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Abstract

A differential-difference Davey-Stewartson system with self-consistent sources is constructed us-
ing the source generation procedure. We observe how the resulting coupled discrete system re-
duces to the identities for determinant by presenting the Gram-type determinant solution and
Casorati-type determinant solution.
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1. Introduction

The study of discrete integrable system has become an active area of research for over thirty years. Various in-
tegrable discretization methods have been proposed to produce the discrete analogues of integrable systems. One
powerful technique to find the integrable discretization is the Hirota’s bilinear method [1]-[6]. The traditional
Hirota’s discretization of integrable equations relies on gauge invariance and soliton solutions, while the modi-
fied Hirota’s approach [5] [6] emphasizes on discretizing integrable bilnear equations such that the resulting
discrete bilinear equations have bilinear Bécklund transformations.

The Davey-Stewartson system is an integrable (2+1) -dimensional generalization of the nonlinear Schrédinger
system. In [7], the authors applied the modified Hirota’s approach to the Davey-Stewartson system to produce
an integrable differential-difference Davey-Stewartson system which is characterized by determinant solutions,
bilinear B&cklund transformation and lax pair. This differential-difference Davey-Stewartson system also can be
derived as a reduction of a (2+1) -dimensional generalization of the Ablowitz-Ladik lattice [8].

Since the pioneering works of Mel’nikov [9], the soliton equations with self consistent sources have received
considerable attention. Soliton equations with self consistent sources are integrable coupled generalization of the
original soliton equations, and some of such type of equations have found important physical applications. A va-
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riety of methods have been proposed to deal with these soliton equations with sources, such as inverse scattering
methods [9]-[13], Darboux transformation methods [14]-[17], Hirota’s bilinear method and Wronskian tech-
nique [18]-[28] etc. However, most results have been achieved in continuous case. Comparatively less work has
been done in discrete case. In view of this unsatisfactory situation, it would be interesting to produce new dis-
crete soliton equations with self consistent sources.

In [27], a direct method, called the source generalization procedure, was proposed to construct and solve the
soliton equations with self consistent sources. In this paper, we apply the source generalization procedure to
construct and solve the differential-difference Davey-Stewartson system with self-consistent sources.

The outline of this paper is as follows. In Section 2, the differential-difference Davey-Stewartson system with
self-consistent sources is produced and its Gram-type determinant solutions are presented. In Section 3, the Caso-
rati-type determinant solutions to the differential-difference Davey-Stewartson system with self-consistent sources
is derived. Finally, Section 4 is devoted to a conclusion.

2. Constructing the Differential-Difference Davey-Stewartson System with
Self-Consistent Sources

In [7], a differential-difference Davey-Stewartson system which is an integrable discretization of the DSI system
is proposed, and the double-Casorati and Grammian determinants solutions to this discrete Davey-Stewartson
system are derived. In this section, we first review the Grammian determinant solutions for the discrete Davey-
Stewartson system and then apply the source generation procedure to this system to produce a differential-dif-
ference Davey-Stewartson system with self-consistent sources.

The differential-difference Davey-Stewartson system reads [7]

iv, + e "Iy (1) 4+ @, Iy (K 4 1) — (0 + @, )V =0, ()
—iw, + eIy (0 1) + e 2 (K -1) —(a, + @, )W =0, )
Zl _ Zleu(n+1,k+1)+u—u(k+1)—u(n+1) + sz(k +1)W(n +1) -0 , (3)

where ¢, a,, z, and z, are constants. In Equations (1)-(3) and in the following we always use a notational
simplification for f (n,k,t) by writing explicitly a discrete variable only when it is shifted from its position.
For example,

f=f(nkt), f(n+1)="f(n+Lkt), f(k-1)="f(nk-1t), f(n+Lk-1)=f(n+Lk-1t).

If we apply the dependent variables transformations

u=InF, v=g'@)'G/F, w=el'H/F, )
Equations (1)-(3) can be transformed into the following bilinear Equations [7] [8]:
[iD, + e ™ +a,e™ |G-F =0, (5)
[iD, + e ™ +ae™ [F-H =0, (6)
Z, |:e]/2(Dn’Dk) _eJ/Z(Dn+Dk):| F.F+ ZzeJ/Z(Dn*Dk)G ‘H =0, @)

where, as usual, the bilinear operators D, and exp(&D,) [28] are defined as:

0 0

Da-b= [E—Ejma(t)b(t')

exp(6D,)a-b=a(n+8)b(n-5).

t'=t

The Grammian determinant solutions for the differential-difference Davey-Stewartson system (5)-(7) is given
by [7]:
F=|C+Q=|F|, (8)
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F ®(n+1)
¥'(-k+1)' 0

F ¥ (k+1)
@'(-n+1)" 0

1

Z,a,

4

o

: ©)

where F isa (M +N)x(M+N) matrix, C= cw) isa (M+N)x(M+N) matrix of constant elements
C, (4v=12--M+N), Q isa (M+N)x(M+N) matrix with block structure, and @, @', ‘¥, ¥’

are M +N column vectors

IRAOTACL: |

W (k) = (0,0, (K ). (—K))'
with ¢ (n.t), ¢j(nt). v, (1), wik(n). rjeflo M}, slefL N}, satisfying the following equa-
tions:
¢, (n _Og; (—n
)02, 1) g (e, (10)
al//S k -al//I, -k '
I 6’[( )=a2y/s(k—l), I%=—a2y/, (—k-1). (11)

We are now in a position to construct the differential-difference Davey-Stewartson system with self-consistent
sources by applying the source generation procedure. Firstly, we change Grammian determinant solutions (8)-
(11) of Equations (5)-(7) to the following form:

F=[c(t)+[=|F], (12)
A F ®(n+1) 1 F ¥(k+1) 13
o |¥'(—k +1)T 0 5,2, q)’(_n"‘l)T 0 |

where the (M +N)x(M +N) matrix C(t)=(c,, (t)) satisfies
()_{C#(t), p=v and 1< u<K<M+N,
v

= . 14
c otherwise, (14)

el

with ¢, (t) being an arbitrary function of t, K being a positive integer, and Q ,®, ®', ¥, V' are defined

as before.
Using Equations (10)-(11), we can calculate the t -derivatives ofthe F, G, H in (12)-(13) in following way:
f-S AL, g P e (15)
= .I' r + — s
=2 e01A ¥'(-k)" 0 | [@'(-n) 0
F () 1) W(k
|« A, @ (n+l) ] (n+2) ¥ (k)
iG, =24 ¢ (t) ; +iP'(—k+1) 0 0
=t Y (-k+1) 0 LT
¥'(—k) 0 0
(16)
F ®(n+1) @(n)
T F ®(n+1) F ®(n)
—i|W'(-k+1) 0 0 |-a, - - - ,
. ' (k) 0 ¥ (—k+1) 0
®'(-n) 0 0
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ap A @,(n+1) F ) Y(k+1) w(k)
iH, = iy ¢t ; +i|@'(-n+1) 0 0
,a, | =2 v, (—k +1) 0 ‘P’( k)T 0 0
17)
F ¥(k+1) @(n) . v

| : W | F o owke

—i|®'(-n+1) 0 0 |+a, . +a . ,
; ®'(-n+1) 0 ®'(-n) 0

®'(-n) 0 0
where A, denotes a matrix resulting from eliminating the kth row and | th column from the matrix F , and
®,(n), ¥;(-k) denote vectors resulting from eliminating the rth element from @(n), ¥'(-k) respec-
tively.

Other functions appearing in Equations (5)-(7) suchas G(n-1), F(n+1), G(k+1), F(k-1), F(n-1),
H(n+1), F(k+1), H(k-1), G(k+1), F(n+L1k+1) can also be expressed in terms of Grammian de-
terminants which are the same as the results given in [7].

Substituting Equations (15), (17) and G(n-1), F(n+1), G(k+1), F(k—-1) expressed by means of Gram-
mian determinants given in [7] into the left side of Equation (6), and then applying the Jacobi identities for the
determinants [28], we finally obtain

A O (n+1 d(n+1
3%, (1) . ( )IFI— r ( )|Ar| : (18)
=t W (—k +1) 0 P (—k+1) 0
Using the Jacobi identities for the determinants again, Equation (22) is equal to
7, & Ao
i—> ¢ o(n+1), 19
2 2% Oy gy @) (19)

where A ,, A,; denote matrices resulting from eliminating the rth row and jth column, respectively, from the
matrix F .
If we introduce two new fields P, Q, for r=12,---,K defined by

P = cr(t)\y,(i"lm Q =& ()]A, @(n+1), (20)

then we have shown that F, G given in (12)-(13)and P, Q,, r=12,---,K given in (20) satisfy the follow-
ing bilinear equation;

K
[iD, +ae ™ +ae™ |G- F=i LY RQ,. (21)
a]_ r=1

In the same way, substituting (15) (17) and H(n+1), F(n-1), H(k-1), G(k+1) expressed by means
of Grammian determinants given in [7] into the left side of the Equation (6), and then applying the Jacobi identi-
ties for the determinants, we finally obtain

ZKJCr( )[ F ¥ (k+1)

Zzaz r=1 ( n+l)T 0

A, @, (n+1)
|A’r | - , T

¥, (—k+1) 0
Using the Jacobi identities for the determinants again, Equation (22) is equal to

Ao
'(- n+1

|F|J. (22)

K

Zcr()

Zzaz r=1

ol Ar W (k+1)|. (23)

If we introduce another two new fields J,, L, for r=212,.-,K defined by

3, =Je. () Ao c=\e ()]A, P (k+1) (24)

o'(- n+1




Gegenhasi

then we have shown that F, H givenin (12)-(13)and J,, L., r=12,---,K given in (24) satisfy the follow-
ing bilinear equation:

1 iJrLr. (25)

[iD, + e ™ +ae™ |F-H =i
2,0, 1

There are more quadratic relations between the fields introduced. For example, the determinant identities

A, @, (n+1)
F o(n+1 F o(n+1
SO et e N U L A Eoes
®'(-n) 0 |[¥'(-k+1) : ¥'(—k+1) 0 |@-n
®'(-n) 0
and
F ®(n+1) o P(k+1) @(n+1)
P T ‘A()r \P(k+1)‘+|':| T
®'(-n) 0 @/ (-n) 0 0
@7)
F ‘I’(k+1)‘ o 1‘ 0
+ n+1) =0,
(1)’(—n)T 0 Por ( )
for r=212,---,K vyield the bilinear equations
7,(e¥*™ —e ¥ )F-P +ie ¥**G-J, =0, (28)
and
o, (6¥2% —e ¥ ) F -1, +ia, 2,6/ H -Q, =0. (29)
Similarly, bilinear equations
z0, (€427~ )F.Q —igye’**G L, =0, (30)
and
(€720 —e¥*™ )F .3, —iz,e ¥*>H R, =0, (31)
for r=212,---,K can be derived from the determinant identities
E ¥ (k A, d(n+1) Y(k
_ . ()‘Ao,r cD(n+1)‘+|F| S (n+1) ¥ (k)
W'(—k+1) 0 ' (—k +1) 0 0
(32)
F cD(n+1)‘ lpk‘ 0
wi(-k+1) 0 Ao () =0
and
F k Ao k) F K
b4 b4
- ] (k) Ao A+HF|@' (-n+2)" 0 |+ . ) A =0, (33
W' (—k+1) 0 [@'(-n+1) . ®'(-n+1) 0 ||¥'(-k+1)
' (-k+1) 0
The determinant identities (26)-(27) and (32)-(33) are special cases of the pfaffian identity [28],
(ai,az,---,aN_l,a,ﬁ,y)(ai,az,'--,aN_l,é')—(ai,az,---,aN_l,a,ﬁ,é)(ai,az,---,aN_l,j/) (34)

+(a1’a2"”’aN—l7a’7>5)(a1’a2""’aN—laﬁ)_(ai’a2’”"aN—lugay’é‘)(ai’aZ’"'7aN—1’a):O'
So bilinear Equations (7), (21), (25) and (28)-(31) for r=212,---,K construct the differential-difference Da-
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vey-Stewartson system with self-consistent sources, and functions F, G,Hand P, Q,, J,, L, for r=12,---,K
in Equations (3), (12), (20), (24) are the Gram-type determinant solutions of the differential-difference Davey-
Stewartson system with self-consistent sources. Under the dependent variable transformations

u=tF, v=23, w=", |5r=i, Qrzg, I:rzi, jrzi,
F F F F F F

the bilinear Equations (7), (21), (25) and (28)-(31) for r=212,---,K are transformed into the following nonli-
near equations;

z,— Zleu(n+1,k+1)+u—u(n+1)—u(k+1) + sz(k +1)W(n +l) =0, (35)
K ~ o~
in r 0!1V(n _1) eu(n—l)+u(n+1)—2u T CKZV(k +1) eu(k—1)+u(k+1)—2u — Iiz rQr , (36)
al r=1
K
th _ 0(1W(n +1) eu(n—l)+u(n+1)—2u _ aZW(k —l) eu(k—1)+u(k+1)—2u —i 1 Z jr I:r ' (37)
Zzaz r=1
ivJ, (n+1)+2,(P B (n+1))=0, (38)
o (L, — L (n+1))+ie,2,Qw(n+1) =0, (39)
2,0, (Q, -Q, (k—1))—ieVL, (k-1)=0, (40)
iz,Pw(k-1)+J (k-1)-J, =0. (41)

3. Casorati-Type Determinant Solutions of the Differential-Difference
Davey-Stewartson System with Self-Consistent Sources

It is shown in [7] that the differential-difference Davey-Stewartson system exhibits N-soliton solutions ex-
pressed by means of two types of determinants, double-Casorati and Grammian determinants. It is natural to
consider if the differential-difference Davey-Stewartson system with self-consistent sources have two types of
determinant solutions. In this section, we shall derive another class of determinant solutions, Casorati-type de-
terminant solutions to the differential-difference Davey-Stewartson system with self-consistent sources (7), (21),
(25) and (28)-(31) for r=12,---,K..

Let us introduce the following double-Casorati determinant:

g(n) o g(nem-1)p, (k) -y (k+2N-m-1)
() o (oD () oy (ke2N-m-1)| @)
b (1) o (Nm=T)yr (K) - yry (k2N —m—1)
where for r=12,---,2N ,
¢ (0.1) = ¢, () +i(-1)" C, (1) (1), (43)
v, (k) =y, (kt)+i(-1)' C, (), (k.t), (44)
inwhich C, (t) satisfies
Cr(t):{(c::,(t)’ itgh:e’rivite,gzw 49)

with ¢, (t) being an arbitrary function of t, c, isan arbitrary constantand K being a positive integer, and
$.(nt), 4,(nt), v, (kt), v, (nt) satisfy the following equations:

.0 .0
Ia¢rl(n):_al¢rl(n_l)! Ia¢r2(n):_a1¢r2(n_1)7 (46)
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igl/lrl(k) = az'//rl(k -1), i%‘//rz (k) =ap, (k-1). (47)

From now on the determinant (42) will, for simplicity, be denoted as
‘O,L-.-,m—],-ogl',.--,(zN—m—1)". (48)

Taking into account Equations (42)-(48), we can state the following Proposition:
Proposition 1 The solutions to Equations (7) (21) (25) and (28)-(31) for r=12,---,K can be expressed as
the following double-Casorati type determinants:

F=‘o,1,---,m—LO',l’,--~,(2N—m—1)", (49)
G=2[01--,m0,, (2N —m—2)", (50)
H :Zio,L.--,m—z;ogl',---,(zN—m)", (51)
2
P =iye, (t)(dose sty golgres iy g 522N P 1), (52)
Qr =0 Cr(t)(dof"9dm’dgﬂ'”7d;N—m—132N"”’Lar)7 (53)
3, =6, (1) (dos+, 8y 5o es By 1, 2N, P 1), (54)
L, =iy [¢, (1) (oo .Gy 1205 By n 2N Ly, ), (55)
where the pfaffian elements are defined by
(d.)=¢ (n+1), (d.j)=w;(k+s), (56)
(i.i)=0, (d.d:)=0, (dy.d,)=0, (df,d)=0, (57)
(d.a, )=, (n+1), (d.a)=4,(k+s), (58)

in which I,s are integers, i,j=12,---,2N, r=12---,K, and " in the pfaffians indicates deletion of the
letter under it.
Proof: The double Casorati determinants in (11)-(13) can be expressed by pfaffians [28] in the following way:

F :(doﬂl"5dm—19d57"'7d;N—m—172N"”)1) , (59)
G= Zl<d07”'7dm7dg9"'9d;N—m—232N9”'31) , (60)
H :i(dg,'--,dm,z,dg,-",dEN,m,ZN,-”,l), (61)

z

2

where the pfaffian elements are given in (56)-(58).
We first show that functions (49)-(55) satisfy Equations (21) and (25). Using Equations (43)-(47), we can
calculate the following differential and difference formula for F, G, H :

iFt:_al(d—l’dl"'"dm—l7dg"”’d;N—m—1’2N"'"1)+a2(dO"”’dm—lﬂdjlﬂ 1575 UonCmas

d:,--,d; 2N,---.1)

; ) (62)
+zcr (t)(dO’“"dm—17d;""’d;N—m—1’2N»"'7r:"':]sar),
r=1
F. = (dlﬂu'ﬁdmﬂdg"”’d;N—m—DZN"”91)’ (63)
Fk—l :(dO’“"dm—l’djl?dgﬁ'“>d;N—m—2’2N"“?1)' (64)

484
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iGt:zl[—al(d_l,dl,---,dm,dg,---,d;N_m_z,ZN,---,1)+a2(do,--- Ay, 075, by 502N, 1)

P (65)
¢, (t)(do""’dmsd;v"'vd;NstZNa"'afa"":Lar):|v
r=1
Gy1=2(d 1, g,y 1.y, A3y 5, 2N, 1), (66)
Gk+1=Zl(d07 o,y Aoy 1,2N,“',1), (67)
iH, =Zi{—a1(d ey ou gy 0 2N )+ (dgoesdyy 5,07, dy e, dgy 02N 1)
i (68)
+Zcr (t)(dm""dmZ’dgﬂu'ﬂd;NmﬂZN""’Fﬂ"'DLar):|9
r=1
:(d—l’dO"”’dm—Z’dg?“"d;N—m—l’zN"“?1)’ (69)
Fur :(dOS'“’dm—l’d:""5d;N—m’2N9”"1)7 (70)
1
H,.,=—(d,-,d ,,d;,-,do_n>2N,--,1}, 71
n+l Zz( 1 1>~0 2N ) ( )
1 * * *
kal=Z—(do,---,dmfz,dfl,do,---,dZmefl,ZN,---,l). (72)
2

Substitution of Equations (52)-(55) and (62)-(72) into Equations (21) and (25) yields the following determi-
nant identities, respectively:

(do’ d L dd A Z’ZN,...,f,...,Lar)(do,...,dm_l,dg,...,d;N_m_l,ZN,...,l)
_(dO»"'9dmadgﬂ‘"ad;mefzaan”'ﬂl)(dO»"'9dmflad;f”3d;N7m7132N5'”aF»"'9Lar) (73)
—(do,---,dmfl,dé,---,dZmefz,ZN,--',ﬂ'-- )(d ooenddy e dl 1,2N="',Lar)=0,

and
(d09”'9dm—]_’dgﬂ'”’d;N—m—lﬂZN""’fﬂu'ﬂlar)(d07’”5dm—29dg"”9d;N—m’2N9”'91)
_(do"”’dm—l’d;’“'7d;N—m—1’2N>“"1)(d0"'"dm—z’dgv'“7d;N—m72N"“’f"“’]ﬂar) (74)
_(dof‘.admfzadg"”’d;mefl’ZNv"'9Fﬂu'31>(d0""9dm—l’dgﬁu'3d;N—m32Nﬂ'”’Lar):

It is easy to show that (49)-(51) satisfy Equation (7). Now we prove that functions (49)-(55) satisfy Equations
(28)-(31). From Equations (52)-(58), we can derive the difference formula for pfaffians P, Q,, J
r=21---,K as follows:

P (n+1) =iyfe, (t)(dye o by dgre A3y 52N, e ), (75)

3, (n+2) = J¢, (1) (Ao y by b3y 1 2N T 1), (76)
L, (n+1) = —iet\[e, (1) (dyor oo,y b5.oo, Aoy 2N, o, 1 B, ). (77)
Q, (k=1)= /¢, (1) (dg++,dpod" dg, o, bay 502N, L ), (78)
L, (k=1) = —iety[e, (£) (Ao oty o0 0o s biy 1 2N, 13, (79)
3, (K=1) =6, (1) (dgurr. o055 0, U3 gy 0 2Nee, o). (80)
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Substituting Equations (59)-(60), (63)-(64), (71)-(72) and (75)-(80) into Equations (28)-(31), we obtain the

following determinant identities, respectively:

4.

In

(dO, d L dg Ay 2’2N9"'9f’“"]ﬁar)(doﬁ'”’dm—l’dg’“"d;N—m—UZN"“’l)
_(dm d e, ",dszmfz,ZN»“'»1)(do,"'admfpdga'"ad;me&»ZN"“»fa"'alar) (81)
_(d09"'9dm—l’dg"”’d;N—m—Z’ZN"”’f"” )(d RPN TN NP M 1,2N,~~~,Lar)=
(d05“"dm’d;7“'7d;N—m—272N7'“7F7'“’:Lar)(dO"“>dm—l’d;7“'7d;N—m—172N"“’1>

_(d(J?"'9dm9d;!'"3d;N—m—2’2N!”'!1)(d09"'9dm—l’d(,)k"“’d;N—m—l’2N"”>f9"'9]'Jar) (82)
_(doa""dmflad(;)ka”'nd;mefzazNa"'aF:"' )(d dLdg,e,dsy m1,2N,"'L0!)

(dO’”"dm!dg’”'5d;N—m—2’2N9"'9F!”'!]’ar)(dO’”'ﬁdm—lidS"">d;N—m—l?2N!”"1)
_(doa"'7dm’dga"'5d;N7m7272N5"'91)(d07"'7dm—lﬂdgﬂ'“5d;N—m—152N""9F?‘"7Lar) (83)
_(d(J?"'9dm—l$dg""3d;N—m—2’2N"”’f’”' )(d RPN TN ORTRY's M 1,2N,'~-,L06r)=

(do,"' d dS,"',dSN,m,z,ZN,"',f,'“,LO!r)(do,"' d d;,n-,d;‘mefl,ZN,---,l)

»Om> »0mss
~( g+, g dg 502Ny, 1) (Ao, Oy, ey By 2N, P L, ) (84)
—(do,---,dmfl,déwudZmefz,ZNw,ﬂ-" )(d oorendody e dl 1’2|\|,...,]301r):

U

Conclusions

this paper, we apply the source generation procedure to the differential-difference Davey-Stewartson system

(1)-(3) to generate a differential-difference Davey-Stewartson system with self-consistent sources (35)-(41), and
clarify the algebraic structures of the resulting coupled discrete system by expressing the solutions in terms of

twi

0 types of determinants, Casorati-type determinant and Gram-type determinant.
In [29], a Davey-Stewartson equation with self-consistent sources is constructed. It would be of interest to

find the proper reduction and certain continuous limits which give the Davey-Stewartson equation with self-
consistent sources investigated in [29] from the differential-difference Davey-Stewartson system with self-con-
sistent sources (35)-(41).
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