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Abstract 
This paper is devoted to implementing the Legendre spectral collocation method to introduce 
numerical solutions of a certain class of fractional variational problems (FVPs). The properties of 
the Legendre polynomials and Rayleigh-Ritz method are used to reduce the FVPs to the solution of 
system of algebraic equations. Also, we study the convergence analysis. The obtained numerical 
results show the simplicity and the efficiency of the proposed method. 
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1. Introduction 
Fractional derivatives have recently played a significant role in many areas of sciences, engineering, fluid me-
chanics, biology, physics and economies. Fractional variational problem is a variational problem in which the 
performance index or the objective functional contains at least one Caputo fractional derivative. The fractional 
Euler-Lagrange equation has been used to formulate fractional variational problems [1]. The calculus of varia-
tions has a long history and it has been used almost in every field where energy principles are applicable [2] [3]. 
In a large number of problems arising in analysis, mechanics, geometry, and so forth, it is necessary to deter-
mine the maximal and minimal of a certain functional. Because of the important role of this subject in science 
and engineering, considerable attention has been received on this kind of problems. There are some problems 
that have an important role in the development of the calculus of variations [4]. 
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Agrawal [5] presented a heuristic approach to obtain differential equations of fractionally damped systems. 
Later, Agrawal combined the calculus of variations and the concept of fractional derivatives to develop Euler- 
Lagrange equations for FVPs [1]. Also, a general finite element formulation for a class of FVPs is presented in 
[2], where the fractional derivative is defined in the Riemann-Liouville sense. Finally, Lotfi and Yousefi [6] in-
troduced a numerical method for solving a class of FVPs with multiple dependent variables, and multi order 
fractional derivatives. They reduced the given optimization problem to a system of algebraic equations using 
polynomial basis functions. For more details about the historical comments for the variational problems, see [7] 
[8]. 

Spectral collocation methods are efficient and highly accurate techniques for numerical solution of non-linear 
fractional differential equations (FDEs). The basic idea of the spectral collocation methods is to assume that the 
unknown solution ( )y x  can be approximated by a linear combination of some basis functions, called the trial 
functions, such as orthogonal polynomials. Legendre polynomials are well known family of orthogonal poly- 
nomials on the interval [ ]1,1−  that have many applications [9]-[15]. They are widely used because of their 
good properties in the approximation of functions. We use the Legendre collocation method to discretize FDEs 
to get linear or non-linear system of algebraic equations, thus greatly simplifying the proposed problem. Recently, 
the shifted Legendre polynomials have been used as basis functions of numerical techniques for solving types of 
fractional optimal control problems, see [16] [17]. Legendre expansion method for solving fractional-order de- 
lay differential equations is given in [18]. Also, many numerical algorithms for calculating the fractional integral 
and the Caputo derivative are presented in [19]. 

In general, we know that it is difficult to find the exact solution of FDEs, so, approximate and numerical me-
thods are used to obtain the numerical solution [20]-[27]. The main aim of the presented paper is concerned with 
extension of the application of Legendre spectral method to obtain the numerical solution of FVPs. Also, we 
give and prove an error upper bound of the approximate formula of the fractional derivative and study the con-
vergence analysis. 

This paper is organized as follows. We present few preliminaries for Caputo fractional derivatives and some 
facts about shifted Legendre polynomials in Section 2. In Section 3, we study the error analysis of the intro-
duced approximate formula. In Section 4, we give the procedure of the solution using the proposed method. In 
Section 5, we introduce some numerical examples. Finally, some concluding remarks are given in the last sec-
tion. 

2. Preliminaries 
In this section, we present some necessary definitions and mathematical preliminaries of the fractional calculus 
theory that will be required in the present paper. 

Definition 1 
The Caputo fractional derivative operator Dν  of order ν  is defined in the following form [28]  
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We use the ceiling function ν    to denote the smallest integer greater than or equal to v and { }0 0,1,=� � . 
Recall that for ν ∈� , the Caputo differential operator coincides with the usual differential operator of integer 
order. For more details on fractional derivatives definitions and its properties see [28] [29]. 

The well known Legendre polynomials are defined on the interval [ ]1,1−  and can be determined with the 
aid of the following recurrence formula [14] 
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where ( )0 1L z =  and ( )1L z z= . In order to use these polynomials on the interval [ ]0,1  we define the so 
called shifted Legendre polynomials by introducing the change of variable 2 1z t= − . Let the shifted Legendre 
polynomials ( )2 1kL t −  be denoted by ( )*

kL t . Then, ( )*
kL t  can be obtained as follows 
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The analytic form of the shifted Legendre polynomials ( )*
kL t  of degree k is given by  
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The function ( )u t , which is square integrable function in [ ]0,1 , may be expressed in terms of shifted 
Legendre polynomials as 
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where the coefficients ic  are given by ( ) ( ) ( )1 *
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In practice, only the first ( )1m + -terms of shifted Legendre polynomials are considered. Then we have 
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The main approximate formula of the fractional derivative is given in the following theorem. 
Theorem 1 [23] 
Let ( )u t  be approximated by shifted Legendre polynomials as (4) and also suppose 0,ν >  then  
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3. Error Analysis 
In this section, special attention is given to study the convergence analysis and evaluate an upper bound of the 
error for the proposed approximate formula.  

Theorem 2 [23]  
The Caputo fractional derivative of order ν  for the shifted Legendre polynomials can be expressed in terms 

of the shifted Legendre polynomials themselves in the following form  
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Lemma 1 [23] 
For any continuous function ( )u t  defined on [ ]0,1  with bounded second derivative (i.e., ( )u t δ′′ ≤  for 

some constant δ ), then the coefficients of the shifted Legendre expansion (4) is bounded in the following form 
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Theorem 3 
For a function ( )u t . Under the two assumptions: 
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1) ( )u t  is continuous function on [ ]0,1 ;  
2) ( )u t  has bounded second derivative (i.e., ( )u t δ′′ ≤  for some constant δ ). 
Then its shifted Legendre approximation ( )mu t  defined in (4) converges uniformly. Moreover, we have the 

following accuracy estimation 
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Proof. Using the properties of the shifted Legendre polynomials, the orthogonal condition and the proved 
formula (8), we can get 
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this implies and proves the required relation (9).  
Theorem 4 [23] 
The error ( ) ( ) ( )T mE m D u t D u tν ν= −  in approximating ( )D u tν  by ( )mD u tν  is bounded by  
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4. Procedure Solution for FVPs 
In this section, we give a numerical algorithm using Legendre spectral collocation method for obtaining the 
extremal values of functionals of the general form  

[ ] ( ) ( )( )1

0
, , d ,J y F x y x D y x xν= ∫                                    (11) 

subject to boundary conditions 

( ) ( )0 10 and 1 .y c y c= =                                        (12) 

To develop the formulation for the general form (11), we follow the following steps:  
1) Approximate the function ( )y x  using the formula (4) and its Caputo fractional derivative ( )mD y xν  

using the presented formula (5), then the general form of FVPs (11) is transformed to the following 
approximated form  
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where ( )
,i kw ν  is defined in (5). 

2) Use the trapezoidal integration technique to compute the integral term in Equation (13) as in the following 
approximated formula 
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3) The extremal values of functionals of the general form (14), according to Rayleigh-Ritz method gives 
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which represent 1m ν+ −     of algebraic equations, so, after using the ν    boundary conditions (12) with 
respect to (4), we obtain a system of 1m +  algebraic equations in the unknowns 0 1, , , mc c c� .  

4) Solve the algebraic system to obtain 0 1, , , mc c c� , then the function ( )y x  which extremes FVPs has the 
form (4). 

5. Numerical Examples 
In this section, to demonstrate the performance of the computational procedure developed above, we present 
numerical results of three different examples.  

Problem 1 [2] 
Consider the following FVP: Find the extremum of the functional  
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J y D y x xν ν= < <∫                        (15) 

under the following boundary conditions  

( ) ( )0 0, 1 1.y y= =                                    (16) 

In order to use the Legendre collocation method, we approximate ( )y x  with 3m =  as  
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To obtain the numerical solution of the proposed problem (15) we follow the following steps: 
1) Substitute the approximation of the function ( )y x  from (17) and its approximated fractional derivative 

( )3D y xν  using the presented formula (5), then the general form of FVP (15) is transformed to the following 
approximated form 
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where ( )
,i kw ν  is defined in (5). 

2) Use the trapezoidal integration technique to compute the integral term in Equation (18) as in the following 
approximated formula 
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3) The extremal values of functionals of the general form (19), according to Rayleigh-Ritz method gives 
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c c
∂ ∂
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                                    (20) 

also, using the boundary conditions (16) with respect to (17) and using ( ) ( )* 0 1 ,n
nL = −  ( )* 1 1nL = , we get the 

following two equations 

0 1 2 3 0 1 2 30, 1.c c c c c c c c− + − = + + + =                         (21) 

So, from Equations (20) and (21), we obtain a system of 4 algebraic equations in the unknowns c0, c1, c2 and 
c3. 

4) Solve the resulting algebraic system to obtain c0, c1, c2 and c3, then the function ( )y x  which extremes 
FVP (15) has the form (17). 

The behavior of the numerical solutions of this problem with different values of N and ν  are given in 



E. M. Solouma, M. M. Khader 
 

 
842 

Figure 1 and Figure 2. In Figure 1, the numerical results at 3N =  for different values of ν  and the exact 
solution at 1ν =  are plotted. In Figure 2, the numerical results at 1ν =  for different values of N ( )5,7N =  
and the exact solution at 1ν =  are plotted. 

From these figures, we can conclude that the numerical results obtained by using the proposed method are in 
excellent agreement with the exact solution and the numerical results obtained using the general finite element 
formulation [2]. 

Problem 2 [2] 
Consider the following FVP: Find the extremum of the functional  

[ ] ( )( ) ( )
21

0

1 d ,
2

J y D y x y x xν = −  ∫                              (22) 

under the following boundary conditions ( ) ( )0 1 0.y y= =  
The behavior of the numerical solution of this problem with different values of N and ν  are given in Figure 

3 and Figure 4. In Figure 3, the numerical results at 3N =  for different values of ν  and the exact solution at 
1ν =  are plotted. In Figure 4, the numerical results for different values of N ( )5,7N =  and the exact solution 

at 1ν =  are plotted. 
From Figure 3 and Figure 4, we can conclude that the numerical results obtained by using the proposed 

method are in excellent agreement with the exact solution and the numerical results obtained using the general 
finite element formulation [2]. 

Problem 3 [6] 
Consider the following system of FVPs: Find the extremum of the functional  

[ ] ( ) ( ) ( )( )21
1 2 1 20
, d ,J y y D y x D y x f x xν ν = + −  ∫                    (23) 

where 
 

 

Figure 1. The behavior of ( )y x  of problem 1 at 3N =  for different values of ν .         
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Figure 2. The behavior of ( )y x  for problem 1 at 5N =  and 7N =  and the exact solution 

at 1.ν =                                                                                   
 

 
Figure 3. The behavior of ( )y x  of problem 2 at 3N =  for different values of ν .              
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Figure 4. The behavior of ( )y x  for problem 2 at N = 5 and N = 7 and the exact solution at 

1ν = .                                                                               
 

( ) ( )
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3 44 4 5 5
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3 3 4 4
f x x xν νν ν

ν ν
Γ Γ

= +
Γ Γ

 

under the following boundary conditions  

( ) ( ) ( ) ( )1 1 2 20 1, 1 2, 0 0, 1 1.y y y y= = = =                      (24) 

For the given problem we have ( ) 4
1 1y x x ν= +  and ( ) 5

2y x x ν=  as minimizing functions with  
[ ]1 2, 0J y y = . 
The behavior of the numerical and exact solutions of this problem with different values of  
( )0.6,0.7,0.8,0.9,1.0ν ν =  with 5N =  are given in Figure 5. From this figure, we can conclude that the 

numerical results obtained by using the proposed method are in excellent agreement with the exact solution and 
the numerical results obtained using the proposed method in [6]. 

6. Conclusion and Remarks 
In the presented study, Legendre spectral method has been successfully used to obtain the numerical solutions of 
fractional variational problems. In these equations, the fractional derivative is considered in the Caputo form. 
The fractional derivative is approximated by means of the same formula derived in [18]. The properties of the 
Legendre polynomials and Rayleigh-Ritz method are used to reduce the proposed problem to the solution of 
system of algebraic equations. Also, the additional contribution in this paper is given to study the convergence 
analysis and deduce an error upper bound of the proposed method. One can easily conclude from the presented 
results that the proposed method is a highly good one to obtain numerical solutions of this kind of fractional 
variational equations. It is evident that the overall errors can be made smaller by adding new terms from the 
series (17). Comparison is made between the obtained approximate solution and the exact solution with other 
methods to illustrate the validity and the great potential of the proposed technique. All computations in this 
paper are done using Matlab 8. 
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Figure 5. The behavior of ( )1y x  and ( )2y x  of problem 3 at N = 5 for different values 
of ν .                                                                              
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