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Abstract 
This paper studies the effects of sudden events on the optimal timing and capacity choice in a du-
opoly market. According to the characteristics of economic environment, we assume that the 
product demand follows geometric Brownian motion with a Poisson jump process. Under the set-
tings, the firms face the risk of a sudden drop in demand which is caused by sudden events. We 
develop the real option game model to derive the investment equilibrium strategies. Moreover, 
the effects of sudden events on investment decisions are obtained by numerical analysis. 
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1. Introduction 
We develop the real option game model to discuss the effects of sudden events on the optimal timing and capac-
ity choice in a duopoly market. When sudden events occur, such as the financial crisis, economic policy from 
government, and the emergence of new products, discontinuous change in product demand appears. We use 
jump- diffusion process to capture the discontinuous changes of product demand.  

Most real option game models suppose that the uncertainty variables such as asset price or product demand 
follow the geometric Brown motion (GBM) to describe the characteristics of continuous changes (e.g. Smets [1]; 
Dixit and Pindyck [2]; Grenadier [3]; Weeds [4]; Mason and Weeds [5]). 

However, the GBM cannot explain some important empirical features of asset price or product demand dy-
namics. Jorion [6] and Bates [7] discovered the presence of jumps in asset price through empirical research. Re-
cent studies have pointed out the importance of allowing for jumps, or discontinuities of asset price or product 
demand due to the effects of random sudden events in the economic environment. Merton [8] assumed that the 
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stock price follows a jump-diffusion process with Poisson jump to model sudden events. Kou [9] proposed a 
double exponential jump-diffusion model. Mason and Wilmot [10] investigated the potential presence of jumps 
in natural gas price. Ko et al. [11] established real option game model with jump process to investigate the ef-
fects of sudden events on investment timing. Pereira and Armada [12] assumed that the entrance of the hidden 
rivals follows a Poisson process. The project value of the positioned firm has a sudden drop as the hidden rivals 
enter the market. They presented a model suitable for investment decisions under a hidden competition envi-
ronment. Pereira and Rodrigues [13] assumed that firms face the risk of demonopolization from government that 
can occur as a random or a certain event. They studied the optimal timing in finite-lived monopolies.  

The large majority of real option game models focus on the investment timing without considering production 
capacity choice. However, in reality, production capacity decision is a key factor when one firm invests products. 
Few studies have considered the interaction between the investment timing and the production capacity in a real 
option framework. Besanko et al. [14] considered the investment decisions of the heterogeneous products under 
discrete time framework. Jou and Lee [15] assumed that all firms use the same investment strategy, obtaining 
the investment timing and the optimal capacity under imperfect competition. Huisman and Kort [16] provided a 
dynamic analysis of entry deterrence strategies, they discovered the leader overinvest in capacity in order to de-
lay entry of the follower. The paper has close connection with these studies, which are extended by introduc-
ing the effects of sudden events and pre-emptive competition on the investment decisions. In this model, two 
firms are allowed to produce the homogeneous products; the product demand is assumed to obey the geometric 
Brown motion with a Poisson jump process. We discuss strategic investment decisions under duopolistic com-
petition.  

The remainder of the paper is organized as follows. Section 2 introduces the basic assumption of the real op-
tion game model. In Section 3, we derive the equilibrium strategies in a duopoly market. Section 4 exercises 
numerical analysis. Section 5 concludes the paper. 

2. Basic Assumption of Real Option Game Model 
In the section, we assume two firms have the chance to produce the homogeneous products in a duopoly market. 
Time is continuous and horizon is infinite. So every firm can defer the investment timing until the optimal mo-
ment to enter the market. The firm that enters first is known as the leader and the other as the follower. The 
product price at time t in market is given as follows: 

( )t tP X a Q= −                                      (1) 

where tX  is the exogenous demand shock, Q is the total market output, unit production cost is c, so the total 
costs of production are cQ. Similar to Huisman and Kort [16], every firm cannot adjust production capacity after 
entering the market and the two firms must make full use of production capacity. The exogenous demand shock 
is affected by sudden events of external market environment. Suppose that tX  obey the geometric Brown mo-
tion with the Poisson jump process: 

d d d dt t t t t tX X t X Z X qµ σ θ= + +  

Among the above factors, µ  represents the drift rate, σ  represents the volatility, d tZ  is the increment of 
a standard Brownian motion. We assume ρ µ>  to ensure that the option is exercised within a finite period of 
time. We assume random sudden events follow the Poisson jump process of intensity λ . This means sudden 
events occur with probability dtλ  during the time interval dt. Sudden drop in product demand as the events 
occur. θ  represents the deterministic amplitude of the downward jumps satisfying 1 0θ− ≤ ≤ . Assume d tq  
and d tZ  are independent, so ( )d d 0t tE q Z = :  

1, with probability d
d

0, with probability 1 dt

t
q

t
λ

λ


=  −
 

3. Investment Decisions in a Duopoly Market 
In the section, we develop the model to determine the values and the investment decisions of two firms in a du-
opoly market, facing the risk of random sudden drop in product demand.  
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3.1. The Follower’s Value Function 
We need to consider the game backwards. When the leader has invested the project, the follower can make his 
decisions optimally in response to capacity of the leader. Suppose that the leader has invested the project with 
capacity ql, the investment threshold and capacity of the follower are chosen as Xf and qf, so the investment costs 
are fcq . The value function of the follower ( ),f fV X q  is recorded as ( )fV X  for short. By using the stan-
dard real option method, the Bellman equation can be expressed as: 

( ) ( )( )d d .f fV X t E V Xρ =  

According to Itô’s Lemma, the value of the follower ( )fV X  satisfies the following differential equation: 

( ) ( ) ( ) ( )( ) ( )
2

2 2
2

1 1 .
2

f f
f f f

V X V X
V X X X V X V X

X X
ρ µ σ λ θ λ

∂ ∂
= + + + −

∂ ∂
             (2) 

The general solution of (1) is of the form: 

( ) 1 2
1 2 .fV X A X A Xβ β= +                                 (3) 

Among them, 1A , 2A  are the undetermined coefficients, 1β , 2β  are the roots of the equation  

( ) 12 2 21 1 1 0
2 2

βσ β µ σ β λ θ λ ρ + − + + − − = 
 

: 

( )( )1
2

2 2 2

1 2

1 1 2 1
2 2

1,

βµ σ µ σ σ λ ρ λ θ
β

σ

   − − + − + + − +   
   = >  

( )( )2
2

2 2 2

2 2

1 1 2 1
2 2

0.

βµ σ µ σ σ λ ρ λ θ
β

σ

   − − − − + + − +   
   = <  

Moreover, the value of the follower ( )fV X  must satisfy three boundary conditions: 

( )0 0,fV =                                       (4) 

( ) ( )
,l f f f

f f f

a q q q X
V X cq

ρ µ λθ

− −
= −

− −
                            (5) 

( ) ( )
.

f

l f ff

X X

a q q qV X
X ρ µ λθ

=

− −∂
=

∂ − −
                             (6) 

Condition (4) says that the value will be 0 if 0X = . Condition (5) and (6) are the value-matching and the 
smooth-pasting conditions. The two conditions ensure that ( )fV X  can be maximized when the firm invests at 
the threshold fX . 

Under these conditions, the value ( )fV X , the investment threshold fX  and capacity fq  of the follower 
are calculated as follows: 

( ) ( )
1

1

,

f

f l f f
f f

A X X X
V X a q q q X

cq X X

β

ρ µ λθ

                                <


=  − −
−     ≥

− −

                        (7) 

where 

( )
( )

1

1

,
1f

l f

c
X

a q q
ρ µ λθβ

β
− −

=
− − −

                               (8) 
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( )11

1
1

.l f ff a q q qX
A

β

β ρ µ λθ

− − −
=

− −
                               (9) 

We assume that the initial demand level is sufficiently low, the follower will not start production immediately. 
According to (7), the value of the follower ( )fV X : 

( ) 1
1fV X A X β=                                    (10) 

See from (10), ( )fV X  is function of fq . We apply (8), (9) to (10), the follower considers the capacity to 
maximize the value, ( )fV X  satisfies the first order condition: 

( )
*

0.
f f

f

f q q

V X
q

=

∂
=

∂
                                  (11) 

Combining (8) and (11), we obtain the optimal threshold and the capacity of the follower:  

( )* * 1

1 1

1
,

1 1
l

f f
l

ca q
q X

a q
ρ µ λθβ

β β
− −− +

= =
+ − −

                         (12) 

Substitute (12) into (9) and (10), the value of the follower ( )*,f fV X q  is as follows:  

 ( ) ( )
( )( ) ( )

11 1
* 1

1 1 1

1
,

1 1 1
l l

f f

c a q X a q
V X q

c

ββ β
β

β β β ρ µ λθ
 −   −−

=   − + + − −    
                  (13) 

Let 0lq =  in (12), the optimal threshold mX ∗  and the capacity mq∗  of the monopolist are as follows: 

( )1

1 1

1,
1 1m m

caq X
a

ρ µ λθβ
β β

∗ ∗ − −+
= =

+ −
                         (14) 

3.2. The Leader’s Value Function 
When the follower is out of the market, the leader earns profits ( )l l ta q q X−  at time t. When the follower en-  
ters the market, the leader’s profits decreases to ( )*

l f l ta q q q X− −  at time t. Suppose that the value function of  

the leader is ( ),l lV X q . ( ),l lV X q  is also written as ( )lV X  for simplicity. Let ( ) ( )l l lV X v X cq= − , so 
( )lv X  represent that the value subtract the investment costs when the leader has invested. ( )lv X  satisfies the 

following differential equation: 

( ) ( ) ( ) ( )( ) ( ) ( )
2

2 2
2

1 1 .
2

l l
l l l l l

v X v X
v X X X v X v X a q q X

X X
ρ µ σ λ θ λ

∂ ∂
= + + + − + −

∂ ∂
       (15) 

The general solution of (15) is of the form: 

( ) ( )
1 2

1 2
l l

l

a q q X
v X B X B Xβ β

ρ µ λθ
−

= + +
− −

                         (16) 

The value of the leader ( )lV X  must satisfy two boundary conditions: 

( )0 0,lv =                                     (17) 

( ) ( )* .l f l f
l f

a q q q X
v X

ρ µ λθ

∗ ∗− −
=

− −
                             (18) 

If we apply (17), (18) to (16), ( )lv X  is given by:  

( ) ( )
1

1 ,l l
l

a q q X
v X B X β

ρ µ λθ
−

= +
− −

                            (19) 

where 



D. M. Chen 
 

 
196 

11
1 .l f

f

q q
B X β

ρ µ λθ

∗
∗ −= −

− −
                               (20) 

Before the leader invests the project, the value of the leader ( )lV X  satisfies the following differential equa-
tion: 

( ) ( ) ( ) ( )( ) ( )
2

2 2
2

1 1 .
2

l l
l l l

V X V X
V X X X V X V X

X X
ρ µ σ λ θ λ

∂ ∂
= + + + −

∂ ∂
             (21) 

The general solution of (21) is of the form: 

( ) 1 2
1 2lV X C X C Xβ β= +                                (22) 

In addition, the value of the leader ( )lV X  must satisfy three boundary conditions: 

( )0 0,lV =                                      (23) 

( ) ( ) 1

,l f fl l l l
l l l

f

q q Xa q q X XV X cq
X

β

ρ µ λθ ρ µ λθ

∗ ∗

∗

 −
= − −  − − − − 

                      (24) 

( ) ( ) 1 1

1 .
l

l f fl ll l

f fX X

q q Xa q qV X X
X X X

β
β

ρ µ λθ ρ µ λθ

− ∗ ∗

∗ ∗
=

 −∂
= −   ∂ − − − − 

                    (25) 

Condition (24) says that:  

( ) ( ) .l l l l lV X v X cq= −                                 (26) 

If we apply (23), (24), (25) to (22), we obtain:  

( ) ( )

( )

1

1

1

*

,

l

l f fl l
l l l f

f

l f l
l f

C X X X

q q Xa q q X XV X cq X X X
X

a q q q X
cq X X

β

β

ρ µ λθ ρ µ λθ

ρ µ λθ

∗ ∗
∗

∗
∗


                                                         <
  −= − −     ≤ <   − − − −  


− − −                                 ≥ − −

               (27) 

where 
( )1

1

,
1l

l

c
X

a q
ρ µ λθβ

β
− −

=
− −

                              (28) 

( ) 1
1

1 * *1
1

1 * *
1

.l f fl ll l

f f

q q Xa q qX X
C

X X

β
β β

β ρ µ λθ ρ µ λθ

−
−   − = −    − − − −  

                    (29) 

We assume that the initial demand level is sufficiently low, the leader will not start production immediately. 
To maximize the value, we apply (28), (29) to (27), and substitute (12) into (27), the value of the leader is cal-
culated as: 

( ) ( )

1
1 1 1

1 1

1 1 1

1
1

1 1
l l

l
cq X a q

V X
c

β
β β β

β β
β β β ρ µ λθ

       −−
 = −     − + − −         

                (30) 

3.3. Equilibrium  
Here, in order to examine impacts of pre-emptive competition, we assume that the roles of the leader and the 
follower are designated exogenously. The follower enters the market only after the leader has entered. This 
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means that one firm is designated as the leader beforehand. So, the risk of pre-emption is eliminated, two firms 
can delay their investment to maximize their values. When the initial demand is sufficiently low, we suppose the 
leader (follower) select the optimal capacity lnq∗  ( )fnq∗ , the investment threshold lnX ∗  ( )fnX ∗ . Thus, the value  
of the leader (follower) is denoted as ( ),l lnV X q∗  ( )( ),f fnV X q∗ . Similar to the above, ( )lV X  must satisfy: 

( ) 0.
l ln

l

l q q

V X
q ∗=

∂
=

∂
                                  (31) 

Combining (28) and (31), we have:  

( )1

1 1

1, .
1 1ln m ln m

caq q X X
a

ρ µ λθβ
β β

∗ ∗ ∗ ∗ − −+
= = = =

+ −
                    (32) 

So, by substituting (32) into (12), the optimal threshold and the capacity of the follower are given by: 

( )
( ) ( )

( )
( )2

11 1
2

1 1 1 11

11,
1 1 11
ln

fn fn
ln

c ca q aq X
aa q

ρ µ λθ β ρ µ λθβ β
β β β ββ

∗
∗ ∗

∗

− − + − −− +
= = = =

+ − −−+
         (33) 

Comparing (14) and (32), Proposition 1 is obtained. 
Proposition 1. The investment threshold of the designated leader is the same as that of the monopolist. 
The designated leader has valuable option to defer investment at the optimal threshold of the monopolist as he 

need not face the risk of being preempted. 
However, two firms are allowed to invest first in reality. This means that firm roles are endogenous. So, the 

risk of pre-emption exists. We assume that the initial demand level is sufficiently low, two firms are induced to 
delay their investment. When firm roles are endogenous, according to Fudenberg and Tirole [17], if one firm in-
tends to invest at the threshold mX ∗  first, the other firm will pre-empt it as long as the value of the firm is 
greater than that of the other firm. So the value is equal for both firms in equilibrium. Suppose that the value of 
the leader (follower) ( ),l leV X q∗  ( )( ),f feV X q∗ , the optimal capacity leq∗  ( )feq∗ , the investment threshold leX ∗  
( )feX ∗ . So,  

( ) ( ), , .l le f feV X q V X q∗ ∗=                                 (34) 

Proposition 2 describes the sequential equilibrium. For the proof of Proposition 2, see the Appendix. 
Proposition 2. (sequential equilibrium). If the initial demand level is lower than leX ∗ , the equilibrium in-

vestment is sequential, the leader invests with capacity leq∗  until the demand tX  reaches leX ∗ , the follower 
invests with capacity feq∗  until the demand tX  reaches feX ∗ . Where, the optimal capacity of the leader leq∗  
is a unique solution of the equation: 

1 11

1 1

1 1 1

1 0,
1 1 1le

aq
β β

β β
β β β

+

∗
    
 − − =   + + +     

                        (35) 

the optimal capacity leX ∗ : 

( )1

1

,
1le

le

c
X

a q
ρ µ λθβ

β
∗

∗

− −
=

− −
                             (36) 

the optimal capacity feq∗  and investment threshold feq∗  of the follower:  

( )1

1 1

1, .
1 1
le

fe fe
le

ca qq X
a q

ρ µ λθβ
β β

∗
∗ ∗

∗

− −− +
= =

+ − −
                        (37) 

Proposition 3, 4 describe the impacts of pre-emptive competition. The proofs are in Appendix.  
Proposition 3. When the risk of pre-emption exists, the leader reduce its capacity to invest early, the follower 

increases its capacity to invest early. That is, le lnq q∗ ∗< , le lnX X∗ ∗< , fe fnq q∗ ∗> , fe fnX X∗ ∗< . 
Proposition 4. If the initial demand level is lower than leX ∗ , the value of the leader is less than that of the 

designated leader, the value of the follower is larger than that of the designated follower. That is,  
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( ) ( ), ,l le l lnV X q V X q∗ ∗< , ( ) ( ), ,f fe f fnV X q V X q∗ ∗> .  

4. Numerical Results Analysis 
4.1. The Impacts of Pre-Emptive Competition 
The subsection describes the impacts of pre-emptive competition on the firms. The parameters are as follows: 

0.05ρ = , 0.03µ = , 10c = , 1a = , 0.1λ = , 0.1θ = − , 0.3σ = . 
Based on the given parameters, we calculate to obtain the optimal capacities and thresholds respectively as the 

roles of the firms are endogenous or exogenous: 1.9427lnX ∗ = , 3.3656fnX ∗ = , 0.4228lnq∗ = , 0.2440fnq∗ = , 
1.5456leX ∗ = , 2.6776feX ∗ = , 0.2745leq∗ = , 0.3067feq∗ = . We can see that le lnX X∗ ∗< , le lnq q∗ ∗<  hold from the 

numerical results. This means that the leader will reduce production to speed up the investment due to fear of 
being pre-empted. Comparison of the numerical results, we find that fe fnX X∗ ∗< , fe fnq q∗ ∗>  stand. This is be-
cause when the leader reduces production to invest ahead, the production in the market is not enough, the price 
is relatively high, the follower is willing to increase production to invest ahead. These results indicate 
pre-emptive competition makes the two firms to accelerate investment. 

Figure 1 further shows the relationship between the values of the two firms as the roles are endogenous or 
exogenous. The numerical analysis is based on the assumptions that the initial demand is less than leX ∗ , the 
firms will wait until the optimal timing to enter the market. See Figure 1, the value of the designated leader is 
the largest, that of the leader is the second, that of the designated follower is the smallest. That is to say, 

( ) ( ) ( ), , ,f fn f fe l lnV X q V X q V X q∗ ∗ ∗< < . When the firm roles are designated, the designated follower is at a disad-
vantage in the game. The designated leader is dominant, he will invest at the optimal timing not considering the 
risk of pre-emption. So, the conclusion is intuitive. 

So, Figure 1 suggests the conclusions of Proposition 3, 4. 

4.2. Sensitivity Analysis 
In the subsection, we perform a comparative static analysis, focusing on the impacts of different parameter val-
ues such as the Poisson jump process of intensity λ, the deterministic amplitude of the jumps θ, the volatility σ . 

Table 1 illustrates the impacts of different values of λ. The parameters are as follows: 0.05ρ = , 0.03µ = , 
10c = , 1a = , 1X = , 0.1θ = − , 0.3σ = . The intensity λ measures the arrival probability of sudden events 

such as financial crisis or financial tsunami. When sudden events occur, the economy will be immersed in de-
pression, a sudden decline in market demand. When λ increases, the leader will reduce its production to invest 
later, the follower will reduce its production to invest earlier first, then later. Increasing λ brings more risks 
which will make the leader more conservative. The investment threshold of the follower is non monotonic with  
 

 
Figure 1. Values of the two firms. 

http://dict.baidu.com/s?wd=parameter
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λ. As we mentioned above, higher λ makes the investors reduce output to invest later. On the other hand, higher 
price which due to less output encourages the follower to invest earlier. As λ increases, the values of both the 
leader and the follower will decline.  

Table 2 illustrates the impacts of different values of θ. The parameters are as follows: 0.05ρ = , 0.03µ = , 
10c = , 1a = , 1X = , 0.1λ = , 0.3σ = . The deterministic amplitude of the jumps θ measures the level of the 

effect of the sudden events on investment environment. As θ decreases, both the leader and the follower will re-
duce production to invest later. Decreasing θ means worse investment environment. Thus, the values of both 
will decline.  

Table 3 illustrates the impacts of different values of σ . The parameters are as follows: 0.05ρ = , 0.03µ = , 
10c = , 1a = , 1X = , 0.1λ = , 0.1θ = − . As σ  increases, the uncertainties and risks linked with investment 

also increase. When the uncertainties and risks rise, both the leader and the follower will prefer to wait for better 
chance rather than now. So, they will increase production to invest later, the values of both will increase.  

5. Conclusions 
In this paper, we examine the impact of sudden events on the investment timing and production capacity deci-
sions of a firm that faces competition. We obtain the investment equilibrium strategies.  
 
Table 1. Impacts of different values of λ. 

λ  leq∗  feq∗  leX ∗  feX ∗  ( ),l leV X q∗  ( ),f feV X q∗  

0.1 0.2745 0.3067 1.5456 2.6776 2.1887 2.1887 

0.15 0.2657 0.3017 1.5747 2.6727 1.6971 1.6971 

0.2 0.2572 0.2965 1.6054 2.6723 1.3385 1.3385 

0.25 0.2491 0.2914 1.6377 2.6762 1.0688 1.0688 

0.3 0.2414 0.2862 1.6715 2.6839 0.8612 0.8612 

 
Table 2. Impacts of different values of θ. 

θ  leq∗  feq∗  leX ∗  feX ∗  ( ),l leV X q∗  ( ),f feV X q∗  

−0.1 0.2745 0.3067 1.5456 2.6776 2.1887 2.1887 

−0.15 0.2660 0.3019 1.5815 2.6861 1.6994 1.6994 

−0.2 0.2581 0.2971 1.6239 2.7086 1.3447 1.3447 

−0.25 0.2510 0.2925 1.6727 2.7447 1.0800 1.0800 

−0.3 0.2445 0.2883 1.7279 2.7939 0.8783 0.8783 

 
Table 3. Impacts of different values of σ. 

σ  leq∗  feq∗  leX ∗  feX ∗  ( ),l leV X q∗  ( ),f feV X q∗  

0.2 0.2495 0.2916 1.0963 1.7928 2.0273 2.0273 

0.25 0.2633 0.3003 1.3053 2.2034 2.1005 2.1005 

0.3 0.2745 0.3067 1.5456 2.6776 2.1887 2.1887 

0.35 0.2835 0.3116 1.8177 3.2168 2.2819 2.2819 

0.4 0.2908 0.3154 2.1227 3.8225 2.3746 2.3746 
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We find that pre-emptive competition and sudden events have great influence on investment decisions; 
pre-emptive competition makes firms accelerate investment. Higher uncertainty for market demand increases the 
values of both the leader and the follower. When sudden events occur more frequently or product demand de-
clines in greater magnitude, the values of both firms will decline. 

This paper considers the case of two firms. Consequently, a natural idea is to consider the case of a number of 
firms. Future research can also be concerned with the application of a different random process, e.g., arithmetic 
Brownian motion.  
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Appendix 
The proof for Proposition 2: 

When pre-emptive competition exists, the follower makes his decisions reacting to the capacity of the leader. 
According to (28), we can obtain (36). According to (12), we can obtain (37). 

The value is the same for both firms at the threshold l leq q∗= . Substitute l leq q∗=  into (13) and (30), we 
have: 

( )
( )

( )( ) ( )

1 111 1 1 1 *
1 1 1

1 1 1 1 1 1

1 11
1 1 1 1 1

lele le le
c a q Xcq X a q a q

c c

β βββ β β β
β β β

β β β ρ µ λθ β β β ρ µ λθ
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Simplifying the above equation, we conclude that (35) stands and leq∗  is a unique root of (35). 
The proof for Proposition 3: 

We proof that when 1 1β > , 
1

1

1

1
1 2

β
β

β
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. According to (38), we obtain that 1 1β > , 
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Substitute lnq∗  into (35), we have
1 11
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. So, le lnq q∗ ∗< . Combining 

(12) and (28), Proposition 3 holds. 
The proof for Proposition 4: 
If l lnq q∗≤ , taking the first derivatives on (13) and (30) respectively: 

( ) ( ) ( )
( )

1 11 1 1 1
1 1 1

1 1 1

1 1 11 0,
1 1

l ll

l

c a q a q XV X
q c

ββ β β ββ β β
β β β ρ µ λθ

−
 − − +   ∂    −   = − ≥    ∂ − + − −         

 

( )
( ) ( )

1
1 1

1

1 1

, 1 0
1 1

f f l

l

V X q a qcX
q c

β
β β

β
β β ρ µ λθ

∗∂    −−
= − <  ∂ − + − −   

. So, if l lnq q∗≤ , ( )lV X  is a monotonically increas-  

ing function of lq , ( ),f fV X q∗  is a monotonically decreasing function of lq . Because le lnq q∗ ∗< , we have 
Proposition 4 holds. 
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