
Optics and Photonics Journal, 2015, 5, 173-176 
Published Online May 2015 in SciRes. http://www.scirp.org/journal/opj 
http://dx.doi.org/10.4236/opj.2015.55016  

How to cite this paper: Hutchin, R.A. (2015) The Universal Cross-Section of Photonic Interaction. Optics and Photonics 
Journal, 5, 173-176. http://dx.doi.org/10.4236/opj.2015.55016  

 
 

The Universal Cross-Section of Photonic  
Interaction 
Richard A. Hutchin 
Optical Physics Company, Calabasas, USA 
Email: rahutchin@opci.com  
 
Received 18 January 2015; accepted 12 May 2015; published 15 May 2015 

 
Copyright © 2015 by author and Scientific Research Publishing Inc. 
This work is licensed under the Creative Commons Attribution International License (CC BY). 
http://creativecommons.org/licenses/by/4.0/ 

    
 

 
 

Abstract 
In 1917, Einstein published his paper [1] renowned for the discovery of stimulated emission. How- 
ever, it also contained the principles which allowed the calculation of the universal photonic 
cross-section = λ2/2π. Any heavy electronic system will have this cross-section for photonic excita-
tion and stimulated emission in its rest frame. The modifications of this cross-section due to the 
recoil of the emitter have not yet been calculated, but are in general expected to be second order 
in recoil velocity. 
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1. Introduction 
When Einstein first found the term for stimulated emission, he based that discovery on some very simple phys-
ics, including the principle that the radiant spectrum of blackbody equilibrium was universal. We still believe all 
these principles today. Using those same results and some algebra, we find that they also imply a universal 
cross-section for every type of photonic interaction, from nuclear to atomic to superconducting. 

2. Short Overview of Einstein’s Calculation 
A very brief summary is presented here to highlight Einstein’s logic, which we will then extend. He began with 
a two state electronic system in thermal equilibrium at temperature T, which produced a probability P1 of being 
in the ground state and probability P2 = 1 − P1 of being in the excited state. For simplicity, he assumed that the 
excitable system had identical excitation and emission wavelengths, which meant that it had no recoil during 
emission or excitation (absorption) and was thus infinitely massive. This was a simplifying assumption and will 
also apply to the derivation which follows. 
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He also applied the known physics for the blackbody spectrum BB(ν), where ν = the frequency of light, and 
the known equilibrium thermal probability ratio P2/P1 for the two states as summarized below, where the addi-
tional physics of E = hν was also known and used. 
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Then he assumed three processes that would change the electronic state back and forth: spontaneous emission, 
excitation and finally stimulated emission. Stimulated emission was unknown to physics at that time but was 
required in order to achieve the proper equilibrium given by the mean rate of excitation minus de-excitation be-
ing zero. Since he assumed everything would be in thermal equilibrium, the rate of change of the probability of 
being excited must be zero on average. This was his key physics principle shown in Equation (3). Here the three 
constants A21 (spontaneous emission), B21 (stimulated emission) and B12 (excitation) can all be adjusted to make 
this equation work. For later reference we also point out that constant A12 = 1/τdecay, where τdecay is the exponen-
tial decay time of state 2 into state 1. This is the known decay form for a state at rest without other disturbances 
as described by quantum mechanics, and was also well known in Einstein’s time. This type of exponential decay 
produces a familiar line shape, called a Lorentz line shape, which we will use later. 
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Dividing Equation (3) by P1 and substituting from Equations (1) and (2), we get Equation (4). 
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which is identically zero if and only if the following two conditions apply, as summarized in Equations (5a) and 
(5b). 
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3. Computing the Universal Photonic Cross-Section 
Back in 1917 the main attention focused on the B21 term for stimulated emission, which was new to physics. 
Here however, we wish to focus on the first two terms which will allow us to compute the universal cross-sec- 
tion of a photonic interaction. Our process will be to write the decay rate in two different, physically equivalent 
forms: 
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The first form in Equation (6) represents the rate of decay of an infinitely massive excited state alone in a va-
cuum, and it is correctly described by a single time constant τdecay, which produces an exponentially decaying 
emission probability, called Lorentz decay. In fact, A21 = 1/τdecay. This type of decay is well known and produces 
a probability distribution of frequencies called a Lorentz emission spectrum, with a frequency probability given 
in Equation (7a) [2], where νo = the center frequency of the decay spectrum, and ΔνL = the half-width of the 
emission line. This equation is normalized so that it integrates to unity and is thus a probability distribution of 
the emitted frequencies. 
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where 
decay

1Δ .
2πLν τ

=                                         (7b) 

Equation (7a) is the emission spectrum of an excited state into a single lower energy state, while to compute 
the excitation rate we need the reverse—the absorption spectrum of the lower state into the higher state. Fortu-
nately the two are identical, a principle often used in astronomy to measure absorption lines of atoms and mole-
cules by using their emission caused by illumination from a nearby star [3]. 

To compute the effective frequency bandwidth of the emission line, we simply renormalize this distribution 
so that the center frequency νo has value 1—indicating 100% sensitivity. To accomplish this new normalization, 
we simply multiply Equation (7a) by πΔνL/2. Since Equation (7a) integrates to one, the new function will inte-
grate to πΔνL/2—the effective frequency bandwidth of the emission as given by Equation (8). We can then subs-
titute the value of ΔνL = 1/(2πτdecay) from Equation 7(b) to get A21 in terms of the effective frequency bandwidth 
in Equation (9). 
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Now we can write Equation 5(a) as 
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Solving for B21, we get the following result with a little algebra, which must also equal B12 since the two are 
equal from Equation (5b). 
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This result becomes very physical in Equation (11) when we compute the rate of excitation (ER) for an unex-
cited atom as defined in Einstein’s paper above. 
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Now we rewrite this equation in terms of the PFR (photon flux rate per unit area per frequency), which is giv-
en simply as Equation (12). 
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The excitation rate per second (ER) is then 
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To identify the term we seek, the general form to compute an excitation rate is by taking the probability of 
being unexcited (P1) times the number of photons/sec/cm2/Hz (PFR) times the effective bandwidth of the excita-
tion (Δfeff) times the cross-section of interaction (Cphoton) for the photon to give photons/sec excited, as shown in 
Equation (14). 

1 photonΔFR effER P P f C=                                 (14) 

We see immediately that the cross-section of the photon for every excitation of a heavy electronic system in 
its rest frame must be 
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where λ = the wavelength in the rest frame of our infinitely heavy atom. 
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4. Conclusions 
The model of an infinitely heavy two-state electronic system in thermal equilibrium used by Einstein in his 1917 
paper [1] leads to a universal photonic cross-section equal to λ2/2π. The only additional mathematics we needed 
was the spectrum of Lorentz emission, a well known process both in QM and experimental physics for sponta-
neous decay [2]. Einstein had assumed that this form of emission was his equilibrium analysis by making the 
probability P2 of the excited state decay at a rate P2/tdecay. Given that the only apparent assumptions here are 
blackbody equilibrium and Lorentz decay combined with the three physical processes of excitation, spontaneous 
decay and stimulated emission, the cross-section derived would appear to be quite general. 

This result is satisfying in that it makes the effective area of a photonic interaction proportional to λ2. It seems 
likely that suitable QM calculations should come to a similar conclusion. 

Such a simple result can be quite useful in physical calculations. For instance, suppose one has an atom or 
molecule of any type on a solid surface and needed to know what photon flux it would take to excite it well. If 
you irradiate it with a laser frequency tuned to its transition, then each atom or molecule will be excited at a rate 
equal to the photon flux/unit area times λ2/2π. In this way all the details of the transition can be ignored and ac-
tive sensors of trace chemicals can be easily designed. 
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