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Abstract 
During the last decades, cities in sub-saharan Africa have undergone rapid urban growth due to 
increased population growth and high economic activities. This research explores the impacts of 
varying modelling settings including spatial extend and its location for the city of Nairobi using a 
cellular automata (CA) urban growth model (UGM). Our UGM used multi-temporal satellite-based 
data for classification of urban land-use of 1986, 2000 and 2010, road data, slope data and exclu-
sion layer. Monte-Carlo technique was used for model calibration and Multi Resolution Validation 
(MRV) technique for validation. Simulation of urban land-use was done up to the year 2030 when 
Kenya plans to attain Vision 2030. Three spatial grid sizes varying in extent and location were ap-
plied in the UGM calibration and validation. Thus, this research explored the impacts of varying 
spatial extent (grid) and location on urban growth modelling and hence can contribute to an im-
proved sustainable planning and development. This is useful for future planning as the Nairobi 
grows and expands into the peri-urban areas. 
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1. Introduction 
Urban growth modelling studies are currently considered as an essential component for numerous complex en-
vironmental approaches (Triantakonstantis & Mountrakis, 2012). Tobler (1979) pioneered the use of Cellular 
automata (CA) in geographical modeling. Whoever, the focus was on theoretical problems such as cluster, com-
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plexity and structure formation. However, recently a couple of researchers have begun applying CA in the field 
of urban planning (Itami, 1994).  

Lately, CA models have been applied to model urban growth in North America (Clarke, Hoppen, & Gaydos, 
1996), South America (Leão, Bishop, & Evans, 2004), Europe (Silva & Clarke, 2002), Asia (Lebel, Thaitakoo, 
Sangawongse, & Huaisai, 2007) and Africa (Mubea, Goetzke, & Menz, 2013). Urban models aid in making in-
formed decisions on land-use planning in the context of future development. Additionally, urban models have 
been used to simulate land-use scenarios in the view of addressing plausible agenda that fosters sustainable de-
velopment (Oguz, Klein, & Srinivasan, 2007; Mubea, Goetzke, & Menz, 2014). 

CA simulates urban growth within discrete grid space and simulates land-use state changes via rules that op-
erate within a neighborhood that interconnects adjacent cells (Akın, Clarke, & Berberoglu, 2014). The grid space 
usually has two dimensions and represents the state of land-use either as urban or non-urban in urban growth 
modelling. However, there has been little research on the effect of simultaneously varying the site location and 
size of spatial extent. Thus varying the spatial extent of a research area, such as in the case of our model city of 
Nairobi, we came up with a variable CA grid varying in site location. The concept of a variable grid CA has 
been explored in the Greater Vancouver Regional District (Vliet, White, & Dragicevic, 2009). 

In this research, three cellular automata models (UGM 1, UGM 2 & UGM 3) were used to model urban 
growth in Nairobi up to the year 2030 as Kenya attains Vision 2030 (Government of Kenya, 2007). The urban 
land-use data for Nairobi was derived from multi-spectral Landsat imagery captured in 1986, 2000 and 2010. At 
the end of the research, calibration and validation of our three models were achieved.  

2. The Study Area 
Nairobi extends between latitudes 1˚09' and 1˚28' South, and longitude 36˚04' and 37˚10' East in Kenya, with an 
average altitude of 1700 meters above sea level, covering an area of 696 km2 (Figure 1). Nairobi is the capital 
city of Kenya. The administratively defined town has land-uses divided roughly into urban use, agriculture, 
rangeland, open/transitional areas, and remnants of evergreen tropical forests. Nairobi has a high growth rate per 
annum compared to other growth rates in Africa with 75% of urban population living in informal settlements  
 

 
Figure 1. Location of the city of Nairobi within Kenya as shown in a false colour composite of LANDSAT 
satellite data from 30th January 2010 (path 168 row 61).                                            
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(UN-HABITAT, 2005). From a population of 310,000 in 1960, the population reached 510,000 in 1970 (Republic  
of Kenya, 1970), 828,000 in 1979 (Republic of Kenya, 1981), 1,321,000 in 1989 (Republic of Kenya 1994), 
2,137,000 in 1999 (Republic of Kenya, 2000) and 3,138,369 in 2009 (Republic of Kenya, 2010). The projected 
population in the year 2020 will be almost six million (UN-HABITAT, 2005). 

3. Modelling Nairobi’s Urban Growth 
There has been growing need for accurate assessment of urban growth so as to foster sustainable urban devel-
opment strategy (Han, Hayashi, Cao, & Imura, 2009). This has resulted to development of urban growth models 
which are able to spatio-temporal simulate urban dynamics. Such models incorporate socio-economic and 
physical components at different scales so as to address challenges in urban planning and promote plausible ur-
ban development paths. Our urban growth model (UGM) was implemented in the modelling platform XULU 
(Extendable Unified Land Use Modelling Platform) in a modified way (Goetzke & Judex, 2011). UGM uses 
cellular automata (CA) technique. CA serves as a paradigm for thinking about complex spatio-temporal phe-
nomena and an experimental laboratory for testing ideas (Itami, 1994). 

UGM has been successful used to model urban growth in Germany (Goetzke & Judex, 2011) and in Kenya 
(Mubea, Goetzke, & Menz, 2013) andneeds four spatial input parameters namely: urban land-use, transportation 
network, slope and exclusion. The exclusion layer determines, which areas in the study area cannot be changed 
or converted (e.g. water bodies or protected areas) or, if not excluded, are by a certain degree resistant against 
urbanisation. The transportation layer represents the hierarchical road network in an area under investigation. 
UGM requires a land-use map for the starting year of the calibration phase and a reference land-use map at the 
end year. The simulated urban area of the end year is compared to the reference map using the Multiple Resolu-
tion Validation (MRV) as described in Pontius Jr. et al. (2004). Figure 2 shows the flow chart of the major steps 
applied in this research. 

Calibration of UGM uses Monte Carlo method in order to determine five calibration parameters (whose val-
ues range from 0 and 100) namely: 1) dispersion; 2) breed; 3) spread; 4) slope resistance and 5) road gravity. 
Urban growth can be classified in UGM as: a) spontaneous new growth; b) new urban centre establishment or 
spreading urban centre growth; c) edge growth; and, d) road influenced growth (Jantz, Goetz, Donato, & Clag-
gett, 2010). Table 1 illustrates the summary of growth types simulated by our UGM and illustrates the contribu-
tion of each parameter as well as when combined with others and several different growth processes (Jantz, 
Goetz, & Shelley, 2004). 
 

 
Figure 2. Flow chart of urban growth modelling.                                       
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Table 1. Summary of growth types simulated by the UGM model.                                                 

Growth cycle order Growth type Controlling parameter (s) Summary description 

1 Spontaneous Dispersion Randomly selects potential new growth cells. 

2 New spreading Breed Growing urban centres from centre spontaneous growth. 

3 Edge Spread Old or new urban centres spawn additional growth. 

4 Road-influenced Road gravity, dispersion, breed. Newly urbanized cell spawns growth along  
transportation network 

Throughout Slope resistance Slope Effect of slope on reducing probability of urbanisation. 

Throughout Excluded layer User-defined User specifies areas resistant or excluded to development. 

 
Several iterations of Monte-Carlo are performed in the brute-force calibration to obtain the best set of the five 

calibration parameters. Model evaluation involves three datasets: a reference land-use map of time 1 (t1), a ref-
erence land-use map of time 2 (t2) and a simulatedland-use map of time 2. The reference land-use map of time 1 
(t1) is the initial point for modelling, that is, land-use map of 1986 and at the same time serves as a null-model, 
which is the assumption that no change has taken place. Therefore, the reference maps of t1 and t2 are compared. 
To evaluate the model result, the simulatedland-use map of t2 is compared with the classified land-use map of t2 
as reference map. 

We used Pontius Jr., Huffaker & Denman (2004) method to validate our results. We compared the simulation 
model with a null-model. The null-model obtained used the 2010 reference land-usemap as the prediction for 
2010. 

4. Varying Site Location and CA Grid  
CAs are dynamical systems in which space and time are discrete and consists of an array of cells, each of which 
can be in one of a finite number of possible states, updated synchronously in discrete time steps, according to a 
local, identical interaction rule (Sipper, 1997; Parker, Manson, Janssen, Hoffmann, & Deadman, 2003). The 
ability of CA to simulate urban growth is based on the assumption that past urban development affects future 
patterns through local interactions among land-uses (Santé, García, Miranda, & Crecente, 2010). Thus, CA are 
able to simulate different urban growth scenarios (Mubea, Goetzke, & Menz, 2014).  

A cellular automaton consists of five basic elements namely cell space (grid), cell state, cell neighbourhood, 
transition rules and time. Our UGM uses two-dimensional lattice of sites or cells which is the most common 
form of a cellular automaton used in modelling urban growth and land-use change (Liu, 2008). Nevertheless, 
most grid space is typically assumed to be homogeneous, and usually different models adopted different grid 
size (Barredo, Kasanko, McCormick, & Lavalle, 2003; Clarke, Hoppen, & Gaydos, 1997; White & Engelen, 
1993). 

The state of each cell in CA is updated according to local rules, that is, the state of a cell at a given time de-
pends on its own state and the states of its neighbours at the previous time step (Wolfram, 1994). Thus by vary-
ing the delineation of the study area in our case the city limits of Nairobi, we were able to come up with three 
variable CA grids composed of array of cells which simulate finite state automata as shown in Figure 3 and 
Figure 4. Consequently, we arrived at three urban growth models translating into three approaches of urban de-
velopment possibilities. 

In the first model (UGM 1), we captured the central business district (CBD) of Nairobi as shown in blue in 
Figure 3 and Figure 4. The Nairobi CBD is composed of primarily of commercial land-uses where most com-
panies, banks mainly operate. Government offices are also located in the CBD. 

In the second model (UGM 2), we captured the city limits of Nairobi in a rectangular fashion as shown in 
green in Figure 3 and Figure 4. This was a variation from previous studies in which the exact polygon boun-
dary was applied to simulate urban growth (Mubea, Goetzke, & Menz, 2013; Mubea, Goetzke, & Menz, 2014). 
The region slightly captured suburban areas surrounding Nairobi. 

In the third model (UGM 3), we expanded the city limits so as to capture and simulate urban growth in the  
peri-urban areas neighboring Nairobi as shown in red in Figure 3 and Figure 4. This area includes high residential  
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Figure 3. Map of Nairobi showing the three extents for our UGM.                                  

 

 
Figure 4. Map of location of Nairobi illustrating neighbouring towns and the three UGM extents (source: © 
Google Maps).                                                                                    

 
suburban areas and urban agglomerates. Some companies have expanded into the suburban areas due to availa-
bility of land, cheap labor and raw materials. 
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Hence, our UGM uses the concept of CA and we created three urban growth models of varying CA grid ex-
tends and locations. The variable CA grids were varied in intervals of 10 kilometers so as to simulate urban 
growth within the city of Nairobi, on its boundary and across the borders into the neighboring peri-urban areas. 
This can provide a coherent and alternate framework for the policy makers as Kenya plans to achieve Vision 
2030 in the year 2030. The Government of Kenya formulated Kenya Vision 2030 (Government of Kenya, 2007) 
aimed at maximum protection of natural resources so as to ensure sustainable development is attained in the year 
2030. Cities in Kenya have undergone rapid urbanisation as people migrate into cities in search of employment 
and better amenities. Thus this gave us the motivation to explorethe three urban growth approaches of varying 
the city limits of Nairobi. 

5. Analysis 
5.1. Data 
Cloud-free Landsat satellite imagery for 1986, 2000 and 2010 were used to derive the land-use data layer re-
quired for the UGM. The city of Nairobi is entirely masked within Landsat TM path 168, row 61. The Landsat 
data sets used included TM, and ETM+ images in WGS-84 Universal Transverse Mercator (UTM), 37-South 
projection. Reference data were developed for each of the separate years and then randomly partitioned for clas-
sifier training and accuracy assessment. Modelling of Nairobi utilised urban extents extracted from land-use 
maps for 1986 and 2010 as inputs. Other layers used included slope, areas excluded from development and road 
network. “Ground truth” data included a topographic map which was used as locational reference data for the 
1986 and 2000 classifications while GPS points served as reference data for the 2010 classification. Road net-
work data for Nairobi and its extents were obtained from Nairobi City Council and Google map maker. An ex-
clusion layer was obtained from Survey of Kenya and included government buildings and property as well as 
other land areas designated as reserved. 

5.2. Land-Use Change Analysis 

Land-use classification of Nairobi included six land-use classes: urban, forest/parks, urban agriculture and gar-
dening, open/transition areas, water and rangeland (Mubea, Goetzke, & Menz, 2013). Urban land-use included 
built-up areas within the study area. Forest included evergreen forest as well as high density mixed forests con-
sisting of trees and little or no under-storey vegetation. Open/transitional areas included bare land, exposed areas, 
quarries and transitional areas. Water included rivers and reservoirs. The sewage treatment plant in Ruai was 
also included in the water class. Rangeland included bush land and ground layer covered by grass and sparsely 
disturbed scrub species.  

Image pre-processing steps for the optical datasets included radiometric and geometric correction. GPS points 
were used for image to map registration. Combinations of the image reflectance spectral bands were used for 
classification of the 1986, 2000 and 2010 images. Training sites representing the land-use classes of interest 
were collected using the Region of Interest tool in ENVI 5.0. Support vector machine (SVM) classification was 
applied to all the data sets and its performance assessed using error matrices.  

Post-classification refinements were enforced to diminish classification errors as a result of the similarities in 
spectral signatures of certain classes. Overall classification accuracy, user’s and producer’s accuracies, and the 
Kappa statistic were then derived from the error matrices. 

5.3. Modelling Using UGM 

Model calibration of UGM involved running the model using default parameters of slope, breed, dispersion, 
road and spread. The default parameter values were 1, 50 and 100. Model calibration was done iteratively in 
four sequences from coarse to fine calibration as the parameters were varied using Monte Carlo technique. The 
MRV method was used to achieve the optimal parameterisation for the UGM during the calibration phase as 
well as for the validation of the model results (Pontius Jr., Huffaker, & Denman, 2004). 

Three urban growth models namely: UGM 1, UGM 2 and UGM 3 were run in the modelling process. This 
involved varying the extents of Nairobi city so as to achieve three UGMs. In UGM 1 we used the inner extent of 
Nairobi city as shown in Figure 3. We obtained the region by deducting 10 kilometres from the normal extent 
boundary. This area amounted to 327.59 km2 and was a good representation of Nairobi’s CBD. 
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In UGM 2 we used the normal extent of Nairobi city as shown in Figure 3. The region was obtained from 
clipping the extents of the Nairobi city boundary and we ended up witha rectangular region. This area amounted 
to 1532.36 km2 and was a typical representation of land-uses within Nairobi city boundaries. Additionally, this 
area captured the peri-urban areas and suburban areas surrounding Nairobi. 

In UGM 3 we used the outer extent of Nairobi city as shown in Figure 3. We obtained the region by adding 
10 kilometres from the normal extent boundary. This area amounted to 3540.76 km2 and was an envisaged fu-
ture representation of Nairobi as it grows absorbing neighbouring towns. We varied the extents of our UGM so 
as to investigate the effects on our model calibration. 

6. Results and Discussion 
Land-use summary for Nairobiwas done for the outer limit extent covering an area of 3540.76 km2 and results 
tabulated in Table 2. Land-use maps for Nairobi are illustrated on Figure 5, Figure 6 and Figure 7. The  
 
Table 2. Land-use summary and error estimates for Nairobi.                                                     

Year 1986 2000 2010 

Land-use class Area (Km2) % Area (Km2) % Area (Km2) % 

Urban 69.77 1.97 75.18 2.12 130.45 3.68 

Water 17.24 0.49 11.53 0.33 16.68 0.47 

Forest 129.32 3.65 148.96 4.21 211.33 5.97 

Open/transition areas 1280.92 36.18 1240.97 35.05 1074.09 30.34 

Rangeland 1295.87 36.60 1281.52 36.19 1326.40 37.46 

Agriculture 747.63 21.12 782.58 22.10 781.81 22.08 

Total 3540.76 100.00 3540.76 100.00 3540.76 100.00 

Overall accuracy (%) 92.67 
 

95.30 
 

97.14 
 Kappa coefficient 0.903 0.942 0.963 

 

 
Figure 5. Land-use map for Nairobi in 1986.                                                                  



K. Mubea et al. 
 

 
89 

 
Figure 6. Land-use map for Nairobi in 2000.                                                

 

 
Figure 7. Land-use map for Nairobi in 2010.                                                

 
urban/built-up areas increased from 69.77 km2 in 1986 to 75.18 km2 in 2000 and 130.45 km2 in 2010. Typical 
agriculture land-use include small-scale urban gardens and peri-urban agriculture for cultivation, and such 
land-use was converted to urban land-use namely building up of residential and commercial buildings to cater 
for the increased urban population in Nairobi. 
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The final model coefficients obtained after successful calibration of our three UGM are illustrated in Table 3. 
We can see the values as follows: slope at 20, spread at 10, dispersion at 1, breed at 80, road at 40, and a 
weighted value of 0.8960 for UGM 1; slope at 1, spread at 10, dispersion at 1, breed at 80, road at 10, and a 
weighted value of 0.9558 for UGM 2; and slope at 50, spread at 25, dispersion at 1, breed at 50, road at 25, and 
a weighted value of 0.9714 for UGM 3. 

Thus, from Table 3 we can see that breed was a major contributor of urban growth in UGM 1 and UGM 2. As 
we can recall from Table 1 breed refers to the probability that a newly generated settlement starts its own 
growth and thus influenced most urban growth within the extents of Nairobi city. Dispersion was observed at 1 
in all the three UGM’s and hence spontaneous growth was least likely to influence urban growth. Road was the 
second likely factor of urban growth in UGM 1 at 40 compared to the other UGMs since it has a high concentra-
tion of urban roads and most urban growth sprawls near road access. Slope and breed were major contributors of 
urban growth in UGM 3 as this region captured the peri-urban areas with relatively higher altitude. Slope least 
likely influenced urban growth in UGM 1 and UGM 2 as the region has a gentle slope which influences new 
spreading growth as it is easier to construct urban infrastructure and attracted most urban growth. Spread was a 
least factor influencing urban growth in our three models with low values of 10, 10 and 25 respectively for 
UGM 1, UGM 2 and UGM 3. 

The simulated urban growth using the three models is shown in Table 4. Urban growth increased from 74.50 
km2 in 2010 to 108.41 km2 in 2030 using UGM 1, 95.57 km2 in 2010 to 149.73 km2 in 2030 using UGM 2, and 
142.96 km2 in 2010 to 217.70 km2 in 2030 using UGM 3. The urban growth simulation maps are shown in Fig-
ure 8 and Figure 9. 

The urban growth values from Table 4 were obtained using the formula below: 

Simulated Urban growth in 2030 Urban growth in 2010*Urban growth %
Urban growth in 2010

−
=  

From Figure 8 and Figure 9 we can see that urban growth occurred outwards from Nairobi city mostly in the 
north, south-west and south-east. Thus there is likelihood of urban growth absorbing the neighbouring towns and 
suburban areas surrounding Nairobi. 

Consequently, after successfully calibrating the three models, we compared our results with our previous 
modelling for Nairobi city. In Mubea, Goetzke, & Menz (2014), our modelling results were as follows (denoted 
as UGM 4): slope at 52, spread at 27, dispersion at 1, breed at 52, road at 2, and a weighted value of 0.9477 ob-
tained from scenario three. Scenario three depicts a situation where we considered maximum protection of natu-
ral resources in our exclusion layer. We adopted the same approach for our three models, UGM 1, UGM 2 and 
UGM 3. UGM comparison from this research and our previous work is shown in Figure 10. 

From Figure 10 UGM 4 represents our previous model for Nairobi city (Mubea, Goetzke, & Menz, 2014). 
Here we can see that dispersion was least likely to influence urban growth in all the four models. The values of  
 
Table 3. Best model parameters obtained in the three UGM.                                                     

Model parameters 

 Slope Spread Dispersion Breed Road Weighted value 

UGM 1 20 10 1 80 40 0.8960 

UGM 2 1 10 1 80 10 0.9558 

UGM 3 50 25 1 50 25 0.9714 

 
Table 4. Simulated Urban Growth for Nairobi.                                                                

Year 2010 2030 

UGM 1 2 3 1 2 3 

Simulated Urban (Km2) 74.50 95.57 142.96 108.41 149.73 217.70 

Urban growth* (%)  46 57 52 



K. Mubea et al. 
 

 
91 

 
Figure 8. Simulated urban growth for Nairobi in 2010 using UGM 1, UGM 2 and UGM 3.            

 

 
Figure 9. Simulated urban growth for Nairobi in 2030 using UGM 1, UGM 2 and UGM 3.            

 
spread were relatively low below 30 with UGM 4 having 27. Slope and breed were greatest contributors of ur-
ban growth in UGM 3 and UGM 4. Additionally, the other model parameter values in UGM 3 and UGM 4 were 
slightly similar other than road.  

Furthermore, we compared the weighted values for the four UGMs as shown in Figure 11. The weighted 
values for our four models were 0.8960 for UGM 1, 0.9558 for UGM 2, 0.9714 for UGM 3 and 0.9477 for  
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Slope Spread Dispersion Breed Road

UGM 1 20 10 1 80 40

UGM 2 1 10 1 80 10

UGM 3 50 25 1 50 25

UGM 4 52 27 1 52 2

0
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90

UGM comparison

  
Figure 10. UGM comparison.                                              

 

UGM 1 UGM 2 UGM 3 UGM 4

Weighted value 0.8960 0.9558 0.9714 0.9477

0.8400

0.8600

0.8800

0.9000

0.9200

0.9400

0.9600

0.9800

Weighted value

  
Figure 11. Weighted Value comparison.                                      

 
UGM 4. From these weighted values we can conclude that the urban growth modelling resulted in simulated ur-
ban growth of 89.6 % for UGM 1, 95.6% for UGM 2, 97.1% for UGM 3 and 94.8% for UGM 4. 

Thus, all the UGM were able to model urban growth in Nairobi with UGM 1 with a lowest value of 0.8960 
with 89.6% of simulated urban growth. UGM 3 has the highest value of 0.9714 implying that it captures urban 
growth well on the outer extents of Nairobi with Nairobi city included with 97.1 % of simulated urban growth. 
Therefore future urban growth modelling strategies should explore urban growth on the extents of cities as plau-
sible planning agenda. Such growth envisaged in the outer extents of Nairobi city can be attributed to high rural 
urban migration as new people move immigrate in search for employment, social amenities and business oppor-
tunities. Additionally, the peri-urban areas such as Athi River, Rongai, Limuru and Thika (Figure 4) are fa-
vourable for higher class income residents who prefer to commute to the Nairobi CBD for work and business. 

7. Conclusions 
We used Nairobi, Kenya’s capital as a case study of a fast expanding sub-saharan city model urban growth using 
UGM cellular automata model. Urban land-use maps from satellite image classification were used alongside 
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other datasets in modelling urban growth in Nairobi using UGM. We explored three urban growth models for 
Nairobi of varying location and extent to model urban growth. We compared our modelling results with our pre-
vious urban growth model for Nairobi city.  

Kenya plans to achieve Vision 2030 in the year 2030 and this can be envisaged by simulating urban growth 
within and the extents of Nairobi city. UGM 3 illustrates an approach in which urban growth of Nairobi will ab-
sorb neighbouring towns. Urban growth modelling is vital for guiding decision making for resource manage-
ment. 
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