Advances in Pure Mathematics, 2015, 5, 333-337 ’o’o Scientific
4

Published Online May 2015 in SciRes. http://www.scirp.org/journal/apm ”:Q’ 532%2?5'39

http://dx.doi.org/10.4236/apm.2015.56032 ¢

On Eigenvalues and Boundary Curvature of
the Numerical Rang of Composition
Operators on Hardy Space

Mohammad Taghi Heydari

Department of Mathematics, College of Sciences, Yasouj University, Yasouj, Iran
Email: heydari@yu.ac.ir

Received 9 November 2014; accepted 30 April 2015; published 6 May 2015

Copyright © 2015 by author and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

Abstract

For a bounded linear operator A4 on a Hilbert space H,let M (A) be the smallest possible cons-
tant in the inequality D (A)< M (A)R, (A). Here, p is a point on the smooth portion of the
boundary 6W (A) of the numerical range of A. R (A) is the radius of curvature of oW (A) at
this point and D, (A) is the distance from p to the spectrum of A. In this paper, we compute the

M (A) for composition operators on Hardy space H?’.

Keywords

Composition Operator, Numerical Range, Eigenvalues, Curvature

1. Introduction

For a bounded linear operator A on a Hilbert space 7, the numerical range W (A) is the image of the unit
sphere of H under the quadratic form x — (Ax, x) associated with the operator. More precisely,

W (A)= {(Ax,x) xeH,|X| :1}.

Thus the numerical range of an operator, like the spectrum, is a subset of the complex plane whose geome-
trical properties should say something about the operator.

One of the most fundamental properties of the numerical range is its convexity, stated by the famous Toep-
litz-Hausdorff Theorem. Other important property of W (A) is that its closure contains the spectrum of the op-
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erator, W (A) isa connected set with a piecewise analytic boundary oW (A) [1].

Hence, for all but finitely many points p € oW (A), the radius of curvature R, (A) of oW (A) atp is well
defined. By convention, R, (A)=0 if p is a corner point of W(A), and R (A)=co if p lies inside a flat
portion of oW (A).

Let D,(A) denote the distance frompto o (A), we define M (A) the smallest constant such that

D, (A)<M(A)R, (A) )

forall pe oW (A) with finite non-zero curvature.

By Donoghue’s theorem D, (A)=0 whenever R (A)=0. Therefore, M (A)=0 for all convexoid ele-
ment A. Recall that convexoid element is an element such that its numerical range coincides with the convex
hull of its spectrum. For non-convexoid A,

D, (A)
Ry (A)

M (A)=sup )

where the supremum in the right-hand side is taken along all points p € oW (A) with finite non-zero curvature.

The computation of M (A) for arbitrary nxn matrix A is an interesting open problem. For n>3, we do
not have an exact value of M, =sup{M (A): Ae C™"{. The question whether there exists a universal constant
M =sup M, , posed by Mathias [2]. Caston, et al. [3] prove the following inequalities:

ﬂsin[f]smn <N 3)
2 n 2

Mirman a sequence of nxn Toeplitz nilpotent matrices A, with M (A1) algrowing asymptotically as
logn is also found [3]. Hence, the answer to Mathias question is negative. However, the lower bound in (3) is
still of some interest, at least for small values of n. The question of the exact rate of growth of M, (itis logn,
or n, or something in between) remains open.

2. Composition Operator on Hardy Space
Let U denote the open unit disc in the complex plane, and the Hardy space H’ the functions f (z)= Z:zof (n)z"
holomorphic in U such that Z:;O f(n)‘2 <oo, with f(n) denoting the n-th Taylor coefficient of f. The

inner product inducing the norm of H? is given by (f,g):= Z:ZOfA(n)Q(n). The inner product of two func-
tionsfand gin H? may also be computed by integration:

(1,9)= 5[, (9905

where JU is positively oriented and f and g are defined a.e. on oU via radial limits.

For each holomorphic self map ¢ of U induces on H? a composition operator C, defined by the equ-
ation C(ﬂf =fop(feH?). A consequence of a famous theorem of J. E. Littlewood [4] asserts that C,, is a
bounded operator. (see also [5] [6]).

In fact (see [6])

1 g g l+|(p(0)|
ooy 1= otoy

In the case ¢(0)= 0, Joel H. Shapiro has been shown that the second inequality changes to equality if and
only if ¢ isan inner function.

A conformal automorphism is a univalent holomorphic mapping of U onto itself. Each such map is linear
fractional, and can be represented as a product w-«, , where
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for some fixed peU and wedU (See[7]).

Themap «, interchanges the point p and the origin and it is a self-inverse automorphism of T.

Each conformal automorphism is a bijection map from the sphere (CU{oo} to itself with two fixed points
(counting multiplicity). An automorphism is called:

» elliptic if it has one fixed point in the disc and one outside the closed disc;
* hyperbolic if it has two distinct fixed point on the boundary 6U , and
» parabolic if there is one fixed point of multiplicity 2 on the boundary oU .

For reU, an r-dilation is a map of the form &, (z) =rz. We call r the dilation parameter of &, and in the
casethat r>0, ¢, is called positive dilation. A conformal r-dilation is a map that is conformally conjugate to
an r-dilation, i.e,amap p=a o5 oa,where reU and « isaconformal automorphismof U.

For wedU, an w-rotation is a map of the form p, (z)=wz . We call w the rotation parameter of p,. A
straightforward calculation shows that every elliptic automorphism ¢ of U must have the form

q):apopwoap'
forsome peU andsome wedU.

3. Main Results

In [8], the shapes of the numerical range for composition operators induced on H? by some conformal auto-
morphisms of the unit disc specially parabolic and hyperbolic are investigated.

In [9], V. Matache determined the shapes W (C(p) in the case when the symbol of the composition operator
the inducing functions are monomials or inner functions fixing 0. The numerical ranges of some compact com-
position operators are also presented.

Also, in [10] the spectrum of composition operators are investigated.

This facts will help in discussing and proving many of the results below.

Remark 3.1 If ¢=r, |r|<1, then 0'(ng={0,1} and W(Cw) is a closed ellipticall disc whose boun-

and 2b= 1] . There-

dary is the ellipse of foci 0 and 1, having major/minor axis of length 2a = - -
1-|r] 1-|r]

b
fore M(C¢)_g_|r|.
Remark 3.2 If p=wz,|w|=1, w#1, then U(C¢)= the closure of {wk,k=0,1,2,---}.lfwis the n-th root

of unity then W (Cw) is the convex hull of all the n-th roots of unity and so M (C¢)= 0. If wis not a root of

unity the W (C(/,) is the union of U and the set {w":n>0{. In this case also M (C¢) =0.
Remark 3.3 If ¢ is hyperbolic with fixed pointa, |a|<1, then

o(C,)= {/1 ' (a) < 2] < (o'(a)zl}

and W (C ) is a disc center at the origin. Therefore M (C(ﬁ):l—— where W(C(/,) is the nu-

w(C,)y¥'(2)
merical radius of C,-

Remark 3.4 If ¢ is parabolic, then G(C¢)=6U and W (Cw) is a disc center at the origin. Therefore

4

1
M(C,)=1-———.
w(c,)
Remark 3.5 If ¢ is elliptic with rotation parameter w, and w is not a root of unity, then 0(C¢) =0U and
. . . 1
W (Cw) is a disc center at the origin. Therefore M (C(p) =1-—.
w(c,)

Therefore we have the following table for M (C(p ) .

)
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0 mM(c,)
p(z)=wz, |w|<1 0
p(z)=r, |r|<1 "
is a hyperbolic automorphism 1 L
o isahy icau i - -
W(Cw) ¢'(a)
is a parabolic automorphism 1—#
o p p W(Cw)
o is an elliptic automorphism with rotation parameter is not a root of unity 1- W(C )
v
o is an elliptic automorphism with rotation parameter is a root of unity ?
Completing the Table

An elliptic automorphism ¢ of U that does not fix the origin must have the form ¢ =a, o p, o, where
Py (2)=wz(zeU),

for some fixed pe U—{O} and wedU. If we wish to show this dependence of ¢ on p and w, we will
denote the elliptic automorphism «,0p, 0, by ¢, .

If ¢ is periodic then, surprisingly, the situation seems even murkier: For period 2 has been shown the
closure of W (C(/,) is an elliptical disc with foci at +1 (Corollary 4.4. of [8]). It is easy to see that W (C(p) is
open, also in [11], the author completely determined W (Cw) for period 2.

Theorem 3.6 If ¢ is an elliptic automorphism with order 2 and P it’s only fixed point in open unit disc, then
thereis 0<r <1 such that

2
1+|2p| if o<|p|<r;
M(c¢)= 2|p|
- ifr<|p/<L
1+|p|
Proof. Let the operator A be self-inverse, i.e., A’=1 but A==+l,so0 aW(A) is an ellipse with foci at +1
[12]. If oW (A)=acos(#)+ibsin(¢) with a’=b?+1.Then
2
D(o D(o ab,/(acos(0)-1) +b*sin?(0
w(8)= s 20— 3y OO)_ lacos(6)-1)"+bsin 0
0<f<2n ( ) ogegg ( ) ogagg (a2 sin2(6)+b2 cos? (9))5

ab(a—cos(6 2 _
= sup —( ( )3) =max{—aa 1,—{;1}
0<0<3 (sin® (6) + b’ )2
If ¢ is an elliptic automorphism with order 2 and p it’s only fixed point in open unit disc, then ¢ =a,
2p
1+|p|
function, then

where q=

5« Since Caq(z) is a nontrivial self-inverse operator on Hardy space H? and @, isaninner

1 1 1 1+|pf
a=—||C,Il+ = =
(] RN
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and so there is 0<r <1 such that:

2
1+|2p| if 0<|p|<r;
M(C )=
((ﬂ) 2| if r<|p|<1
- <1.
1+|p|

But for period k >2 then all we can say is that the numerical range of C, has k-fold symmetry and we
strongly suspect that in this case the closure is not a disc. Because the numerical range in this case is an open
problem, so the completing of C, is also open problem.
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