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Abstract 
For a bounded linear operator A on a Hilbert space  , let ( )M A  be the smallest possible cons- 

tant in the inequality ( ) ( ) ( )p pD A M A R A≤ . Here, p is a point on the smooth portion of the 

boundary ( )W A∂  of the numerical range of A. ( )pR A  is the radius of curvature of ( )W A∂  at 

this point and ( )pD A  is the distance from p to the spectrum of A. In this paper, we compute the 

( )M A  for composition operators on Hardy space H 2 . 
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1. Introduction 
For a bounded linear operator A on a Hilbert space  , the numerical range ( )W A  is the image of the unit 
sphere of   under the quadratic form ,x Ax x→  associated with the operator. More precisely, 

( ) { }, : , 1 .W A Ax x x x= ∈ =  

Thus the numerical range of an operator, like the spectrum, is a subset of the complex plane whose geome-
trical properties should say something about the operator. 

One of the most fundamental properties of the numerical range is its convexity, stated by the famous Toep-
litz-Hausdorff Theorem. Other important property of )(AW  is that its closure contains the spectrum of the op-
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erator, )(AW  is a connected set with a piecewise analytic boundary ( )W A∂  [1]. 
Hence, for all but finitely many points ( )p W A∈∂ , the radius of curvature ( )pR A  of ( )W A∂  at p is well 

defined. By convention, ( ) 0pR A =  if p is a corner point of ( )W A , and ( )pR A = ∞  if p lies inside a flat 
portion of ( )W A∂ . 

Let ( )pD A  denote the distance from p to ( )Aσ , we define ( )M A  the smallest constant such that 

( ) ( ) ( )p pD A M A R A≤                                 (1) 

for all ( )p W A∈∂  with finite non-zero curvature. 
By Donoghue’s theorem ( ) 0pD A =  whenever ( ) 0pR A = . Therefore, ( ) 0M A =  for all convexoid ele-

ment A. Recall that convexoid element is an element such that its numerical range coincides with the convex 
hull of its spectrum. For non-convexoid A, 

( ) ( )
( )

sup p

p

D A
M A

R A
=                                   (2) 

where the supremum in the right-hand side is taken along all points ( )p W A∈∂  with finite non-zero curvature. 
The computation of ( )M A  for arbitrary n n×  matrix A is an interesting open problem. For 3n > , we do 

not have an exact value of ( ){ }sup : n n
nM M A A ×= ∈ . The question whether there exists a universal constant 

sup nnM M= , posed by Mathias [2]. Caston, et al. [3] prove the following inequalities: 

πsin .
2 2n
n nM

n
  ≤ ≤ 
 

                                 (3) 

Mirman a sequence of n n×  Toeplitz nilpotent matrices nA  with ( )nM A  algrowing asymptotically as 
log n  is also found [3]. Hence, the answer to Mathias question is negative. However, the lower bound in (3) is 
still of some interest, at least for small values of n. The question of the exact rate of growth of nM  (it is log n , 
or n, or something in between) remains open. 

2. Composition Operator on Hardy Space 
Let   denote the open unit disc in the complex plane, and the Hardy space H2 the functions ( ) ( )0

ˆ n
nf z f n z∞

=
= ∑   

holomorphic in   such that ( )
2

0
ˆ

n f n∞

=
< ∞∑ , with ( )f̂ n  denoting the n-th Taylor coefficient of f. The  

inner product inducing the norm of 2H  is given by ( ) ( )0
ˆ ˆ, : nf g f n g n∞

=
= ∑ . The inner product of two func-

tions f and g in 2H  may also be computed by integration: 

( ) ( )1 d,
2π

zf g f z g z
i z∂

= ∫ 
 

where ∂  is positively oriented and f and g are defined a.e. on ∂  via radial limits. 
For each holomorphic self map ϕ  of   induces on 2H  a composition operator Cϕ  defined by the equ-

ation ( )2C f f f Hϕ ϕ= ∈ . A consequence of a famous theorem of J. E. Littlewood [4] asserts that Cϕ  is a 
bounded operator. (see also [5] [6]). 

In fact (see [6]) 

( )
( )
( )2

1 01 .
1 01 0

Cϕ

ϕ

ϕϕ

+
≤ ≤

−−
 

In the case ( )0 0ϕ ≠ , Joel H. Shapiro has been shown that the second inequality changes to equality if and 
only if ϕ  is an inner function. 

A conformal automorphism is a univalent holomorphic mapping of   onto itself. Each such map is linear 
fractional, and can be represented as a product pw α⋅ , where 

( ) ( ): , ,
1p
p zz z

pz
α −

= ∈
−

  
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for some fixed p∈  and w∈∂  (See [7]). 
The map pα  interchanges the point p and the origin and it is a self-inverse automorphism of  . 
Each conformal automorphism is a bijection map from the sphere { }∞  to itself with two fixed points 

(counting multiplicity). An automorphism is called: 
 elliptic if it has one fixed point in the disc and one outside the closed disc; 
 hyperbolic if it has two distinct fixed point on the boundary ∂ , and 
 parabolic if there is one fixed point of multiplicity 2 on the boundary ∂ . 

For r∈ , an r-dilation is a map of the form ( )r z rzδ = . We call r the dilation parameter of rδ  and in the 
case that 0r > , rδ  is called positive dilation. A conformal r-dilation is a map that is conformally conjugate to 
an r -dilation, i.e., a map 1

rϕ α δ α−=   , where r∈  and α  is a conformal automorphism of  . 
For w∈∂ , an w-rotation is a map of the form ( )w z wzρ = . We call w the rotation parameter of wρ . A 

straightforward calculation shows that every elliptic automorphism ϕ  of   must have the form 

,p w pϕ α ρ α=    

for some p∈  and some w∈∂ . 

3. Main Results 
In [8], the shapes of the numerical range for composition operators induced on 2H  by some conformal auto-
morphisms of the unit disc specially parabolic and hyperbolic are investigated. 

In [9], V. Matache determined the shapes ( )W Cϕ  in the case when the symbol of the composition operator 
the inducing functions are monomials or inner functions fixing 0. The numerical ranges of some compact com-
position operators are also presented. 

Also, in [10] the spectrum of composition operators are investigated. 
This facts will help in discussing and proving many of the results below. 
Remark 3.1 If rϕ = , 1r < , then ( ) { }0,1Cϕσ =  and ( )W Cϕ  is a closed ellipticall disc whose boun-  

dary is the ellipse of foci 0 and 1, having major/minor axis of length 
2

12
1

a
r

=
−

 and 
2

| |2
1

rb
r

=
−

. There- 

fore ( ) bM C r
aϕ = = . 

Remark 3.2 If , 1wz wϕ = = , 1w ≠ , then ( )Cϕσ =  the closure of { }, 0,1, 2,kw k =  . If w is the n-th root  

of unity then ( )W Cϕ  is the convex hull of all the n-th roots of unity and so ( ) 0M Cϕ = . If w is not a root of  

unity the ( )W Cϕ  is the union of   and the set { }: 0nw n ≥ . In this case also ( ) 0M Cϕ = . 
Remark 3.3 If ϕ  is hyperbolic with fixed point a, 1a < , then 

( ) ( ) ( )
1 1
2 2:C a aϕσ λ ϕ λ ϕ

− ′ ′= ≤ ≤ 
 

 

and ( )W Cϕ  is a disc center at the origin. Therefore ( )
( ) ( )

11M C
w C a

ϕ
ϕ ϕ

= −
′

 where ( )w Cϕ  is the nu-

merical radius of Cϕ . 
Remark 3.4 If ϕ  is parabolic, then ( )Cϕσ = ∂  and ( )W Cϕ  is a disc center at the origin. Therefore  

( ) ( )
11M C

w Cϕ
ϕ

= − . 

Remark 3.5 If ϕ  is elliptic with rotation parameter w, and w is not a root of unity, then ( )Cϕσ = ∂  and  

( )W Cϕ  is a disc center at the origin. Therefore ( ) ( )
11M C

w Cϕ
ϕ

= − . 

Therefore we have the following table for ( )M Cϕ . 
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ϕ  ( )M Cϕ  

( )z wzϕ = , 1w ≤  0 

( )z rϕ = , 1r <  r  

ϕ  is a hyperbolic automorphism ( ) ( )
11

w C aϕ ϕ
−

′
 

ϕ  is a parabolic automorphism ( )
11

w Cϕ

−  

ϕ  is an elliptic automorphism with rotation parameter is not a root of unity ( )
11

w Cϕ

−  

ϕ  is an elliptic automorphism with rotation parameter is a root of unity ? 

Completing the Table 
An elliptic automorphism ϕ  of   that does not fix the origin must have the form p w pϕ α ρ α=   , where 

( ) ( ) ,w z wz zρ = ∈  

for some fixed { }0p∈ −  and .w∈∂  If we wish to show this dependence of ϕ  on p and w, we will 
denote the elliptic automorphism p w pα ρ α   by ,p wϕ . 

If ϕ  is periodic then, surprisingly, the situation seems even murkier: For period 2 has been shown the 
closure of ( )W Cϕ  is an elliptical disc with foci at 1±  (Corollary 4.4. of [8]). It is easy to see that ( )W Cϕ  is 
open, also in [11], the author completely determined ( )W Cϕ  for period 2. 

Theorem 3.6 If ϕ  is an elliptic automorphism with order 2 and P it’s only fixed point in open unit disc, then 
there is 0 1r≤ ≤  such that 

( )

2

2

1
if 0 ;

2
2

if 1.
1

p
p r

M C
p

r p
p

ϕ

 +
 ≤ ≤
= 
 < ≤
 +

 

Proof. Let the operator A be self-inverse, i.e., 2A I=  but A I≠ ± , so ( )W A∂  is an ellipse with foci at ±1 
[12]. If ( ) ( ) ( )cos sinW A a ibθ θ∂ = +  with 2 2 1a b= + . Then 

( ) ( )
( )

( )
( )

( )( ) ( )

( ) ( )( )
( )( )

( )( )

2 2 2

3
π π0 2π 2 2 2 20 0 2
2 2

2

3
π 2 20 2
2

cos 1 sin
sup sup sup

sin cos

cos 1max ,sup
1

sin

ab a bD D
M A

R R
a b

ab a a a
a a

b

θ θ θ

θ

θ θθ θ
θ θ

θ θ

θ

θ

≤ ≤ ≤ ≤ ≤ ≤

≤ ≤

− +
= = =

+

 − − = =  
+  +

 

If ϕ  is an elliptic automorphism with order 2 and p it’s only fixed point in open unit disc, then qϕ α=   

where 2

2
1

pq
p

=
+

. Since ( )q zCα  is a nontrivial self-inverse operator on Hardy space 2H  and qα  is an inner  

function, then 
2

22

11 1 1
2 11

p
a C

C pq
ϕ

ϕ

  +
 = + = =
  −− 
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and so there is 0 1r≤ ≤  such that: 

( )

2

2

1
if 0 ;

2
2

if 1.
1

p
p r

M C
p

r p
p

ϕ

 +
 ≤ ≤
= 
 < ≤
 +

 

But for period 2k >  then all we can say is that the numerical range of Cϕ  has k-fold symmetry and we 
strongly suspect that in this case the closure is not a disc. Because the numerical range in this case is an open 
problem, so the completing of Cϕ  is also open problem. 
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