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Abstract 
In this paper, we present a stock model with Markov switching in the uncertainty markets, where 
the parameters of drift and volatility change according to the states of a Markov process. To price 
the option, we firstly establish a risk-neutral probability based on the uncertain measure given by 
Liu. Then a closed form of the European option pricing formula is obtained by applying the Laplace 
transforms and the inverse Laplace transforms. 

 
Keywords 
Uncertainty Theory, Markov Process, Laplace Transform, Put-Call Parity, Option Pricing 

 
 

1. Introduction 
The problem of option pricing is one of the most foundational problems in financial world. In 1900, Brownian 
motion was first introduced to finance by Bachelier [1]. Samuelson [2] proposed that stock prices follow geo-
metric Brownian motion. Following that, Black and Scholes [3] created the famous Black-Scholes model and 
gave an option pricing formula. Nowadays, it has become an indispensable tool in financial market. In previous 
option pricing theory, the problems of option pricing were handled under stochastic theory.  

In order to study uncertain phenomena in human systems, Liu [4] found an uncertainty theory and refined it 
based on normality, monotonicity, self-duality and countable subadditivity. In 2008, Liu [5] proposed a concept 
of uncertain process and defined uncertain differential equation. In 2009, Liu [6] designed a canonical process 
and invented uncertain calculus. By means of uncertain differential equation, Liu [6] proposed a stock model for 
uncertain markets that are essentially a kind of markets consistent with uncertain measure. Following that, Chen 
[7] derived an American option pricing formula. 

In reality, some important information may greatly impact the volatility of stock returns, such as a change 
from “bull market” to “bear market”. Hamilton [8] first studied the regime change and business cycles by using 
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the Markov switching model. Di Masi, Kabanov and Runggaldier [9] considered the problem of hedging a Eu-
ropean call option for a diffusion model, where drift and volatility are functions of a two-state Markov process. 
Guo [10] provided a closed-form formula for the arbitrage-free price of the European call option by using Mar-
kov switching model. Cheng et al. [11] carried out further research on Guo’s result. Mamon and Rodrigo [12] 
got an explicit solution to European options in a Regime-switching economy. 

Inspired by the empirical phenomena of stock fluctuations related to the business cycle and the evidence from 
literatures that validated Markov switching model in the investigation of option pricing, in this paper, we deal 
with the pricing of options with Markov switching model in uncertainty markets. Specifically, we assume that 
stock prices are generated by a geometric uncertain process, and that the drift and volatility parameters take dif-
ferent values depending on the state of a Markov process. We finally provide an explicit formula for pricing 
when the Markov process has two states. 

2. Preliminaries 
Uncertainty theory is a branch of axiomatic mathematics. It is an evolving system founded by Liu to deal with 
human uncertainty. Now the book Uncertainty theory has been updated to edition five [13]. 

Definition 1. An uncertain process tC  is said to be a canonical Liu process if 
a) 0 0C =  and almost all sample paths are Lipschitz continuous, 
b) tC  has stationary and independent increments, 

c) every increment s t tC C+ −  is a normal uncertain variable with expected value 0 and variance 2t , whose 
uncertainty distribution is 

( )
1

π1 exp ,
3t
xx x R
t

−
  

Φ = + − ∈  
  

                             (2.1) 

If tC  is a canonical process, then the uncertain process ( )expt tG et Cσ= +  is called a geometric canonical 
process, where e  is called the log-drift and σ  is called the log-diffusion. 

Definition 2. Let tX  be an uncertain process and let tC  be a canonical process. For any partition of closed 
interval [ ],a b  with 1 2 ka t t t b= < < < = , the mesh is written as 1 1max i k i it t≤ ≤ +∆ = − . Then the uncertain 
integral of tX  with respect to tC  is 

( )10 1d lim
i i i

b
t t t t tia

kX C X C C
+∆→ =

= −∫ ∑                            (2.2) 

provided that the limit exists almost surely and is an uncertain variable. 
Definition 3. Suppose tC  is a canonical process, and f  and g  are two given functions. Then 

( ) ( )d , d , dt t t tX f t X t g t X C= +                                (2.3) 

is called an uncertain differential equation. 
Definition 4. Let tX  be the bond price, and tY  the stock price. Assume that the stock price tY  follows a 

geometric canonical process. Then Liu’s stock model is 
d d
d d d

t t

t t t t

X rX t
Y eY t Y Cσ

=
 = +

                                   (2.4) 

where r  is the riskless interest rate, e  is the log-drift, σ  is the log-diffusion, and tC  is a canonical Liu 
process.  

Note that the stock price is 
( )0 expt tY Y et Cσ= +                                    (2.5) 

whose uncertainty distribution is 

( ) ( )
1

0

π ln
1 exp , 0

3t

et y
y Y y

tσ

−
 − 

Φ = + >     
                        (2.6) 

Definition 5. Assume a European call option has a strike price K and an expiration time s. Then the European 
call option price is 



G. S. Wang, D. L. Zhao 
 

 
193 

( )e rs
c sf E Y K +−  = −                                      (2.7) 

Definition 6. Assume a European put option has a strike price K and an expiration time s. Then the European 
put option price is 

( )e rs
p sf E K Y +−  = −                                      (2.8) 

3. Uncertain Stock Model with Markov Switching 
Consider the following uncertain stock model which incorporates different states of stock market quotation 

( )

( ) ( )

d d

d d d
t tt

t t t tt t

X r X t

Y e Y t Y C
ε

ε εσ

=

= +





                                   (3.1) 

where ( )tε  is a stochastic process representing the state of market and ( )tε  is independent of the canonical 
process tC . For each state of ( )tε , the drift parameter ( )teε , diffusion parameter ( )tεσ  and riskless interest 
rate ( )trε  take different values when ( )tε  is in different state. 

Assume that ( )tε  is a Markov process with a finite number of states. In this paper, we will focus our dis-
cussion on the case of two-state Markov switching model. Specifically, let ( ) 0tε =  at those times which the  
price change is not abnormal, in this state, ( ) ( ) ( )0 0 0, ,t t te e r rε ε εσ σ= = = . Similarly, let ( ) 1tε =  when some 

significant information just appears and cause turbulence in stock market, then, ( ) ( ) ( )1 1 1, ,t t te e r rε ε εσ σ= = = .  

Suppose, further, that each piece of information flow is a random process ( )1,2, ,jz j n=  , and 1 2, , , nz z z  
are independent identically distributed processes. Then their super imposed process is Poisson. Consider the 
transition among different states, let iλ  be the rate of leaving state i  and let iτ  be the time interval remain-
ing in state i . Then the cumulative distribution function of iτ  is as follow: 

( ) 1 e , 0,1it
iP t iλτ −≤ = − =                                    (3.2) 

Then the volatility of stock price is driven by the canonical process tC  and the Markov process ( )tε . 

4. Risk-Neutral Option Pricing Based on the Uncertain Stock Model with  
Markov Switching 

We aim to value the European call option based on the risk-neutral pricing theory, but it is easy to verify that the 
model is not accord with no-arbitrage hypothesis. 

As we know, in a risk-neutral framework, the Option Put-Call Parity Relation is as follow: 

0 e rtC P Y K−− = −                                       (4.1) 
where C is the European call option price, P is the European put option price, K is the same strike price and 0Y  
is the initial stock price. 

But from the Definition 5 and Definition 6, we can learn: 

( )e max ,0rt
c tf E Y K−  = −                                     (4.2) 

( )e max ,0rt
p tf E K Y−  = −                                     (4.3) 

Then 
( ) ( ) ( ) ( )e e e e

t t

rt rt rt rt
c p t Y k t Y k t tf f E Y K I Y K I E Y K E Y K− − − −

> < − = − + − = − = −             (4.4) 

in which, 
tY kI >  and 

tY kI <  are indicator functions. 
And according to Kai Yao (2010) [14], 

( )
0

3 πe ,
sin 3 3

π,
3

rt

t

tY t
tE Y

t

σ
σ σ

σ


<

= 
+∞ ≥

                             (4.5) 
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so, 

0

0

3 πe ,
sin 3 3 e

π,
3

rt

rt
c p

tY K t
tf f Y K

t

σ
σ σ

σ

−

−


− <

− = ≠ −
+∞ ≥

                     (4.6) 

Therefore, no option put-call parity Relation was created between cf  and pf . They were not priced in the 
risk-neutral measure. So we need to find the risk-neutral measure. 

Lemma 1. Consider the uncertain stock model (2.4), when π
3σ

< , the risk-neutral uncertainty distribution 

of tY  is as follow: 

( )
( )

1

0

3π ln
sin 3 π1 exp , 0,

3 3t

trt y
t

y Y y t
t

σ
σ

σ σ

−
    
    −         Φ = + > <  
  
  
  

  

              (4.7) 

Proof: As we know, in the risk-neutral measure, the expected stock return e  is equal to the riskless interest 
rate r . Assume that ( )t yΦ  is the risk-neutral uncertainty distribution of tY , ( )tE Y  is the risk-neutral ex-
pected value of tY . 

Following from (4.5), we have: 

( ) ( )( )
0

0

3 πe ,
sin 3 31 d

π,
3

rt

t t

tY t
tE Y y y

t

σ
σ σ

σ

+∞


<

= −Φ = 
+∞ ≥

∫                  (4.8) 

In the risk-neutral measure, the expected value of tY  is: 

( ) ( )( )0
1 dt tE Y y y

+∞
= −Φ∫                                  (4.9) 

Let 
( )sin 3

3

t
y x

t

σ

σ
= , then 

( )
( ) ( )

0

sin 3 sin 3
1 d

3 3t t

t t
E Y x x

t t

σ σ

σ σ
+∞
  
  = −Φ     

∫                     (4.10) 

( )
( )

0
πe ,sin 3 3
π3 ,

3

rt

t

Y tt
E Y

t t

σ σ
σ

σ

 <= 
+∞ ≥


                         (4.11) 

If: 

( )
0

πe ,
3

π,
3

rt

t

Y t
E Y

t
σ

σ

 <= 
+∞ ≥


                                (4.12) 

Then: 
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( ) ( ) ( )
( )

0

sin 3 sin 3 sin 3
1 d

3 3 3t t

t t t
x x E Y

t t t

σ σ σ

σ σ σ
+∞
  
  −Φ =     

∫               (4.13) 

( )
( ) ( )( )

0 0

sin 3
1 d 1 d

3t t t

t
x x E Y x x

t

σ

σ
+∞ +∞
  
  −Φ = = −Φ     

∫ ∫                (4.14) 

Then we have: 

( )
( )

sin 3

3t t

t
x x

t

σ

σ

 
 Φ = Φ
 
 

                              (4.15) 

So when π
3

t
σ

< : 

( ) ( )
( )

1

0

3π ln
sin 33 1 exp , 0

3sin 3
t t

trt y
tty y Y y

tt

σ
σσ

σσ

−
    
    −            Φ = Φ = + >          
  

  

        (4.16) 

Thus, the risk-neutral uncertainty distribution function is verified. 
Then we will present the following theorem for a two-state Markov switching model. Let iT  be occupation 

time of state 0, when the chain starts from state i . That is the total amount of time between 0 and T during  
which ( ) 0tε = , starting from state i  for i = 0, 1. Let ( ),ig t T  be the uncertainty distribution function of iT . 

Theorem 1. Under the Markov switching uncertain stock model (3.1) and the risk-neutral uncertainty distri-
bution (4.7), the arbitrage free price of European call option with expiration date T and strike price K is given by 

( ) ( ) ( ) ( ) ( )
 ( ) ( )0 0 11

d

0 0
, e 0 e e , d d

T
t Tr t t r r tr T

i T t iV T K E Y K i y y K g t T t yε ε φ
∞− + − −−∫ = − = = +   ∫ ∫     (4.17) 

where  ( )t y Kφ +  is the derivative of the risk-neutral uncertainty distribution ( )t y KΦ + . 

 ( )

( ) ( )( )
( )( )

( )

( ) ( )( )
( )( )

( )

0 1 1
0 1 1

0 1 1

0 1 1

2

0 1 1
0 1 1

0 1 1

0 1 1

3
π ln

sin 3
exp π

3

3
π ln

sin 3
1 exp

3

t

y K t T t
r t rT r t

t T t

t T t

y K
y K t T t

r t rT r t
t T t

t T t

σ σ σ

σ σ σ

σ σ σ

φ

σ σ σ

σ σ σ

σ σ σ

  + + −  + − −  + −  
 + − 
  
 + =

   + + −   + − −   + −   +  + −  
      

( )( )0 1 1 3y K t T tσ σ σ+ + −

(4.18) 

( ) ( ) ( ) ( ) ( )( ) ( )( )1 0 1 0 0 1
0 0 0 0 0 1 1 0 1, e e 2 2T t t T t t t

g t T T t J t T t J t T t
T t

λ λ λ λ λ λ
δ λ λ λ λ λ− − − − − −  

= − + − + − 
−  

   (4.19) 
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( ) ( ) ( ) ( )( ) ( ) ( )( )1 01 0 1
1 0 1 0 0 1 1 0 1, e e 2 2T t tT T t

g t T t J t T t J t T t
t

λ λλ λ λ
δ λ λ λ λ λ− − −−

 −
 = + − + −
  

     (4.20) 

where 0J  and 1J  are the modified Bessel functions, defined as (a = 0, 1) 

( ) ( )
( )

2

0

2
2 ! 1

kn

n k

zzJ z
k k n

∞

=

 =   Γ + + 
∑                                (4.21) 

( ),ig t T  is the uncertainty distribution function of iT  and ( )0 tδ  is the unit impulse function. 
Proof: Since the arbitrage price of the European option is the discounted expected value of tY  under the 

risk-neutral uncertainty measure, we have: 

( ) ( ) ( ) ( )0 d, e 0
T

tr t t
i TV T K E Y K iε ε

− +∫ = − =  
                            (4.22) 

Consider iT  and it’s uncertainty distribution function ( ),ig t T , then according to the smoothing property of 
conditional expectation, we have 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( )
 ( ) ( )

0

0 1

0 11

0 11

d

0 0

, e 0

e 0

e e 0

e e , d d

T
t

i i

i

T

r t t
i T

r T r T T
T i

r r Tr T
T i

y Y K T r r tr T
t i

V T K E Y K i

E E Y K T i

E E Y K T i

y K g t T t yy

ε ε

ε

ε

φ

− +

+ − + − 

+− −−

= − ∞ − −−

∫ = − =  
  = − =    

  = − =    

⇒ +∫ ∫



 

 

                   (4.23) 

where  ( )t y Kφ +  is the derivative of the risk-neutral uncertainty distribution ( )t y KΦ + . 

Next we will deduce the form of ( ),ig t T  using Laplace transform and inverse Laplace transform. Note that 

( ),ig t T  is the uncertainty distribution function of iT  and ( ) ( )( ) ( )( )00
, d d d 0

T
ig t T t P I s s t iε ε= ∈ =∫ , 

where 0I  is the indicator function of state 0.  
Let 

( ) ( )( ) ( ) ( ) ( )( )0 00 0
0

d
0 0
, e 0 e , d ,

Tr I s s r t
i i r ir T E i g t T t g Tεψ ε

+∞− −∫ = = = = ⋅   ∫          (4.24) 

( )( )0
,r ig T⋅  is the Laplace transform of ( ),ig t T  with respect to t. 

Assume that the time interval of state changing obeys the exponential distribution, as shown in (3.2), then by 
considering the total probability of { }i tτ ≤  and { }i tτ > , 0,1i = , we have 

( ) ( ) ( )0 0 0 0
0 0 0 1 00

, e e e e , d
Tr T T r u ur T r T u uλ λψ λ ψ− − − −= + −∫                (4.25) 

( ) ( ) ( )1 1
1 0 1 0 00

, e e , d
TT ur T r T u uλ λψ λ ψ− −= + −∫                     (4.26) 

Then taking Laplace transforms with respect to T on both sides. By using the convolve formula, we get: 

( )( ) ( )( )( )  ( )
00 0 0, , , ,s i s r i ir L g T r r sψ ψ ⋅ = ⋅ ⋅ =                      (4.27) 

Specifically, 

 ( )
 ( )0 1 0

0 0
0 0

1 ,
,

r s
r s

s r
λ ψ

ψ
λ

+
=

+ +
                              (4.28) 
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 ( )
 ( )1 0 0

1 0
1

1 ,
,

r s
r s

s
λψ

ψ
λ

+
=

+
                               (4.29) 

We obtain: 

 ( ) 0 1
0 0 2

0 1 0 0 1

,
s

r s
s rss s r

λ λ
ψ

λ λ λ
+ +

=
+ + + +

                          (4.30) 

 ( ) 0 1 0
1 0 2

0 1 0 0 1

,
s r

r s
s s s r rs

λ λ
ψ

λ λ λ
+ + +

=
+ + + +

                          (4.31) 

Then taking the inverse Laplace transforms on both  ( )0 0 ,r sψ  and  ( )1 0 ,r sψ  with respect to 0r . 

 ( )( )( ) ( )
0

0 11 0 1
0 0

1 1

, , expr

s ss
r s w w

s s
λ λλ λ

ψ
λ λ

−  + ++ +
⋅ = −  + + 

                (4.32) 

 ( )( )( ) ( ) ( )
( )

( )
0

1 0 1 0 101
1 0 2

1 11

, , expr

s s sw
r s w w

s ss

λ λ λ λ λδ
ψ

λ λλ
−  + + + +

⋅ = + −  + ++  
          (4.33) 

where ( )0 tδ  is the unit impulse function, ( ) ( )1
0 1tδ −=  . 

By using the delay and translation property of Laplace transform, and considering the following facts about 
the Laplace transform of Bessel functions: 

( )1
0

1 e 2
b
s J bt

s
−  

=  
 

                                (4.34) 

( )1
1e 1 2

b
s b J bt

t
−  

− =  
 

                              (4.35) 

( )1
12

1 e 2
b
s t J bt

bs
−  

=  
 

                              (4.36) 

We can take the inverse Laplace transforms on  ( )( )( )
0

1
0 0 , ,r r s wψ− ⋅  and  ( )( )( )

0

1
1 0 , ,r r s wψ− ⋅  with respect to 

s . 

 ( )( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )( )

0 1 0 1
0 1

0

0 1

1 1 1 0
0 0

0 1
1 0 1 0 0 0 0 1

, , , e e e ,

e 2 2

w w
w v w s s

s r s

w v w

r s w v v w v w
s

w
v w J w v w v w J w v w

v w

λ λ λ λ
λ λ

λ λ

λ
ψ θ

λ λ
θ λ λ δ λ λ λ

− − −− − −

− − −

 
  ⋅ ⋅ = − + ⋅ − 

= − − + − + −
−

  
 
 
  

  

       (4.37) 

where θ  is the unit step function 

( )
0,
1,

v w
v w

v w
θ

<
− =  ≥

                                    (4.38) 

and ( )0 tδ  is the unit impulse function:  

( ) ( )0 00, 0, d 1t t t tδ δ
+∞

−∞
= ≠ =∫                                 (4.39) 

So, when v w≥ , we have: 

( )  ( )( )( ) ( )

( ) ( ) ( ) ( )( ) ( )( )
0

1 0 1 0

1 1
0 0 0

0 1
0 0 0 0 1 1 0 1

, , , ,

e e 2 2

s r

v w w v w w

g w v r s w v

w
v w J w v w J t v w

v w
λ λ λ λ

ψ

λ λ
δ λ λ λ λ λ

− −

− − − − − −

 = ⋅ ⋅ 
 

= − + − + − 
−  

 

    (4.40) 
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Similarly, 

( )  ( )( )( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( )( )

0

0 1 0 1
0 11

0 11

1 1
1 1 0

1 0 11
0 2

0 1 0 0 1 0 1 1 0 1
0 1

, , , ,

e e e e ,

e e 2 2

s r

w w
w v wv s s

s

w v wv

g w v r s w v

w v w v w
s s

v ww v w J w v w J t v w
w

λ λ λ λ
λ λλ

λ λλ

ψ

λ λλ
δ θ

δ θ λ λ λ λ λ λ λ
λ λ

− −

− − −− −

− − −−

 
 
  

 = ⋅ ⋅ 

= + − + ⋅ −

−
= + − −

 
 
 

+


−

 

    (4.41) 

Substitute ( );T t  for ( );v w  and the Theorem is proved.    

5. Conclusion 
In this paper, a stock model with Markov switching in the uncertainty markets is proposed to capture the fluctu-
ations related to the business cycle. Then the risk-neutral probability based on the uncertain measure is estab-
lished for European call option pricing. Finally, an analytical formula of the option price is given by virtue of 
risk-neutral pricing theory. The model presented in this paper is applicable not only to two states Markov 
switching but also to general model with finite states Markov process. 
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