics capacity in many in-
dustries, such as retails, energy, oil & gas, security/surveillance, image/video, social networks, financial/trading, 
and more. One challenge these industries are facing in common is the fast-growing data volume. The traditional 
HPC platform focusing on increasing FLOPS will need to be revisited to shift the emphasis to the data through-
put and management instead. 
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In this paper, we studied the oil & gas industry requirements for the domain data processing and analytics, 
and then designed a domain-specific big data processing and analytics cloud for the industry. The oil & gas in-
dustry is a traditional domain that demands both high performance computing and big data storage to process 
large petroleum domain data, mostly seismic data. Seismic data analysis that processes and interprets multi-di- 
mensional seismic volumes plays a key role in oil & gas exploration. The seismic data processing is both com-
putation- and data-intensive, and is typically operated on top of traditional High Performance Computing (HPC) 
platforms. The size of seismic data, however, is increasing dramatically nowadays, which requires a new design 
for the data processing platform. Will the fast-growing seismic data benefit from the big data analytics platform 
and cloud computing techniques? How is the typical performance/scalability of using such a cloud? What are 
advantages/disadvantages comparable with traditional HPC programming? 

The objective of the paper is to have a first attempt to explore and demonstrate the scalability and productivity 
of using the big data and cloud computing techniques for seismic data processing. In order to achieve the goal, a 
seismic analytics cloud (SAC) combining both big data platform and cloud computing is created to deliver a 
domain-specific Platform as a Service (PaaS) to support seismic data storage, processing, analytics and visuali-
zation. We have created a variety of seismic processing templates to simplify the programming efforts in im-
plementing scalable seismic data processing algorithms by hiding the complexity of parallelism. The Cloud en-
vironment will generate a complete big data application on top of Spark based on user’s kernel program and 
configurations, and deliver the required cloud resources to execute the application. 

In following sections, we explain related works and background on different big data analytics platforms in 
Section 2. Section 3 follows by the design and implementation of the domain-specific cloud. We then present 
the performance details of a few case studies for seismic data processing in Section 4 and give performance 
analysis in Section 5. Finally conclusion and future works are discussed. 

2. Related Work 
We describe a few related works in this section, which are also our building foundations of the domain-specific 
cloud. 

2.1. Apache Hadoop 
Hadoop [2] with MapReduce [3] is the widely used open source framework in cloud computing for storing and 
processing large amount of data in the scalable fashion. There have been many studies [4]-[6] around perfor-
mance of Hadoop on big data analysis. Hadoop with its ecosystem has been successfully deployed in many 
fields that require to process big data in batch processing. Hadoop File System (HDFS) supports distributed file 
system with fault tolerance feature, which provides a large, global-view, distributed file storage using loosely 
connected computing node disks together. MapReduce as the main parallel programming model provides a sim-
ple but typical parallel execution model that works well for applications with map-followed-by-reduce parallel 
execution pattern. 

2.2. Apache Spark 
Spark [7] [8] is the latest parallel computing engine working together with Hadoop that exceeds MapReduce 
performance via its in-memory computing and high level programming features. Spark is developed using Scala 
[9], which is a high-level programming language that supports both functional and object oriented programming. 
Comparable to DryadLINQ [10] Spark is equipped with an integrated environment for programming languages. 
Spark created a unique data structure called Resilient Distributed Datasets (RDDs) [11], which allows Spark ap-
plication to keep data in memory, while MapReduce relies on HDFS to keep data consistent. RDD supports 
coarse grained transformation and logging them to provide fault tolerance. In time of losing a partition RDD can 
re-compute information using named logs to retrieve lost dataset [11]. Based on RDD, Spark supports more pa-
rallel execution operations than MapReduce. Defining RDDs via transformations and using them in various op-
erations is the process of programming in Spark. Since transformations are lazy in Spark they won’t compute till 
they are needed [12]. Moreover, Spark supports three high-level programming languages: Scala, Python and Ja-
va, while MapReduce only supports Java. Besides batch processing, Spark also supports streaming and interac-
tive programming, which dramatically attracted the interests of many real-time and analytics applications de-
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velopers. Spark community is very active in development, and Spark is quickly getting popular due to its unique 
features. The implementation and experiments of this paper are built on top of Hadoop and Spark environment. 

3. Seismic Analytics Cloud Implementation 
The goal of the seismic analytics cloud (we named it SAC) is to deliver a scalable and productive cloud Platform 
as a Service (PaaS) to seismic data analysis researchers and developers. SAC is designed to be able to store large 
amount of seismic data with major vendor’s formats, as well as be able to process them in the scalable fashion to 
meet the performance requirements. Users should be able to work on their seismic processing algorithms using 
high-level programming models with very limited knowledge in parallelism and architecture. 

3.1. The Architecture of Seismic Analytics Cloud 
The design of SAC architecture is to emphasize twofold: one is to provide a high-level productive programming 
interface to simplify the programming efforts; the other is to execute user’s applications with scalable perfor-
mance. To achieve the first goal, we provide the web interface in which user could manage seismic datasets, 
programming within a variety of templates, generate complete source codes, compiling and then running the ap-
plication and monitoring the job running status in SAC. 

The interface allows users to write seismic data processing algorithms using our extracted common seismic 
computation templates, which lets users focus on their kernel algorithm implementation, and simplifies user’s 
implementation in handling seismic data distribution and parallelism. 

While the most popular-used programming models in seismic data processing include MATLAB, Python, 
C/C++, Fortran, Java and more, SAC supports Java, Python and Scala natively, so that users can write their own 
processing algorithms directly on our platform with these three languages; For legacy applications written in 
other languages, SAC uses the so-called PIPE mode to handle input and output data as standard-in and -out, 
which requires minor modifications of program source code on handling input and output. 

SAC will generate complete Spark codes based on user’s kernel codes and configurations, and then launch 
and monitor it on the SAC environment. 

In order to support large amount data storage and scalable I/O performance, we chose Hadoop HDFS as the 
underlying file system, which provides fault tolerance with duplicated copies and good I/O throughput by sup-
porting data locality information to applications. HDFS supplies out-of-the-box redundancy, failover capabilities, 
big data storage and portability. Since the size of seismic data is very large and keeps increasing constantly, 
HDFS provides a good solution for the data storage with fault tolerance property. 

We use Spark as the parallel execution engine to start applications, since Spark works well on top of HDFS, 
Mesos [13] and YARN, and it provides a big data analytics computing framework with both in-memory and 
fault-tolerance support. Spark provides RDD as a distributed memory abstraction that lets programmers perform 
in-memory computations on large-scale cluster/cloud in a fault-tolerant manner. To get better performance, we 
need to put frequently used data into memory and processing data in memory, which is one key performance 
boost comparing with MapReduce. Some other useful packages and algorithms in data analytics, such as SQL, 
machine learning and graph processing, are also provided in Spark distribution version. We also integrated some 
common used libraries for image processing and signal processing, such as OpenCV, Breeze and FFTW etc., to 
provide a rich third party of libraries support to speed up the development process. Figure 1 shows the overall 
software stack used in SAC. 

Figure 2 presents the overall architecture of SAC. Based on the SAC web interface, Users are able to upload, 
view and manage their seismic data, which are stored on HDFS. They can then create their application projects 
by selecting a template from a list of predefined templates to start their own programming. After selected dataset 
and processing pattern, writing codes and compiling successfully, users can configure the running parameters 
and then submit jobs to SAC. Job status could be monitored while job is running and running results could be 
checked after job is finished. On the SAC backend, a big seismic data file will be split into multi-partitions and 
be constructed into RDD, which will be processed by working threads that apply user’s algorithm in parallel. 
After all data are processed, the output data will be saved back to HDFS. 

3.2. Input Data and Redirection 
The SEG Y (also SEG-Y) file format [14] is one of several standards developed by the Society of Exploration  
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Figure 1. The software stack of seismic analytics cloud plat-
form. 

 

 
Figure 2. The architecture of seismic analytics cloud plat-
form. 

 
Geophysicists (SEG) for storing geophysical data. This kind of big seismic data needs to be split into multiple 
small partitions to be processed in parallel. However, SEG Y data could not be split directly due to its irregular-
ity, so we preprocess the SEG Y data format into a regular 3D volume data, and store the important header in-
formation into one xml file. Then the 3D volume data and xml will be feed into Spark applications. Spark uses 
InputFormat, which is the base class inherited from Hadoop to split such data and construct RDD. Each split 
will be mapped to one partition in RDD. The embedded InputFormat classes could not handle binary seismic 
data, so we implemented SeismicInputFormat in this project. Based on configuration defined by user while 
creating project, such as how many lines each split and number of overlap lines, SeismicInputFormat could spilt 
the 3D volume and feed partition to each mapper. The data of 3D volume is stored trace by trace in the Inline 
direction by default. For some algorithms that need to process data in cross-line or time-depth direction, we also 
provide interfaces to transform Inline format RDD into cross-line or time-depth direction. In this way, we could 
cache Inline format RDD in memory, thus all the transformations could be executed in memory with better per-
formance. 

3.3. Parallel Processing Templates for Seismic Data 
Based on the general parallel execution patterns of seismic processing algorithms and applications, we prede-
fined some templates to make this framework easy to program. Every template has explicit input type and output 
type. The typical templates are: Pixel pattern, which use sub-volume or one pixel as input and output one pixel; 
Line pattern, which treat one line as input and one line as output; SubVolume pattern, which feed user’s applica-
tion with sub-volume and get output from it in sub-volume format. A high level SeismicVolume class has been 
implemented in this project to provide user interface to access seismic volume. SeismicVolume class provides 
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functions for constructing RDD based on processing templates user had selected, applying user’s algorithms on 
RDD, and storing the final RDD on HDFS with format defined by user. To make it easy for programming, we 
provide some other functions to change the linear array into 2D matrix and 3D volume class; some functional 
programming interface such as iteration, map/flatMap, filter and zip could be used. We also integrated com-
monly used high-level algorithms, such as histogram, FFT, interpolating and filtering algorithms, so that user 
could put more attention on data analytics logic instead of details for each algorithm. 

3.4. Code Generation 
After user created project and completed their own kernel codes, one component named Code Generator (CG) in 
SAC will generate complete Spark codes for running on Spark platform. The CG will parse configuration of us-
er’s project and generate Spark application outlined codes, merge them with user’s codes. User could also upl-
oad existing source codes or libraries, all of which will be integrated into current working project managed by 
Simple Build Tool (SBT). CG will also generate compiling and running scripts basing on user’s runtime setting. 
All these scripts will be called by the web interface, on which some other information such as compiling and 
running status, location of output will be shown clearly. 

3.5. Driver and Job Executor 
In SAC, every user’s project will be treated as one Spark application. CG will generate the main driver code for 
each project. Each application could be submitted to SAC for running after compiled successfully. At execution 
time, driver code will setup the Spark running time environment, call the SeismicVolume object to generate 
RDD and execute user’s algorithms on top of RDD and then store the processed results on HDFS. It will clean 
up the running environment and release resources after finished. To make it support multiple users, Spark Job-
server [15] was introduced to this platform. Based on the priority of application and computation resources re-
quirement of an application, an user could configure the running parameters: number of cores and memory size; 
and then submit his/her own job, monitoring job status and viewing the running results. Another big advantage 
of Spark Jobserver is supporting of NamedRDD that allows multiple applications share RDD but has only one 
copy cached in memory. For some complicate algorithms that need multiple steps or application running in 
workflow, NamedRDD is a good choice for boosting performance. After job is finished, the running results 
cloud be discarded or be saved to user’s workspace basing on user’s selection. 

4. Experiment and Results 
We have conducted numerous experiments on our 25 nodes of computer cluster located at Prairie View A&M 
University, in which one is master node and the other 24 are worker nodes. Each node of the cluster was confi-
gured with Intel Xeon E5-2640 Sandy Bridge CPU (2.5 GHz, 12 Cores), 64GB DDR3 memory. We have 
created a seismic data volume with 102GB, which is generated from the public Penobscot [16] seismic data 
from OpendTect [17] website with duplication and resampling. All of these experiments are performed with 
Spark 1.2.1 on Java 1.8.0 using different garbage collector setting [18] to be able to reduce garbage collection 
time as much as we can to improve the performance. Three test applications in seismic analysis are implemented 
and tested for the experiments: Seismic Calculator, Histogram, and Fast Fourier Transform (FFT). We have run 
these applications using different numbers of CPUs to show the scalability. We also changed the data split gra-
nularity to test performance impact: using 1 inline, 10 inlines, and 30 inlines per split. 

All of these applications are tested in two ways: by running in Spark Shell using both cache option and 
un-cached one, and by submitting to Jobserver. We present the speedup by comparing with the corresponding 
sequential programs at the end. Spark performance web monitor UI, Spark Metrics and Nigel’s performance 
Monitor (nmon) are used to observe detailed information about running times and performance of these tests. 
Nmon Analyzer [19] is used for following and observing cluster performance and finding the bottlenecks on the 
system. Table 1 shows all results using various configurations in number of cores and splits. 

4.1. SAC Web UI 
Figure 3 shows the user interface of SAC. What user need for accessing seismic data hosted at cloud and veri-
fying algorithm on it is only browser and an account. There are several tabs in SAC, such as Dashboard, Project,  
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Figure 3. The SAC user interface. 

 
Table 1. Running time for applications with various configurations (in seconds). 

Application Best 
Speedup Split 

No. of Cores 

64 144 288 

Calculator 120 

1 36 19 15 

10 29 19 17 

30 56 44 46 

FFT 116 

1 132 66 58 

10 90 54 51 

30 108 66 58 

Histogram 115 

1 108 84 72 

10 228 240 270 

30 840 840 720 

 
Datasets, Jobs, Workflow and some other useful tools. Dashboard will give user a brief view about how many 
projects he/she had created and usage statistics of cluster. In Project tab, user could create new project, edit ex-
isting project, compile and run project. Jobs tab will show status of all running and finish jobs. User could view 
data sets and select on them to analyze in Datasets tab. Workflow is designed for complicate algorithms or batch 
jobs but still provide flexibility and usability to user for configuration. 

4.2. Seismic Calculator 
Seismic calculation is a simple, useful but time consuming process when seismic data is big. In addition to the 
operations between two volumes, various types of arithmetic operations can be performed on a single seismic 
volume. These operations include arithmetic and logic ones that apply to every single sample in the volume. 

4.3. Fast Fourier Transform (FFT) 
FFT is the most popular algorithm for computing discrete Fourier transform (DFT), which is widely used in 
science and engineering. In seismic velocity model and image analysis, FFT is almost first and fundamental step. 
There are different implementations of FFT, such as FFTW, OpenCV, Kiss FFT, Breeze etc. Breeze is one of li-
braries in ScalaNLP, which includes a set of libraries for machine learning and numerical computing. Spark it-
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self already includes Breeze in its release, so we choose FFT algorithm in Breeze for experiment. 

4.4. Histogram 
This is the third application used for performance analysis. Histogram is to compute the data range distribution, 
which is used for estimation of the probability distribution of continuous quantitative variable. It is also a basic 
method for seismic data analytics. Spark already provides function to get histogram information from RDD di-
rectly. The bin size we choose for experiment is 10. 

5. Performance Analysis 
From the experiment results shown in Table 1, the speedup of parallel codes is apparent. In this section, we will 
discuss the usability of SAC, and make deep performance analysis to find the bottleneck, which will also con-
duct performance tuning in the future. 

5.1. Usability Analysis 
In the traditional seismic data processing methods using HPC, the product development flow requires a lot of 
geophysicists and IT developers involved: verifying algorithm with small sample data at first, then transferring 
into MPI codes with parallel optimization to handle actual big data. The whole process is time consuming and 
low efficient, and sometime even lead in consistent results between experiment data and actual data. On SAC, 
geophysicists and data scientists could verify their algorithms and directly experiment them with actual data. 
SAC could handle data distribution, code generation and execute the application in parallel automatically, but 
could provide fault tolerance natively and scalability. Take the 2D FFT case as example, user only needs to se-
lect template, write FFT algorithm or call other existing APIs, and type this piece of codes in SAC, in such func-
tion the input plane and output plane are already defined by SAC. The only things left are selecting data sets, 
compiling and running application, then viewing the results. In short, user only needs to take care about algo-
rithm, and SAC will handle most of others, thus improve productivity apparently. 

5.2. Performance Analysis of Seismic Calculator 
Among all three different number of split sizes, the best results for calculator is achieved with 288 cores in first 
two, which indicates that more computing resource could get better performance. 

Closer look at the system with nmon-analyzer during run-time gives an interesting chart in network situation, 
CPU usage and the I/O of the system. Figure 4 shows these data versus each other. Figure 4(a) shows CPU 
performance while on the other hand Figure 4(b) shows the network packets sending and receiving. It is ob-
vious in the diagram that at the peak time for network CPU is not busy and at some points it became idle be-
cause of waiting for data. Increasing in network speed to have a better response for I/O request seems to be a 
key point in boosting the performance. 

5.3. Performance Analysis of FFT 
For FFT, it is a computing intensive workload hunger for CPU cycles instead of IO bandwidth. One system form 
the cluster was picked to show the performance characteristics in the run time. In Figure 5(a), CPU utilization 
quickly ramps up to 95% user time and mostly stays at the same level with several dips till the end of execution. 
There was not much time spend in kernel mode or waiting for disk/network IO. There could be a little space for 
performance tuning to shorten the ramping up time in the start stage and remove the dips during the run. Figure 
5(b) shows the disk read and write during the lifetime of the job. The maximum write is about 70 MB/s and the 
peak read is 50 MB/s. Both the read and write have not reached the bandwidth ceiling of the system. Same as the 
disk utilization, the network bandwidth was under 10 MB/s, which indicates underutilized network. The memory 
utilization in Figure 5(d), shows that memory was 60% occupied by FFT. 

The best results for this application are gained by using number of split size with 10 and number of cores 288. 
From the performance characteristics described earlier, FFT being a computing hunger workload, adding more 
computing power always will be beneficial, till other resources got over subscribed. 
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(a) 

 
(b) 

Figure 4. (a) CPU and I/O and (b) Network packets for calculator. 

5.4. Performance Analysis of Histogram 
Similar with FFT, Histogram could also be qualified as computing intensive workload, where computing power 
is the primary factor influencing performance. There are, however, two differences from FFT. First, Histogram 
has two distinct stages in the run time. The first stage last from the start of the run till the middle. In this stage, 
CPU utilization is considerably high with peak user time close to 90%. And the second stage is from the middle 
to the end. Where user time is below 30% most of the time with maximum a little above 50%. Second, in the 
more CPU cycle hunger stage, the CPU utilization is not as high as that in FFT, which was above 95% most of 
the time. System and IO wait is not high, indicating no bottle neck comes from IO or system activities. Figure 
6(b) shows the disk read and write behavior. The disk was under utilized both for the read and write. And from 
Figure 6(c), similar behavior with FFT case, traffic peaks below 10 MB/s. Memory got utilized more comparing 
to FFT, here the unused memory is 27%, as shown in Figure 6(d). 

For Histogram, the best performance is also using small split. However, there is one case where 28MB data 
split is used and 144 core case out performs 288 core case. One possible reason could be explained by the larger 
memory foot print of this workload and the GC activities of Java virtual machine. As we all know, when 
processing larger data size with the same heap size, JVM has a tendency to get involved in longer GC pauses. 
And all the GC pauses will add up to the final run time, making the entire run slower. 

6. Future Work and Conclusion 
We continue to work on SAC to make it more productive in development and scalable in performance. One  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5. (a) CPU; (b) Disk I/O; (c) Network activity; (d) Memory utilization for FFT. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 6. (a) CPU; (b) Disk I/O; (c) Network activity; (d) Memory utilization for histogram. 
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main focus we are working on is to provide a workflow framework to allow users to drag-and-drop to create a 
complete workflow by combining a sequence of programs. SAC will be able to connect them and launch in a 
single Spark context to reuse and keep data in memory as much as possible. We will also enhance the overall 
performance and visualization capability. We plan to open SAC to industry to collect more feedback for further 
improvement. 
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