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Abstract 
The paper presents a quaternion approach of giving a closed form solution of the motion in a cen- 
tral force field relative to a rotating reference frame. This new method involves two quaternion 
operators: the first one transforms the motion from a non-inertial reference frame to a inertial 
one with a very significant consequence of vanishing all the non-inertial terms (Coriolis and cen- 
tripetal forces); the second quaternion operator provides the solution of the motion in the non- 
inertial reference frame by applying it to the solution in the inertial reference frame. This process 
will govern the inverse transformation of the motion and is proved on two particular cases, the 
Foucault Pendulum and Keplerian motions problems relative to rotating reference frames. 
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1. Introduction 
The present paper presents a quaternion solution of the motion in a central force field relative to a rotating ref- 
erence frame. It starts from the main Cauchy problem stated below: 
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where ω  is a differentiable vectorial map and r  is the magnitude of vector r . 
The quaternion method which will be presented in this paper involves two quaternion operators from which 

the first one transforms the non-linear with variable coefficients initial value problem (1.1) in another one with-
out the coefficients and the second quaternion operator, applied to the solution of the last problem, will provide 
the time-explicit closed form solutions for two specific cases, Foucault Pendulum and Keplerian motion problem 
when ω  has a fixed direction. 

The structure of this paper consists of the following four parts. Section 2 starts with a brief presentation of the 
quaternion algebra and continues with the presentation of Darboux problem in quaternion form in order to pre-
pare the defining of the quaternion operators.  

The next section represents the core of the paper because there the quaternion operators are defined, but not 
before the transformation in the quaternion form of the Equation (1.1) to be done. 

Section 4 proves the accuracy of the method of using quaternion operators for computing the time-explicit 
closed form solutions for two particular cases, the Foucault Pendulum and Keplerian motions problems in rotat-
ing reference frame. 

2. Mathematical Preliminaries 
2.1. Algebra of Quaternions 
The quaternions were invented by William Rowan Hamilton in 1843 [1]. A quaternion can be written as a linear 
combination: 

w x y z= + + +q i j k                                  (2.1) 

where w , x , y , z  are the constituents of the quaternion and i , j , k  are the imaginary units. The mul-
tiplication of two quaternions satisfies the fundamental rules introduced by Hamilton: 

2 2 2 1;    ;    ;    = = = − = − = = − = = − =i j k ij ji k jk kj i ki ik j             (2.2) 

For the quaternion q , w  is the first constituent and it’s named “the real part” and x, y, z form the vector 
part of the same quaternion. We can use the quaternions when we need to model rotations, especially in the case 
of the motion of the rigid body around a fixed point. A quaternion can also be noted as: 

( )0 ,a=q a                                         (2.3) 

where 0a  is a real number and a  is a vector. In this case, 0a  is named the real part of q  and a  is the 
vector part of q . A quaternion with zero real part called vector quaternion. 

The set of quaternions is denoted by   and is a noncommutative; associative four dimensional division al-
gebra with respect to the scalar multiplication, quaternion sum and quaternion product, defined as: 

( ) ( )
( ) ( )

( )
( )

0 0

1 0 2 0

1 2 0 0

1 2 0 0 0 0

, , ;
, ;    , ;

, ;
, .

a a
a b

a b
a b a b

λ λ λ =
 = =
 + = + +
 = − ⋅ + + ×

a a
q a q b
q q a b
q q a b b a a b

                           (2.4) 

with ⋅  being the vector dot product and ×  representing the vector cross product. 
We already know that an algebra is a vector space where the product may be defined as an additional internal 

operation. Also, the dimension of an algebra is the algebraic dimension of the vector space. We will define a di-
vision algebra as an algebra where the division operation is possible. So, for any a  and b , with ≠ 0b , there 
are two unique elements x  and y  in the algebra, as: 

; .= =a xb    a by                                           (2.5) 

We will denote with ∗q  the conjugate of the quaternion q  from (2.3), the conjugate being defined as  
( )0 ,a a∗ = −q . The norm of the quaternion ( )0 ,a=q a  is given by: 

def 22
0a∗= = +q qq a                                     (2.6) 
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when a  is the magnitude of vector a . We will denote with ( )0,=a a  and ( )0,=b b  two vectors and their 
corresponding vector quaternion form. We also know that the vector dot product and cross product may be ex-
pressed in a quaternion way as below: 

( )

( )

1 ;
2

1 .
2

 ⋅ = − +

 × = −


a b ab ba

a b ab ba
                                  (2.7) 

We can describe the motion of a particle on a sphere with a constant radius with the help of time-depending 
quaternions such as: 

( ) ( ) ( )0t t t∗=r q r q                                      (2.8) 

where ( )t=r r  is the vector quaternion that models the motion, 0r  is a constant vector quaternion and ( )tq  
is a time-depending quaternion with ( ) 1t =q . The next equation will describe the finite rotation with an angle 

[ )0,2πα ∈  of the vector 0r  around the axis whose orientation is modeled by the vector quaternion u  with 
1=u : 

( ) ( )0, ,α α∗=r q u r q u                                   (2.9) 

where ( ),αq u  has the form as: 

( ), cos , sin .
2 2
α αα  =  

 
q u u                               (2.10) 

2.2. Darboux Equation in Quaternion Shape 
It is well known that in rigid body kinematics, we need to describe the instantaneous rotation when we know the 
angular velocity [2]. The common solution is to use the Riccati differential equation which describes the instan-
taneous rotation of a rigid body when the instantaneous angular velocity is given [3]. 

If R is the rotation matrix, the rotation with angular velocity ω  of a constant vector 0r  is described by [4] 

0=r Rr                                             (2.11) 

If a vector ω  is represented in Cartesian coordinates with respect to the orthonormal right oriented basis 
{ }1 2 3, ,e e e , 

1 1 2 2 3 3ω ω ω= + +e e eω                                  (2.12) 

and if the matrix ω  is related to the vector ω  as below 

3 2

3 1

2 1

0
0

0

ω ω
ω ω
ω ω

− 
 = − 
 − 

ω                                 (2.13) 

the instantaneous angular velocity vector ω  associated to the proper orthogonal valued function is defined by 
T .= RRω                                            (2.14) 

The rotation matrix that models the rotation with a given instantaneous angular velocity ω  is given by the 
solution to the Darboux equation represented below in the matrix shape: 

( ) 3;    0= =

R R R Iω                                   (2.15) 

where 0t =  is the initial moment of time and R  is a 3 3×  matrix whose elements are differentiable scalar 
functions. 

The rotation matrix R  associated with vector ω  is the solution of the initial value problem (2.15) and it is 
a proper orthogonal matrix function with the following properties: 

T
3;    det 1.= =RR I R                                   (2.16) 
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Consider ω  the vector quaternion corresponding to the instantaneous angular velocity vector and q  the 
unit quaternion that models the rotation. The quaternion operator defined as below rotates any constant vector 

0r  with instantaneous angular velocity ω . 

( )
def

.ω
∗=F q q                                         (2.17) 

From Equation (2.14), it results that: 

( )1
0 0

−× = 

 r F F rω ωω                                    (2.18) 

and using vector quaternions property (2.7) we will rewrite (2.18) as 

( ) ( ) ( )0 0 0 0 0 02
.1 ∗ ∗ ∗ ∗ ∗ ∗− = + = +   r r q q r q q q q r q q qq r r qqω ω                  (2.19) 

Due to the fact that 0r  is an arbitrary constant vector quaternion, from (2.19) results that the unit quaternion 
q , which describes the rotation with angular velocity ω , is the solution to the following Darboux-like equation: 

( ) ˆ;    0
2

= = 1q q qω                                    (2.20) 

where ( )ˆ 1,0=1  is a unit quaternion. In this case, from Equation (2.15), ω  is the vector quaternion associated 
with vector ω . 

Using (2.15) and the expression of ωF  from (2.17), it follows that the continuous rotation with instantaneous 
angular velocity modeled by the vector quaternion −ω  is the solution to the quaternion initial value problem: 

( ) ˆ0;    0
2

+ = = 1q q qω                                  (2.21) 

3. The Solutions of the Motion in a Central Force Field Relative to a Rotating 
Reference Frame 

In order to find the solutions of the equations specific to the motions in a central force field relative to a rotating 
reference frame, two reciprocal transformations will be done: first, the motion in the non-inertial reference frame 
will be transformed in a inertial one through the quaternion operator ωF . Then will be proved that the solution 
of the equation specific to the non-inertial reference frame results very easy by applying the quaternion operator 

−R ω  to the solution specific to the inertial reference frame where ( ) 1
ω−

−=R Fω . 

Quaternionic Operator 
In this section, a quaternion operator ωF  will be defined in order to determine the solution of the below non- 
linear initial value problem which describes the motion in a central force field relative to a rotating reference 
frame. The first step is to recall the Cauchy problem specific to the motion in a central force field: 
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Knowing that ω  is a differentiable vectorial value map, r  is the magnitude of vector r , and :f + →   
is a continous real valued map. Using (2.7), the last equation becomes: 
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and further, 
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Now, the following quaternion operator ωF  is defined as: 

( )
def

ω
∗=F q q                                        (3.4) 

where q  is the solution of the following equation: 

( ) ˆ0;    0
2

+ = = 1q q qω                                 (3.5) 

If 3
∗∈Vω , then the Equations (3.4) and (3.5) determines the following properties: 

1. For any quaternions a  and b  and scalars 1λ  and 2λ , the operator Fω  is linear, i.e.: 

( )1 2 1 2 ;λ λ λ λ+ = +F a b F a F bω ω ω                             (3.6) 

2. For any quaternions a  and b , the operator Fω  preserves the quaternionic product i.e. 

( ) ( )( )=F ab F a F bω ω ω                                    (3.7) 

3. For any quaternion a , the operator Fω  preserves the quaternionic norm i.e. 

=F a aω                                       (3.8) 

4. If r  is a quaternion-valued function of a real variable, the derivative with respect to time of F rω  is: 

( ) ( ) 3
1 ;    
2

∗ = + − ∀ ∈ 
 



F r F r r r r Vω ω ω ω                         (3.9) 

5. If r  is a quaternion-valued function of a real variable, the second derivative with respect to time of F rω  
is: 

( ) ( ) ( )2 2
3

1 12 ;    
4 2
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6. Fω  is invertible and it’s inverse is denoted with −R ω  i.e.: 

( ) ( )1− ∗
− = =R F q qω ω                                 (3.11) 

where −R ω  describes the rotation with the angular velocity −ω  which corresponds to the vector quaternion 
−ω  and q  is the solution of Equation (3.5). 

Theorem 3.1. 
The solution of the Cauchy problem: 
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                  (3.12) 

will be obtained by applying the quaternion operator −R ω , to the solution of the Cauchy problem: 
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Proof. If we apply Fω  to the Equation (3.3), it results: 
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Using the Equation (3.10), it results that: 

( ) ( ) ( ) 0
f r

r
+ =F r F rω ω                                 (3.15) 

Replacing ( )F rω  with r  and using the Equation (3.11), it results: 
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                           (3.16) 

Consequently, by using the quaternion operator Fω , the complex problem given by the non-linear initial 
value problem with variable coefficients described by Equation (3.1) is reduced to the finding the solution of 
Equation (3.16) which describes the motion in a central force field, with ω  being the instantaneous angular 
velocity of the rotating reference frame. Thereby, the movement in the non-inertial reference frame is trans- 
formed to an inertial one and all non-inertial coefficients within Equation (3.1) are canceled. The solution of 
Equation (3.1) will be obtained by applying the quaternion operator −R ω , to the solution of the problem (3.16). 

In the next sections will be studied two particular cases of motions in central force field: the Foucault 
Pendulum and the Kepler’s motions relative to a rotating reference frame problems. 

4. Study of Particular Cases: Foucault Pendulum and Keplerian Motion Problems  
in Rotating Reference Frames 

This section presents the methods adequate to the very known two topics: the Foucault Pendulum and Keplerian 
motion problems relative to a rotating reference frame problems. In order to achieve the goal of this paper, the 
motion in central force field Equation (1.1) will be particularized for these two specific cases giving for each of 
them the characteristic eqaution of ( )f r  and the quaternion operator −R ω , will be used as presented in last 
section. 

4.1. Foucault Pendulum Problem 
The Foucault Pendulum motion is described by the below initial value problem which is a particular form of the 
Equation (1.1) that coresponds to a spatial harmonic oscillator relative to a rotating reference frame, with 

( ) 2f r ω∗= r , 
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              (4.1) 

where r  is the position vector, ω  represents the angular velocity of the rotating reference frame and is a di-
ferential vectorial map and at last but not the least important, ω∗  is the pulsation of the pendulum which de-
pends on both the gravitational acceleration at the place of the experiment and the length of the pendulum. 

Applying the quaternion operator Fω , the Equation (4.1), we will produce the below initial value problem: 
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                                  (4.2) 

The Equation (4.2) models the spatial harmonic oscillator and it’s solution is: 

( ) 0 0 0
0cos sint t tω ω

ω∗ ∗
∗

+ ×
= +

v r
r r

ω
                           (4.3) 

Due to the Theorem 3.1., the solution of the initial value problem 
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( ) ( )
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                      (4.4) 

results from applying the the quaternion operator −R ω  to the solution (4.3) of the Cauchy problem (4.2) as be-
low: 

( ) ( ) ( )0 0 0 0
1cos sint t tω ω
ω− ∗ − ∗

∗

= + + ×r R r R v rω ω ω                    (4.5) 

The solution of Equation (4.5) coresponds to a harmonic planar oscillation (with ω∗  being the pulsation of 
the pendulum) composed with a precession of −ω  angular velocity of the oscillation plane [5]. 

In order to compute the closed form solutions of Equation (4.1), we must recall that we’ve assumed that the 
direction of the vector ω  associated with the quaternion ω  is considered to be fixed ( ) ( )t tω= uω  where 
u  is a constant unit vector with [ ): 0,ω +∞ →   and, from Eqaution (3.11), that the quaternion operator  

( ) ∗
− =R q qω . Consequently, 
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 (4.6) 

with ( ) ( )
0

d
t

tϕ ω ξ ξ= ∫ . 

If we’ll note: 

0 0 0
0cos sint tω ω

ω∗ ∗ ∗
∗

+ ×
= +

v r
r

ω
Φ                            (4.7) 

than the Equation (4.6) can be rewritten as following: 

( ) ( ) ( ) ( )2 2

sin cost t
t

ϕ ϕ
ωω ω

∗
∗ ∗

⋅
= − × − × ×r ω

ω ω ω ω
Φ

Φ Φ                  (4.8) 

In conclusion, when the direction of the vector ω  associated with the quaternion ω is considered to be fixed, 
the motion is a harmonic oscillation described by the Equation (4.3) in a plane that has a fixed point and a pre- 
cession with the angular velocity −ω . 

4.2. Kepler’s Problem in Rotating Reference Frame 
The Keplerian motion in a rotating reference frame that rotates with the angular velocity ω  is described by the  

following linear initial value problem which is a particular form of the Equation (3.1) with ( ) 2f r
r
µ

=
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r r
r
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                (4.9) 

where r  is the position vector of the body related to the attraction center, ω  represents the angular velocity 
of the rotating reference frame and is a differential vectorial map and µ  is a constant with μ = kM where k is 
the universal attraction constant and M is the mass of the attraction center. 

It was proved in the second section that the solution to the Cauchy problem is obtained by applying the 
quaternion operator −R ω  to the solution of the following Cauchy problem: 
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( )
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                                   (4.10) 

The Equation (4.10) describes a typical Keplerian motionunder certain conditions. 
In the particular case of negative specific energy, the solution of (4.11) is: [6] [7] 

( ) ( ) ( )0 0cos sint E t e E t= − +  r a b                           (4.11) 

where 0t ≥  
In the Equation (4.11), the coefficients 0a  and 0b  are the vectorial semimajor and, respectively, the semi- 

minor axes of the elliptical inertial trajectory, 0e  is the vectorial eccentricity of the trajectory with e  being its 
magnitude and constant n  is named mean motion as below: 
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                           (4.12) 

where the specific energy is noted with h  and is equal with: 

( )2
0 0 0

0

1 0
2

h
r
µ

= + × − <v rω                                (4.13) 

and the specific angular momentum of the inertial trajectory is noted with 0Ω  and equal to: 

( )0 0 0 0 0 .= × + ×r v rΩ ω                                     (4.14) 

The eccentricity of the trajectory is given by: 

( ) ( )0 0 0 0 0 0 0
0

0rµ

 + × × × + × = −
v r r v r r

e
ω ω

                    (4.15) 

with 
2
0
2

2
1

h
e

µ
Ω

= = −e                                       (4.16) 

and the mean motion is: 

( )3 2
2 h

n
µ

=                                             (4.17) 

where [ )0,t∈ +∞ .                                       (4.18) 

The function ( )E t  is the eccentric anomaly defined by: 

( ) ( ) [ )0 0sin si    forn 0   ,E t e E t nt E e E t− = + − ∈ +∞                (4.19) 
with [ )0 0, 2πE ∈  given by: 

( )

0
0

0 0 0 0
0 0

1cos 1 ,
2

sin 1 .
2

r
E n

e h

E n r
e h µ

 
 = −
 
 

⋅ ⋅ 
= − 

 

v r ω Ω
                             (4.20) 
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Now, in order to find the solution to the Cuchy problem (4.21), the quaternion operator −R ω  has to be applied 
to the solution of the Equation (4.11) resulting: 

( ) ( ) ( ){ }0 0cos sint E t e E t−= − +  r R a bω                       (4.22) 

Using the properties of the quaternion operator −R ω , Equation (4.22) becomes: 

( ) ( ) ( )0 0cos sint E t e E t− −= − +  r R a R bω ω                      (4.23) 

Again, the direction of the vector ω  associated with the quaternion ω  is considered to be fixed  
( ) ( )t t= uω ω  where u  is a constant unit vector with [ ): 0,ω +∞ →   and, from Eqaution (3.11), the quater- 

nion operator ( ) ∗
− =R q qω  transforms the Equation (4.23) as below: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

00
0 2

00
0 2

cos sin 1 cos

           sin sin 1 cos .

t E t e t t

E t t t

ϕ ϕ
ω ω

ϕ ϕ
ω ω

 × ×× = − − + −         
 × ×× + − + −   
  

aa
r a

bb
b

ω ωω

ω ωω
         (4.24) 

with ( ) ( )
0

d
t

tϕ ω ξ ξ= ∫ . 

Consequenly, similar to the Foucault pendulum case, the Keplerian motion relative to a rotating reference 
frame consists of two motions: a Keplerian elliptical motion described by the Equation (4.11) and a rotation with 
the angular velocity −ω . 

5. Conclusion 
The quaternion method described in this work presents a new perspective to the clasical problem of motion in 
central force field relative to the rotating reference frames and provides us a very powerfull tool to solve the 
similar problems. Throughout the paper, two quaternion operators are defined in order to reveal the closed form 
solution to the two particular problems of the Foucault Pendulum and Keplerian motions in rotating reference 
frame. 
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