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Abstract 
The brain constitutes a formidably complicated structural network. There are three main types of 
connectivity used to describe neuronal networks, which reflect three parallel levels of investiga-
tion: anatomical connectivity, functional connectivity and effective connectivity. Effective connec-
tivity indicates the direct influence that a node exerts on another, and in the context of neuronal 
circuits, a causal relationship between the activities of two nodes. Since its definition, effective con-
nectivity analysis has been used to describe causal relationship across multiple spatial scales in 
PET imaging, fMRI, electroencephalography (EEG) and magnetoencephalography (MEG), single- 
unit, and local field potential. There are diverse literatures which probe the anesthetized state using 
effective connectivity analysis over the past two decades. The examination of effective connectivi-
ty in the anesthetized state is of relevance to both anesthesiologists and neuroscientists, as it has 
the potential to elucidate still unclear mechanisms of anesthesia while offering insight into intrin-
sic functional activity in the brain. The present review attempts to examine, elucidate, and inte-
grate the insight that effective connectivity analysis of the anesthetized state has generated thus 
far. 
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1. Introduction 
Since the nineteenth century, we have known that the neuronal elements of the brain constitute a formidably 
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complicated structural network [1] [2]. Such networks are thought to provide the physiological basis for infor-
mation processing and mental representations [3]-[6]. 

A network is defined by nodes, which are the elements of the network, and links (edges) connecting the nodes 
and defining structure. The nodes can be the neurons, neuronal ensembles and brain regions. There are three 
main types of connectivity used to describe neuronal networks, which reflect three parallel levels of investiga-
tion: anatomical connectivity, functional connectivity and effective connectivity. Anatomical connectivity indi-
cates physical connections (i.e. chemical and electrical synapses, etc.) among nodes. Functional connectivity in-
dicates a statistical dependence between the activities of two nodes without any assumption of the mechanism 
by which these relationships are mediated. Effective connectivity indicates the direct influence that a node exerts 
on another, and in the context of neuronal circuits, a causal relationship between the activities of two nodes [7]. 
Although effective connectivity can be also considered as one kind of functional connectivity, a distinction is 
usually made between functional connectivity and effective connectivity. Only the effective connectivity takes 
explicitly into consideration the existence of a causal link between two or more brain regions [8]. 

2. How Is Effective Connectivity Determined? 
Effective connectivity research has branched into two formally distinct approaches: Dynamic Causal Modeling 
(DCM) [9], and Granger Causality (GC) [10]. 

The basic idea of DCM is that neural activity propagates through brain networks as in an input-state-output 
system, where causal interactions are mediated by unobservable neuronal dynamics. This multi-input multi- 
output neuronal model is augmented with a forward, or observation model that describes the mapping from 
neural activity to observed responses. Together neuronal and observation model comprise a full generative mod-
el that takes a particular form depending on the data modality.DCM was mainly used for analyzing fMRI.  

From its introduction within econometrics, GC has been applied in neuroscience partly because it is simple to 
estimate, given (stationary stochastic) time series. GC also has some useful properties including a decomposition 
of causal influence by frequency and formulation in an ‘ensemble’ form, allowing evaluation of GC among mul-
tivariate sets of responses [11]. GC has provided useful descriptions of effective connectivity in EEG [12], MEG 
[13] and local field potentials [14]. But the application GC to fMRI is more controversial because of the slow 
dynamics and regional variability of the haemodynamic response to underlying neuronal activity [15] [16]. 

Other measures related to spectral GC have been proposed, such as the Directed Transfer Function (DTF) [17], 
the Partial Directed Coherence (PDC), which might be numerically and computationally advantageous when 
compared to any of the above measures [18]. Both DTF and PDC lend themselves to a multivariate approach 
and produce valid spectral causality estimates [19] [20]. 

The Phase Slope Index (PSI) is based on the idea that interactions between variables are not instantaneous and 
need time to propagate [21]. For example, two variables X and Y, and provided that the propagation speed is 
constant, the phase difference between X and Y increases with frequency and the phase spectrum is expected to 
have a positive slope if X drives Y and a negative slope if Y drives X. Another useful feature of PSI is insensi-
tivity to mixtures of non-interacting sources which leads to a lower number of false positives when compared to 
GC. 

Transfer Entropy (TE), based on the information theoretic context, was proposed [22] as a model-free, non- 
parametric measure of information transfer between two variables and has been applied to fMRI and EEG data 
[22]-[24]. The transfer entropy (TE) from the source to destination can be interpreted as the average mutual in-
formation between the previous state of the source and a future state of the destination, conditioned on past 
states of the destination. 

3. Why Study Effective Connectivity in Anesthesia? 
Despite advances in the understanding of anesthetic-receptor interactions for a variety of anesthetics, the specif-
ics of why general anesthesia causes unconsciousness remain unclear [25]. Findings had indicated that different 
anesthetics produce the various components of anesthesia to varying degrees and with different dose responses 
[26]. Effective connectivity has provided one manner to assess the effects of various types and doses of anes-
thetics, for it provides not only the last effective networks to disappear prior to the onset of anesthetic-induced 
unconsciousness but also the first effective networks to reappear upon the recovery of consciousness [27]. More 
generally, effective studies provide a means of investigating the information flowing from one brain region to 
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another at varying levels of anesthesia and, accordingly, the modulation of those networks by the various com-
ponents of anesthesia. 

4. Studying Mechanisms of Anesthesia through Effective Connectivity 
Functional neuroimaging work on mechanisms of anesthesia has focused on understanding the specifics of the 
brain state corresponding to anesthesia-induced loss of consciousness (LOC). There are a number of hypotheses 
to consider. First and most simply, it may be possible to find regions of the brain in which activity is suppressed 
during AIU that wholly or partially account for LOC. A second possibility is that there may be impaired com-
munication between specific brain regions that accounts for the LOC. Effective connectivity mapping is a highly 
appropriate means to search for this second type of finding. 

1) Thalamus, thalamocortical connectivity, and consciousness 
The thalamus plays a uniquely privileged role in the brain because all sensory information (except olfaction) 

passes through it. This unique location has made the thalamus a prime candidate to be the site of integration of 
percepts into a unified experience that we refer to as consciousness [28]. Many investigations have corroborated 
the concept that thalamic activity is significantly modulated in anesthesia. In 1993, Angel researched evoked 
potential recordings indicating that a blockade or disruption of sensory processing in the thalamus may be in-
volved in LOC [29]. Soon after, Volkow and others showed that the depression of thalamic metabolism corre-
lated with level of sedation induced by benzodiazepine lorazepam [30]. In 1999, Alkire and others demonstrated 
significant decreases in thalamic metabolism during halothane anesthesia, while Fiset et al. showed a correlation 
between thalamic activity and level of consciousness during propofol anesthesia [31] [32]. Those results gave 
more weight to the idea that thalamus switch on consciousness.  

Thalamocortical networks play an important role in information integration during consciousness [33] [34]. 
How dose anesthetic affect on the thalamocortical connectivity? In order to find the answer, in 2012, Andrada 
and others recorded neuronal action potentials from cerebral cortex and thalamus before, during, and after infu-
sion of either propofol or etomidate [35]. The result showed that neurons in the cortex and thalamus were simi-
larly depressed by propofol and etomidate. Although Andrada work demonstrated anesthetic depression of neu-
ronal activity likely contributes to anesthetic-induced unconsciousness, more work is needed to determine how 
anesthetic effects on thalamocortical interaction to produce unconsciousness. Then, Kim et al. used granger 
causality to investigate information flows in the thalamocortical network [36]. The result showed that 65% of 
the thalamocortical information flows were changed by anesthesia-induced LOC. Specifically, the information 
flows from the primary motor and somatosensory cortex to the ventral lateral thalamus before LOC whereas 
flows from the ventral lateral thalamus to the primary motor cortex and somatosensory cortex after LOC.  

Based on the above research, suppression of thalamus by anesthetics may in fact follow in time the anesthetic 
suppression of cortical activity, suggesting an indirect role [37]. Thus, the thalamic effects of anesthesia are 
more likely to be consequential, secondary to the cortical effect of anesthetics. 

2) Frontoparietal connectivity 
Frontoparietal connectivity has been noted consistently as a neural correlate of consciousness [38]-[40]. 
To assess the effects of general anesthesia on frontoparietal connectivity, in 2005, Imas and others recorded 

event-related potentials from rat the primary visual cortex, parietal association and frontal cortex [41]. They used 
transfer entropy to examine the effect of two common volatile anesthetics, halothane and isoflurane, on informa-
tion transfers between primary visual, parietal and frontal cortex. The result provided direct evidence that inha-
lational anesthetics impair frontal-posterior parietal cortex information transfer at high gamma frequencies in 
rats. In 2009, Lee et al. studied EEG signals from frontal and parietal scalp areas of human subjects under pro-
pofol anesthesia [42]. Effective connectivity was computed in both the awake and anesthetized states. The result 
showed that the anesthetized state greatly reduced feedback connectivity (frontal→parietal), indicating that 
higher order processing involving top-down selection and contextual interpretation of sensory information were 
impaired in anesthesia. In 2013, Lee et al. also demonstrated except propofol and sevoflurane, ketamine disrupt 
frontal-parietal communication, despite molecular and neurophysiologic differences [43]. Another EEG study 
also demonstrated impaired frontal to parietal, top-down information processing during anesthesia [44]. Analy-
sis of effective connectivity in frontal-parietal pathway could provide a common metric of general anesthesia 
and insight into the cognitive neuroscience of anesthetic-induced unconsciousness. 

In order to overcome methodological limitations of EEG methods, Jordan et al. recorded simultaneously rest-
ing-state EEG and blood oxygen level-dependent fMRI of healthy subjects during consciousness and propo-
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fol-induced LOC [45]. They found that changes in functional connectivity in fMRI during unconsciousness cor-
relate with simultaneous changes in effective connectivity in EEG. Their work indicates that one underlying 
mechanism of functional decoupling of “higher-order” frontal and “lower-order” parietal processes during un-
consciousness is the breakdown of directional feedback connectivity. 

3) Posterior cingulate cortex 
A third brain region that has been consistently implicated in studies examining activity modulations in anes-

thesia is the posterior cingulate cortex (PCC). Laureys and others reported diminished cerebral glucose metabol-
ism by PET in PCC and noted impaired connectivity between PCC and other cortical areas in the anesthetized 
state when compared to controls [46]. But Stamatakis reported that increasing plasma propofol concentrations 
did not significantly modulate connectivity within posterior cingulate, the medial prefrontal cortex and bilateral 
parietal cortices. On the contrary, it was associated with significant increases in connectivity between the PCC 
and other areas (such as the motor/somatosensory cortices, the anterior thalamus, and the pontine tegmentum in 
the brainstem [47]. 

How is it possible to reconcile these two findings of PCC? The first reason is the difference of anesthesia. 
Laureys researched the patient who was in coma after suicide attempt using insulin and benzodiazepines, while 
Stamatakis used propofol on patients. The second argument point to a potentially more fundamental difference 
is physiological signals used for constructing connectivity. Laureys utilized PETs, and Stamatakis made use of 
fMRI. 

5. Studying Mechanisms of Postoperative Cognitive Dysfunction through Effective  
Connectivity 

Postoperative cognitive dysfunction (POCD) is now recognized as one such complication, often detected by an 
abnormality on neuropsychological testing [48]-[50]. It may manifest clinically as memory loss, psychomotor 
derangement, dementia, delirium or depression, difficulties with fine-motor coordination and impaired higher- 
level cognitive functions [51] [52]. 

Working memory refers to the temporary storage and manipulation of information necessary for performance 
of complex cognitive tasks [53] [54]. Prefrontal cortex participates in working memory, and plays an active role 
in the shift of attention and task switching [55] [56]. Xu and others had researched the effect of propofol anes-
thesia on the working memory through gamma band LFPs in rat prefrontal cortex [57]. The result showed that 
prominent inhibition of working memory function was induced by propofol anesthesia, which mainly inhibited 
the effective connectivity of gamma-band LFPs in prefrontal cortex. 

In 2013, Chi and colleagues found that postoperative pain contributes to the development of memory deficits 
after anesthesia and surgery via up-regulation of hippocampal NMDA receptors in aged rats [58]. Further, the 
synaptic NMDA receptor 2B level was reduced in the medial prefrontal cortex of adult mice suffering from sur-
gical pain, which might contribute to POCD [59]. These findings suggest that postoperative pain may be one of 
important factor leading to POCD. In order to find out the mechanism that pain leads to POCD, Cardoso-Cruz H 
and others recorded LFPs from rat medial prefrontal cortex and dorsal hippocampus during a food-reinforced 
spatial working memory task, before and after the establishment of the spared nerve injury model of neuropathy 
[60]. The results show that the nerve lesion caused an impairment of working memory performance and revealed 
that chronic pain reduces the overall amount of information flowing in the prefrontal cortex-hippocampal circuit. 
Cardoso-Cruz’s work demonstrates that effective connectivity disturbances in the prefrontal cortex-hippocampal 
circuit are a relevant cause for pain-related working memory deficits. Based on the above work, Cardoso-Cruz 
also researched the effective connectivity between prefrontal cortex and the mediodorsal thalamus through the 
same method [61]. The most relevant finding of his study is that the onset of chronic pain caused a global de-
crease in prefrontal cortex and the mediodorsal thalamus effective connectivity, and the decrease occurs over a 
wide frequency range and in both directions of the circuit, albeit more evidently from mediodorsal thalamus to 
prefrontal cortex.  

6. Effective Connectivity and Intrinsic Brain Activity 
6.1. Hippocampus, Prefrontal Cortex, Hippocampus-Prefrontal Cortex  
The involvement of the hippocampus and the prefrontal cortex in cognitive processes and particularly in learn-
ing and memory has been known for a long time. There exists of a direct monosynaptic pathway from the ven-
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tral CA1 region of the hippocampus to prefrontal cortex in anatomy [62]. However, the medial prefrontal cortex, 
in rats and other species, has no direct return projections to the hippocampus, and few projections to parahippo-
campal structures including the entorhinal cortex. At present, the nucleus reuniens is well established to repre- 
sent a critical link from the medial prefrontal cortex to the hippocampus [63].  

In 2001, Fell and others showed effective connectivity between the hippocampus and the neocortex accompa-
nies successful memory encoding [64]. Based on Fell work, Jones et al. disclosed theta frequency coordination 
of LFP between hippocampus and mPFC during behavioral epochs was presumed to construct effective com-
munication between these two structures [65]. 

In 2007, Baeg and others demonstrated that the hippocampus-neocortex network is a primary conduit for ce-
rebral information flow for learning and memory [66]. Then Adhikari et al. constructed effective connectivity 
between ventral hippocampus and prefrontal cortex during rat working memory task, and demonstrate that the 
ventral hippocampus leads the prefrontal cortex in the theta-frequency range [67]. Interestingly, under anesthesia, 
Taxidis and others had demonstrated that there exists a continuous information flow from hippocampus towards 
prefrontal cortex [68]. How to explain the results? After training, Rats in Adhikari work had formed long-time 
memory, which was mainly consolidated in hippocampus [69]. So information in the hippocampus-neocortex 
network flowed from hippocampus to prefrontal cortex during rat working memory task. There are more densely 
anesthetic receptors located in the neocortex than in the hippocampus, and the prefrontal cortex is inhibited by 
anesthetic preferentially in the neocortex than in the hippocampus [70]-[72]. As to Taxidis work, information in 
the hippocampus-neocortex network flowed from hippocampus to prefrontal cortex during rat anesthesia. 

Based on the above work, information flows between hippocampus and prefrontal cortex is fundamental for 
learning and memory, and disruption of such communication is likely to generate behavioral impairments. 

6.2. Cortex and the Striatum 
Nakhnikian and others characterized directed influence between cortex and striatum using LFPs recorded in 
primary motor cortex and dorsal striatum from awake, unrestrained rats [73]. In addition to observing free beha-
viors, they recorded during sleep and anesthesia in order to compare rest states to spontaneous behavior and to 
each other, and to assess the neural correlates of drug induced and natural inactivity. They found that effective 
connectivity became bidirectional in freely behaving animals. In agreement with Sharott A report, effective 
connectivity was unidirectional, from cortex to striatum, during natural sleep and anesthesia [74]. 

6.3. Amygdale and Emotion  
Alkire et al. used structural equation modeling of the PET data revealing that anesthesia suppressed amygdala to 
hippocampal effective connectivity [75]. The behavioral results show that anesthesia blocks emotional memory, 
and connectivity results demonstrate that anesthesia suppresses the effective influence of the amygdala. Collec-
tively, the findings support the hypothesis that the amygdale mediates memory modulation by demonstrating 
that suppressed amygdala effectiveness equates with a loss of emotional memory. 

7. The Continued Study of Effective Connectivity in Anesthesia 
In discussing the effective connectivity of the brain and its application in anesthesia issue, we have come across 
a number of issues that can and should be addressed in future studies.  

1) Dosage of anesthesia 
Although anesthesia has the LOC as a potential endpoint, there are many levels of anesthesia, all of which 

have potential relevance to the study of effective connectivity in the brain.  
Most studies of effective connectivity in the anesthetized state have reported the anesthesia by the standard of 

minimum alveolar concentration (MAC) or a behavioral endpoint. Although both of the methods are useful, 
there is one obstacle hindering comparisons across studies. For example, the induction of one kind anesthesia in 
one subject may not be complete at one dosage, whereas it may be in another subject. The key point may leave 
out critical information for the interpretation of that study.  

2) Type of anesthetic  
Although it may seem that the endpoint of surgical anesthesia is sufficiently similar across anesthetics, this 

cannot and should not be assumed in effective connectivity studies, because there is not a common effective 
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connectivity similar across anesthetic types. So, it is important to continue to assess effective connectivity across 
a variety of anesthetic types, at least consisting of a single representative of three or four major classes of anes-
thetics.  

3) Method of assessing effective connectivity  
Although many methods have offered the ability to assess effective connectivity, each method has its strengths 

and weaknesses. GC and methods based on GC (such as DTF and PDC) remain the most heavily used methods 
of computing effective connectivity relations. Regardless of the methodology used, however, the need for effec-
tive connectivity studies across anesthesia and consciousness state remains significant, as they provide unique 
insight into both potential mechanisms of anesthesia and intrinsic functional activity in the brain. 
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