
Open Journal of Statistics, 2015, 5, 191-210 
Published Online April 2015 in SciRes. http://www.scirp.org/journal/ojs 
http://dx.doi.org/10.4236/ojs.2015.53022   

How to cite this paper: Finch, H. (2015) A Comparison of Statistics for Assessing Model Invariance in Latent Class Analysis. 
Open Journal of Statistics, 5, 191-210. http://dx.doi.org/10.4236/ojs.2015.53022   

 
 

A Comparison of Statistics for Assessing 
Model Invariance in Latent Class Analysis 
Holmes Finch 
Department of Educational Psychology, Ball State University, Muncie, USA  
Email: whfinch@bsu.edu     
 
Received 20 January 2015; accepted 22 April 2015; published 27 April 2015 

 
Copyright © 2015 by author and Scientific Research Publishing Inc. 
This work is licensed under the Creative Commons Attribution International License (CC BY). 
http://creativecommons.org/licenses/by/4.0/ 

    
 

 
 

Abstract 
Latent class analysis (LCA) is a widely used statistical technique for identifying subgroups in the 
population based upon multiple indicator variables. It has a number of advantages over other un-
supervised grouping procedures such as cluster analysis, including stronger theoretical under-
pinnings, more clearly defined measures of model fit, and the ability to conduct confirmatory ana-
lyses. In addition, it is possible to ascertain whether an LCA solution is equally applicable to mul-
tiple known groups, using invariance assessment techniques. This study compared the effective-
ness of multiple statistics for detecting group LCA invariance, including a chi-square difference 
test, a bootstrap likelihood ratio test, and several information indices. Results of the simulation 
study found that the bootstrap likelihood ratio test was the optimal invariance assessment statis-
tic. In addition to the simulation, LCA group invariance assessment was demonstrated in an appli-
cation with the Youth Risk Behavior Survey (YRBS). Implications of the simulation results for 
practice are discussed. 
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1. Introduction 
Over the last 20 years, latent class analysis (LCA) has become a very popular statistical method for identifying 
unobserved groups in the population using multiple observed dichotomous or polytomous outcome variables. A 
variant of this technique, commonly referred to as latent profile analysis (LPA), can be used to identify latent 
classes with observed continuous outcomes. LCA is used in both exploratory [1] and confirmatory [2] analyses. In 
the exploratory case, researchers have no testable a priori hypotheses regarding the nature of the latent classes in 
the population. It is certainly possible that they would have some expectations as to the number of such classes, but 

http://www.scirp.org/journal/ojs
http://dx.doi.org/10.4236/ojs.2015.53022
http://dx.doi.org/10.4236/ojs.2015.53022
http://www.scirp.org
mailto:whfinch@bsu.edu
http://creativecommons.org/licenses/by/4.0/


H. Finch 
 

 
192 

these surmises would not be sufficiently strong to warrant a formal statement of their existence in the form of 
hypotheses [3]. In contrast, with confirmatory LCA the researcher would typically have hypotheses about the 
number of latent classes, as well as some characteristics of these classes in the form of absolute or relative re-
sponse probabilities on the observed variables. They would then test these hypotheses by comparing models with 
different parameter constraints [4]. Another application of LCA allows for the comparison of latent class solutions 
across known groups (e.g. gender) within the broader population [2]. For example, Collins and Lanza [5] have 
demonstrated the application of multiple groups LCA (MGLCA) as a means for comparing patterns of delin-
quency across different adolescent age groups. Their work demonstrates how MGLCA can be used to assess the 
invariance of latent class solutions across two or more known subgroups. The primary purpose of this simulation 
study is to extend their work by comparing the performance of several statistics that have been suggested for use in 
assessing the null hypothesis of latent class invariance across multiple known groups.  

1.1. The LCA Model 
The basic LCA model is described in some detail by McCutcheon [2]. Assume that data have been collected for 
four observed, dichotomous variables, X1, X2, X3, and X4, and that there exists a latent categorical variable Y, 
which accounts for the relationships among these four observed variables. The LCA model linking the latent and 
observed variables can then be expressed as: 

1 2 3 41 2 3 4 X Y X Y X Y X YX X X X y Y
ijklt t it jt kt ltπ π π π π π=                              (1) 

where 
Y
tπ =  Probability that a randomly selected individual will in latent class c of latent variable Y ; 

1X Y
itπ =  Probability that a member of latent class t  will provide a response of i  for variable X1; 

2X Y
itπ =  Probability that a member of latent class t  will provide a response of i  for variable X2; 

3X Y
itπ =  Probability that a member of latent class t  will provide a response of i  for variable X3; 

4X Y
itπ =  Probability that a member of latent class t  will provide a response of i  for variable X4. 

As an example of how these parameters are interpreted, take an individual from the population who has the 
following probability values for the three classes in Y: 1 0.6Yπ = , 2 0.25Yπ = , and 3 0.15Yπ = . These results in-
dicate that the individual is most likely a member of class 1 of the latent variable, with only a 1/4 chance of be-
ing in class 2 and a less than 1/5 chance of being in class 3. In addition, assume that observed variable X1 is a 
survey item asking whether an individual never uses sunscreen when they go outside for extended periods of 
time. A value for 1

1
yes
X Yπ

−
 of 0.25 would indicate that an individual in the first class of the latent variable would 

have a fairly low likelihood of responding Yes to this item; i.e. most members of latent class 1 do use sunscreen 
when spending extended periods of time outside.  

1.2. MG LCA and Invariance Testing 
As mentioned earlier, in some instances a researcher may be interested in ascertaining whether the nature of latent 
classes differs across known subgroups in the populations. For example, psychologists studying risk taking be-
havior among adolescents may have theoretical reasons to believe that in the broad teen aged population there are 
a relatively small number of latent classes with specific risk taking profiles. Further, it may be hypothesized that 
these classes differ for males and females, either in terms of their relative frequency, their item response profiles or 
both. In this context, the researcher would like to determine 1) whether indeed coherent latent classes of youth 
exist based on risk taking behavior, and if so, 2) whether these classes differ for males and females. It is for this 
type of problem that MGLCA is appropriate.  

Collins and Lanza [5] provide an excellent and detailed discussion of invariance testing using MGLCA. There- 
fore, this manuscript contains only a summary of the methodology, and the interested reader who would like more 
detail is referred to [5]. The MGLCA model is simply an extension of the original LCA model in (1): 

1 2 3 41 2 3 4 X YG X YG X YG X YGX X X X y YG
ijkltg tg itg jtg ktg ltgπ π π π π π=                              (2) 

where all terms are as defined previously and the new term G ( )1, ,g G=   refers to observed group membership 
(e.g. gender). In other words, latent class prevalence and item response probabilities are conditional on group 
membership, thus allowing for the possibility of differences across the groups. 
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The researcher interested in group invariance for the LCA models will want to assess whether the number of 
latent classes, the class specific item response probabilities and the prevalence of the classes are the same across 
the known groups of interest. Typically LCA invariance testing begins by determining the number of latent classes 
in the population as a whole, followed by a determination as to whether the number is the same in each group. This 
stage of the analysis is very akin to assessing configural invariance in the factor analysis context, where no 
equality constraints are placed on parameters, and only the groups’ factor patterns are compared using exploratory 
factor analysis. Similarly, in LCA the researcher would determine whether the number of latent classes is the same 
across groups, using exploratory LCA with each group independently. This is typically done by fitting LCA 
models to the groups separately and using standard methods for determining the number of latent classes in each. 
Selecting the optimal model for a given dataset is typically done using one or more goodness of fit statistics [6].  

If it has been determined that the number of latent classes is equivalent across groups, the researcher may then 
go on to assess whether item response probabilities are also equal across groups. This stage of LCA invariance 
assessment corresponds loosely to measurement invariance assessment in factor analysis, forming the second 
step in the process. In factor analysis, measurement invariance involves the determination as to whether factor 
loadings are equivalent across groups, while measurement invariance in LCA refers to whether performance on 
the observed indicators (e.g. probability of endorsing an item) is equivalent across groups. However, if the num- 
ber of classes differs across groups, no further invariance assessment should be conducted [5]. With factor anal-
ysis, a lack of measurement invariance (i.e. group differences in factor loadings) means that the factors them-
selves have a different interpretation across the groups. Similarly, in the context of LCA a lack of measurement 
invariance indicates that the nature of the latent classes differs across the groups. If the classes have different 
response probabilities for one or more indicator variables across the known groups, then the meaning of the 
classes differs across the groups as well, and so must the interpretation of them. In such a case, researchers can-
not describe the population as consisting of a set number of latent classes with common traits, but rather must 
think of the classes as being fundamentally different in nature depending on one’s membership in a given known 
group. 

In order to determine whether the latent class specific response probabilities are invariant across groups, the 
researcher would fit two models to the data. In the first model all response probabilities are allowed to vary 
across groups, while in the second model these probabilities are constrained to be equal. Using the example de-
scribed previously, in the second model the response probability for variable X1 for latent class 1 is constrained 
to be the same for both groups, as are the response probabilities for item X1 in latent class 2, item X2 in latent 
class 1 and so on. The fit of the two models to the data is then compared using one or more of the statistical 
techniques described below. If the constrained model provides a substantially worse fit than the unconstrained, 
the researcher would conclude that the groups differ in terms of one or more of the latent class specific item re-
sponse probabilities. As an example, the researcher interested in comparing latent classes based on risk behavior 
across genders would first fit a model in which all of the latent class specific item response probabilities were 
free to vary between males and females, and then a second model in which they were constrained to be equal for 
the two groups. She would then compare the fit of the two models to determine whether the LCA model for risk 
was invariant across genders. 

If the number of latent classes and the item response probabilities are both determined to be invariant across 
groups, the researcher can test for the invariance of class prevalence. In other words, she will assess whether the 
relative size of each latent class is the same across the observed groups. This third stage in the invariance testing 
methodology is analogous to testing for metric invariance in factor analysis, in that we are interested in the ex-
tent to which the mean group prevalence is the same across groups, in the same way that we are interested in 
whether indicator intercepts are group equivalent with metric invariance. Comparing the equivalence of class 
prevalence across groups is done in much the same manner as assessing response probability invariance: A 
model constraining response probabilities and allowing prevalence rates to vary is fit to the data, and its fit is 
compared to that of the fully constrained model. If the constrained model provides substantially worse fit than 
that of the unconstrained prevalence model, then the researcher would conclude that class prevalence rates are 
not invariant across groups. 

1.3. Statistics Used in Assessing LCA Model Invariance 
As described above, the process of assessing LCA model invariance involves the comparison of fit for a fully 
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constrained and several unconstrained models. This comparison of relative fit is key to the success of the entire 
invariance testing venture, and thus is of some importance to researchers interested in this type of analysis. A 
number of statistical tools have been suggested for use in the assessment of LCA invariance, including the like-
lihood ratio test, as well as a variety of information indices. However, there has been little research focused on the 
relative performance of these statistics in terms of making accurate determinations regarding the presence (or 
absence) of LCA model invariance. Therefore, as mentioned previously, the primary focus of this study is on the 
systematic comparison of these statistical techniques in order to ascertain which might be most accurate in the 
context of LCA invariance assessment, both in terms of correctly identifying when invariance is not present, as 
well as when it is.  

The statistics to be examined in this study can be divided into three broad classes: a chi-square difference test, 
information indices, and a parametric bootstrap test. The first of these is based on the likelihood ratio statistic, 
( )2G , which is a measure of absolute fit in the single group LCA context, and can be used to construct a test of 
invariance in the multiple groups situation. With a single group, 2G  tests the null hypothesis that the proposed 
latent class solution adequately fits the observed data, and can be expressed as 

2
12 ln ˆ

W w
ww

w

f
G f

f=

 
=   

 
∑                                     (3) 

where 
Observed frequency in cell wf w=  

ˆ Model predicted frequency in cell wf w=  

The 2G  statistic essentially compares the actual counts in each of the w  cells created by the set of categorical 
indicator variables with the cell counts predicted by the model. The further the predicted counts are from the actual, 
the greater value of the test statistic and the more evidence exists that the proposed model does not fit the observed 
data. The degrees of freedom for this test are W-P-1, where W is the total number of cells obtained from the cross- 
tabulation of the observed variables, and P is the number of parameters estimated by the model. 2G  can be 
compared to the 2χ  distribution with W-P-1 degrees of freedom under certain conditions. This test statistic relies 
on the assumption of multivariate normality of the observed indicator variables, which is not often met in practice, 
in which case the 2G  may not be a reliable indicator of model fit [2] [6].  

In the context of multiple groups LCA, which is the focus of this study, the difference of 2G  statistics can be 
used to assess the null hypothesis of LCA parameter invariance. For example, consider the case in which we are 
interested in assessing the measurement invariance of a LCA solution across two groups. Two models would need 
to be fit to the data, the first allowing item parameter values to vary across the two groups, and the second con-
straining these parameters to be equal across the groups. The relative fit of these two models can then be compared 
using the difference between their 2G  values. This 2G∆  statistic is asymptotically distributed as a 2χ  with 

model2 model1d d df f f∆ = − . A statistically significant result for this test would indicate that the fit of the two models 
differed; i.e. constraining the model parameters to be equal between the groups resulted in worse model fit than 
allowing them to vary [5]. This strategy is very similar to that for testing the fit of two structural equation models. 
Indeed, the use of the 2G∆  difference test for invariance assessment in the context of structural equation modeling 
(SEM) has been studied by a number of researchers and found to be an effective tool for accurately identifying the 
presence of noninvariance in many situations [7]-[9].  

An alternative approach to assessing invariance using the 2G∆  test involves a class of statistics known collec-
tively as information criteria (IC). These IC’s are all based on the log-likelihood of a given model, each applying a 
different penalty for model complexity. The smaller the value of an IC, the better fitting the model is said to be. In 
the context of LCA, several such criteria are used to assess model fit, including the Akaike Information Criterion 
(AIC), the consistent AIC (CAIC), the Bayesian Information Criterion (BIC), and the sample size adjusted BIC 
(aBIC). The AIC is calculated as: 

( )AIC 2ln 2L p= − +                                     (4) 

where  
( )ln L  is the log likelihood for the model, and p  is the number of estimated model parameters [10]. Thus, 

holding the value of ( )ln L  constant, models with more parameters will have larger values of AIC. An alternative 
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to the AIC, which includes both the number of model parameters and the sample size ( )N  in the penalty term is 
the CAIC [11]. 

( ) ( )( )CAIC 2ln 1 lnL p N= − + ∗ +                                 (5) 

The BIC takes a similar form to the CAIC, and is calculated as: 

( ) ( )BIC 2ln lnL p N= − + ∗                                   (6) 

Finally, the aBIC (Sclove, 1987) involves an adjusted sample size value. 

( ) ( )aBIC 2ln lnL p n∗= − + ∗                                   (7) 

where 

( )2 24n N∗ = +  

A third general approach for assessing the relative fit of the constrained and unconstrained models that will be 
investigated here is based upon the parametric bootstrap likelihood ratio test that has been shown effective for 
identifying the correct number of classes in LCA [12]. When applied to the problem of identifying the correct 
number of classes for standard one group LCA, this methodology involves the estimation of the distribution of the 
difference in 2G  values when comparing models that differ in terms of the number of latent classes. In other 
words, a researcher interested in comparing the fit of k and 1k −  latent classes would use the BLRT to obtain a 
p-value that could be used to determine whether the fit was significantly different between models for the two 
numbers of latent classes. A primary advantage of this approach is that it does not rely on assumptions regarding 
the distribution of the difference in 2G  values for the k and 1k −  models [12]. 

In the current application, the BLRT was used to assess the difference in fit for the constrained and uncon-
strained models described above. The basic methodology is very similar to that outlined in [6], in the following 
steps: 

1) Estimate the constrained and unconstrained models, and obtain the 2G  values for each. 
2) Under the null model that invariance holds (i.e. the constrained model), generate a bootstrap sample and 

calculate the difference in 2G  values ( )2G∆  for the constrained and unconstrained models. 
3) Repeat step 2 B (e.g. 1000) times in order to obtain the distribution of 2G∆  when the null hypothesis of in-

variance holds. 
4) Obtain the p-value testing the invariance hypothesis by comparing the actual 2G∆  statistic with the distri-

bution from step 3. If the observed value is greater than or equal to the 95th percentile of the distribution, then 
reject the null hypothesis of model invariance. The BLRT can be applied to the testing of both measurement in-
variance, and the equivalence of class prevalences across groups. 

1.4. Prior Research in LCA Model Selection and Model Invariance Assessment 
While, as mentioned previously, there has been relatively little work in assessing the performance of statistics for 
testing model invariance in the context of LCA, research has been conducted investigating methods for invariance 
assessment of structural equation models, and comparing approaches for identifying optimal LCA models. These 
studies provide insights into the broader questions of invariance assessment and LCA model selection, and will 
therefore be reviewed here.  

With regard to the selection of the optimal number of classes in various types of mixture models, researchers 
have compared a number of methods, including information indices such as the AIC, BIC, and aBIC, along with 
hypothesis tests including the 2G∆  test, and the BLRT. These earlier studies generally found that among the in-
formation indices, the aBIC was optimal for correctly selecting the number of latent classes for growth mixture 
models [13], and for latent class models [14]. Other research has found that the AIC can lead to overestimation of 
the number of latent classes [15], while the BIC provides reasonably accurate determination as to the number of 
classes [16]. In terms of hypothesis tests, research has revealed that for small samples or a large number of indi-
cator variables, the 2G∆  test tends to overestimate the number of classes, because the underlying distribution of 

2G  difference values does not follow the chi-square [17]-[19]. Further work in this area [6] replicated this 
overestimation problem for the 2G∆  test. In addition, their results showed that the BLRT was able to maintain the 
nominal Type I error rate, while yielding optimal power for identifying the correct number of latent classes. 
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Nylund et al. [6] also found that the aBIC was consistently the most accurate of the information indices in terms of 
identifying the correct number of latent classes when the indicator variables were categorical, as is the case in the 
current study, and that the CAIC was less likely than the AIC to overestimate the number of classes. Finally, when 
considering all statistical methods for determining the number of latent classes, Nylund et al. concluded that the 
BLRT was the optimal method for LCA model selection, overall, even when compared to the aBIC. Thus, one 
goal of the current study was to ascertain whether this approach would also be effective for the problem of model 
invariance assessment. 

The literature on invariance testing for structural equation modeling (SEM) has also focused on the use of both 
hypothesis testing and information indices. For example, French and Finch [7] found that when indicator variables 
were normally distributed continuous variables, the 2G∆  test exhibited good control of the Type I error rate when 
testing for measurement invariance (group differences in loadings), while at the same time yielding relatively high 
power for identifying a lack of invariance. However, when the indicators were dichotomous, they found that this 
test generally had very low power across sample sizes. Meade, and Lautenschlager [20] reported that with large 
samples (2000 or more), the 2G∆  test had high power for detecting even minor differences in the constrained and 
unconstrained models, leading to findings of noninvariance for very small actual differences in parameters across 
groups. With respect to information indices and SEM invariance assessment, Burnham and Anderson [21] sug-
gested use of the CAIC over the AIC when the ratio of sample size to number of parameters was less than 40, 
similar to the results reported in Nylund et al. in the context of LCA. On the other hand, Vrieze [22] concluded that 
for complex latent variable models, the AIC may be the preferable approach because of its particular min-max 
properties not shared by other information indices, such as the BIC. In a similar vein, Shao [23] suggested that 
AIC is preferable to BIC when the true model in the population is very complex, which he argued is probably most 
often the case in practice. Focusing specifically on factor invariance assessment with information indices, Wi-
cherts and Dolan [24] reported that these indices can be very useful for selecting between constrained and un-
constrained models, as long as researchers are careful to ensure that the two models are identical with the excep-
tion of the parameters being tested. They noted that when this is not the case, invariance assessment will be 
compromised. In short, while there has been much work investigating approaches for model invariance assess-
ment in SEM, the results have not produced a clearly optimal approach, unlike the BLRT for LCA model selection. 
The 2G∆  test was not effective for categorical indicator variables, which are common in LCA, and no single in-
formation index consistently performed the best for SEM invariance assessment. Thus, it is hoped that the current 
work may expand this literature by both investigating the performance of these traditional methods of invariance 
assessment in the context of LCA, rather than SEM, and by comparing them with BLRT, which has heretofore 
been used for LCA model selection rather than invariance testing. 

1.5. Goal of the Current Study 
The primary goal of the current study was to compare the performance of a variety of statistical approaches for 
assessing group invariance in the context of LCA. While much prior work has been done comparing methods for 
assessing overall model fit in the context of LCA, there is very little published research comparing statistics for 
assessing latent class model invariance across multiple known groups. In addition, while these statistics are all 
familiar parts of the statistics landscape and have been studied in other modeling contexts, they have not been 
examined in terms of their abilities to accurately assess latent class invariance. Therefore, these methods, in-
cluding the 2G∆  test, BLRT, AIC, BIC, CAIC and aBIC, were used to check for the presence of measurement 
invariance and to compare class prevalences across two known groups, under a variety of simulated conditions. 
Based on the prior literature that is described above, it is hypothesized that the BLRT will generally perform 
well, given its aforementioned strength in correctly identifying the number of latent classes in the population. It is 
also anticipated that, given prior work demonstrating its sensitivity to both non-normality and sample size, the 

2G∆  test will have difficulty with the invariance problem studied here, given the nonnormal (dichotomous) nature 
of the indicator variables, and the variety of sample sizes studied. Finally, as Collins and Lanza [5] have noted, the 
information indices may be better suited to narrowing down the list of possible optimal models rather than iden-
tifying a single best model. Among these statistics, prior studies provide some evidence that the aBIC may be a top 
choice, but much of the work supporting this hypothesis has been limited to the continuous indicator case. In sum, 
as has been noted in earlier writing [21] [22], more work needs to be done investigating the relative performance 
of a number of model selection tools in the context of mixture models, including LCA invariance assessment. In 
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addition to using a simulation approach to compare the performance of invariance testing statistics under a va-
riety of conditions, a secondary goal of this study was to demonstrate the practice of invariance assessment us-
ing MGLCA with data taken from the Youth Risk Behavior Survey (YRBS). The results of both the simulation 
and applied data analysis should serve to inform both practitioners and researchers regarding the use of MGLCA 
for invariance assessment, and should further work in the area of LCA invariance assessment. 

2. Methods 
Data for this Monte Carlo study were generated using the Simulate Lca Dataset SAS macro, version 1.1.0 [25], 
while data were analyzed using PROC LCA [26] under the SAS version 9.1 system [27]. All manipulated fac-
tors, which are described in detail below, were crossed such that there were 6 (latent class assessment procedure) 
× 2 (type of invariance) × 2 (number of latent classes) × 4 (sample size) × 2 (observed group size ratio) × 2 (la-
tent class size ratio) × 3 (proportion of noninvariant items) × 4 (degree of noninvariance across groups) combi-
nations, for a total of 4608 individual study conditions. For each combination of conditions, 1000 simulation 
replications were generated and analyzed. As mentioned previously, the approaches to invariance assessment in-
cluded in this study were the 2G∆  test, BLRT, AIC, BIC, CAIC and aBIC. The manipulated simulation condi-
tions, each of which is described in detail below, were based upon data reported in Collins and Lanza [5], chap-
ter 5. For all of the conditions, 2 groups were simulated with 5 dichotomous indicator variables. The data were 
simulated using the pattern of item endorsement probabilities that appear in Table 1. Note that these values were 
identical for the two observed groups in the invariant condition, while they changed for group 2 in the noninva-
riant cases, as described below. For the 2 latent class conditions only the item endorsement probabilities in the 
first two columns of Table 1 were used.  

2.1. Manipulated Study Conditions 
Type of Invariance 
Two types of invariance were assessed in this study. Measurement invariance involved testing whether the latent 
class specific item response probabilities were the same between the two known groups. In addition, thee quiva-
lence of the relative frequencies of the latent classes in each group was also tested. Based upon recommenda-
tions in Collins and Lanza [5], the equality of the latent class prevalences across groups was tested under the as-
sumption of strict measurement invariance. Thus, item response probabilities for the latent classes were simu-
lated to be the same across groups when latent class prevalences were compared. 

2.2. Number of Latent Classes 
Data were simulated with either 2 or 4 latent classes in each observed group for the measurement invariance 
analysis. For testing the equivalence of class prevalence, 2 latent classes were simulated for each observed group, 
in order to allow for focus on the basic test of invariance without the complicating presence of multiple groups. 
For all simulation conditions, each group contained the same number of latent classes. It is recognized that in 
actual practice the number of latent classes will not always be the same for multiple groups in such an invariance 
study, making this design decision a limitation of the current study. However, this decision was made for two 
reasons. First, this simulation setup reflects the case where the first level of invariance has been met, namely that 
the number of groups in the latent classes is identical. Were this condition not to hold, further invariance testing 
would not be conducted, as the researcher would presumably have discovered that the number of classes differed  
 
Table 1. Endorsement probabilities used to simulate data, by item and latent class.                                             

Item Latent class 1 Latent class 2 Latent class 3 Latent class 4 

1 0.8 0.2 0.2 0.8 

2 0.7 0.3 0.2 0.8 

3 0.6 0.4 0.3 0.7 

4 0.3 0.7 0.3 0.7 

5 0.2 0.8 0.1 0.9 
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across groups when he fit the LCA models separately for them. The second reason for this design condition is to 
keep the size of the study and number of conditions manageable. Nonetheless, it is certainly true that keeping 
the number of classes constant for the two groups does not reflect every condition that a researcher might see in 
practice, and is therefore a limitation of the current study. 

2.3. Sample Size and Observed Group Size Ratio 
Four total sample size conditions were simulated, including 200, 500, 1000 and 2000, which were designed to 
represent a range of values that appear in the applied literature in which LCA is used. Two observed group size 
ratio conditions were also simulated: 1/1 and 3/1. 

2.4. Latent Class Size Ratio 
For the measurement invariance aspect of the study, the ratio of latent classes within each group were simulated 
to be either 50/50 or 70/30 in the 2 latent classes condition. In the 4 class case, the ratios were either 25/25/25/25 
or 55/15/15/15. In the results section below, we will refer to the equal ratio condition as 50/50 for both 2 and 4 
latent classes, and the unequal ratio condition as 70/30 for both numbers of latent classes. We recognize that 
there are many other possible latent class ratios that could be included. However, in order to keep the size of the 
study manageable we have elected to examine only these conditions. For the portion of the study examining la-
tent class prevalence, the latent class ratios were manipulated as described in the Degree of noninvariance sec-
tion below. 

2.5. Proportion of Noninvariant Items 
For the measurement invariance aspect of the study, 3 conditions for proportion of noninvariant items were si-
mulated, including 0% (complete invariance), 20% (1 target item) and 40% (2 target items).  

2.6. Magnitude of Measurement Noninvariance 
The magnitude of noninvariance present in the target items was based loosely on results regarding adolescent 
delinquency reported in Collins and Lanza [5]. The magnitude of noninvariance between the observed groupsla-
tent class specific item response probabilities for target items were set to 0 (complete invariance corresponding 
to the 0% proportion of invariant item condition described above), 0.1, 0.3 or 0.5. An example of how these 
noninvariant data were simulated appears in Table 2 for the 2 observed groups, 2 latent classes, 20% noninva-
riant condition, for each degree of measurement noninvariance (i.e. 0, 0.1, 0.3, and 0.5). Consider as an example 
the noninvariance = 0 magnitude case, which is represented in the top section of Table 2. For all conditions si-
mulated here, the target parameter is the probability of endorsing item 1, which appears in bold. Here, the latent 
class endorsement probabilities were identical for the two observed groups across the 5 items, as seen in Table 2. 
The noninvariance = 0.1 case with 20% noninvariant items appears in the second section of Table 2. In this case, 
latent class 1 in observed group 1 was simulated to have a proportion endorsing the dichotomous item of 0.8, 
while latent class 1 in observed group 2 was simulated to endorse the item at a rate of 0.7. Similarly, as seen in 
the third section of Table 2, for noninvariance = 0.3, latent class 1 in observed group 1 was simulated to have an 
endorsement probability for item 1 of 0.8, while latent class 1 in observed group 2 was simulated to have an en-
dorsement probability of 0.5. A similar design was used for all other conditions included in this study. 

2.7. Magnitude of Class Prevalence Inequality 
In terms of latent class prevalence equivalence assessment, group 1 always had an equal distribution of latent 
class membership; i.e. 0.5/0.5 for 2 classes and 0.25/0.25/0.25/0.25 for 4 classes. Latent class prevalence rates 
then differed from group 2 by 0.05, 0.1, 0.15 or 0.3. Thus, for example, in the 0.3 prevalence difference condi-
tion, latent class 1 in group 1 was simulated to appear in 50% (0.5) of cases, while for group 2 latent class 1 was 
simulated to appear in 80% (0.8) of cases. 

2.8. Study Outcome Variables 
The outcome variables of interest were the Type I error rate (proportion of times noninvariance was indicated by  
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Table 2. Example of measurement noninvariance simulation probabilities used to simulate data, by degree of measurement 
invariance, for the two group, 20% noninvariant condition, 2 latent classes condition.                                           

Noninvariance = 0 

 Observed group 1 Observed group 2 

Item Latent class 1 Latent class 2 Latent class 1 Latent class 2 

1 0.8 0.2 0.8 0.2* 

2 0.7 0.3 0.7 0.3 

3 0.6 0.4 0.6 0.4 

4 0.3 0.7 0.3 0.7 

5 0.2 0.8 0.2 0.8 

Noninvariance = 0.1 

 Observed group 1 Observed group 2 

Item Latent class 1 Latent class 2 Latent class 1 Latent class 2 

1 0.8 0.2 0.7 0.3* 

2 0.7 0.3 0.7 0.3 

3 0.6 0.4 0.6 0.4 

4 0.3 0.7 0.3 0.7 

5 0.2 0.8 0.2 0.8 

Noninvariance = 0.3 

 Observed group 1 Observed group 2 

Item Latent class 1 Latent class 2 Latent class 1 Latent class 2 

1 0.8 0.2 0.5 0.5* 

2 0.7 0.3 0.7 0.3 

3 0.6 0.4 0.6 0.4 

4 0.3 0.7 0.3 0.7 

5 0.2 0.8 0.2 0.8 

Noninvariance = 0.5 

 Observed group 1 Observed group 2 

Item Latent class 1 Latent class 2 Latent class 1 Latent class 2 

1 0.8 0.2 0.3 0.7* 

2 0.7 0.3 0.7 0.3 

3 0.6 0.4 0.6 0.4 

4 0.3 0.7 0.3 0.7 

5 0.2 0.8 0.2 0.8 
*Parameter that is simulated to be noninvariant is in bold. 
 
a statistical procedure when data were simulated to be invariant in the population), and power (proportion of 
times noninvariance was correctly indicated by a statistical procedure when noninvariance was simulated in the 
data). The nominal Type I error rate set in this study is 0.05. It should be noted that with regard to the informa-
tion indices, Type I error rate is a misnomer in that these statistics are not hypothesis tests, but rather methods of 
assessing relative model fit. However, for the sake of ease in reporting results consistently for all of the statistics 
studied here, this phrase will be applied to all of the methods included in this study. The use of information in-
dices here was in keeping with standard practice, such that they were calculated for the constrained and uncon-
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strained models and then compared with one another. The model with the lower value was taken to be the best 
fitting in the sample, and this result was compared with the actual state of affairs in the population. If the uncon-
strained (noninvariant) model was identified as better fitting than the constrained (invariant) model, then the 
conclusion based on the sample was that the latent class solutions were not invariant across the two known 
groups. When this decision was in error (i.e. the data were simulated to be invariant), the result was termed a 
Type I error, though in fact no hypothesis testing was conducted. However, in order to keep reporting of the re-
sults as clear and straightforward as possible, the terms Type I error rate and power will be used to signify in-
correct and correct determinations of noninvariance. All such invariance testing was done under the assumption 
that the latent class models were properly specified for each of the observed groups. 

2.9. Analysis of Study Outcomes 
In order to determine which of the manipulated conditions or their interactions were significantly related to the 
Type I error and power rates, repeated measures analysis of variance (ANOVA) was used where the rates across 
all 1000 replications served as the dependent variable, the statistic used to assess invariance was the within sub-
jects factor, and the following manipulated conditions were between subjects factors. 

3. Results 
The results presented below are divided into evaluations of Type I error and power rates for measurement inva-
riance, and prevalence equivalence, respectively. For measurement invariance, the key points of interest were 
the comparative Type I error and power rates of the various methods across the levels of noninvariance, and 
whether any differences in these rates across the invariance testing methods interacted with the other manipu-
lated conditions. Similarly, with respect to assessing the relative prevalence of the two latent classes, primary 
interest was on comparing the Type I error and power rates of the invariance testing methods, and how those 
rates changed with increasing differences in the prevalences of the latent classes across the observed groups. In 
addition, it was of interest to ascertain whether any such differences between the statistics’ performance inte-
racted with other manipulated factors in the study. 

3.1. Measurement Invariance: Type I Error Rate 
For the ANOVA for measurement invariance Type I error rate, the outcome was the rate of significant group 
difference findings for each replication when no group differences were simulated. The independent variables 
were method of invariance testing (method), number of latent classes (classes), class size ratio (classratio), 
group size ratio (group ratio), and sample size ( )N . The results of these analyses indicated that the only signif-
icant term was the interaction of method by classes by N ( )20.005, 0.438p η= = . Figure 1 includes Type I er-
ror rates for method by classes by N. Of primary interest were the Type I error rates of the methods, for which, 
across conditions, the BIC, CAIC and aBIC demonstrated rejection rates of 0, except for aBIC with 2 classes 
and N of 200. In addition, AIC never had rejection rates greater than 0.05 for any of the simulated conditions. 
On the other hand, the 2G∆  and BLRT tests had rates between 0.05 and 0.075 for 2 classes, whereas with 4 
classes and Nof 2000 2G∆  had an inflated rate of 0.13, while BLRT maintained an error rate below 0.05.  

3.2. Measurement Invariance: Power 
For measurement invariance power, the 3-way interaction of method by N by magnitude of noninvariance (mag-
nitude) was statistically significant ( )20.001, 0.232p η< = , as was the 3-way interaction of method by classes 
by group ratio ( )20.001, 0.139p η< = . Table 3 contains the power rates for the 6 methods by magnitude of 
difference and N. When interpreting these results, it is important to note that the 2G∆  test was found to have in-
flated Type I error rates for 4N =  and classes = 2000, as reported above. In terms of power, of primary inter-
est were the relative performances of the various statistics for assessing invariance. Among these, BLRT dis-
played the highest power rates across conditions, while the 2G∆  test consistently yielded the second highest 
power. The BIC, CAIC, and aBIC all had power values much lower than the other three methods across all con-
ditions, with rates at or near 0 when the groups differed by 0.1. 

Table 4 includes the power rates for method by classes by group ratio, the other significant interaction identi-
fied using ANOVA. An examination of the results reveals that for all of the methods power with 2 groups was  
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Figure 1. Type I error rate for measurement invariance testing by testing method, number of classes and sample size (N).            

 
Table 3. Power for measurement invariance testing by testing method, magnitude of difference between groups (D), and 
sample size (N).                                                                                                

N D 2G∆  AIC BIC CAIC aBIC BLRT 

200 

0.1 0.0770 0.0468 0.0000 0.0000 0.0211 0.0863 

0.3 0.3120 0.2590 0.0020 0.0003 0.1955 0.3531 

0.5 0.4965 0.4564 0.0743 0.0306 0.4267 0.5362 

500 

0.1 0.1472 0.0997 0.0000 0.0000 0.0004 0.2037 

0.3 0.5305 0.4811 0.0447 0.0248 0.1623 0.5588 

0.5 0.6623 0.5626 0.3977 0.3205 0.4849 0.7169 

1000 

0.1 0.2788 0.2072 0.0000 0.0000 0.0007 0.3675 

0.3 0.6455 0.5488 0.2564 0.1852 0.3401 0.6456 

0.5 0.8474 0.7433 0.4983 0.4949 0.4996 0.8894 

2000 

0.1 0.4963 0.3813 0.0001 0.0000 0.0003 0.5650 

0.3 0.8064 0.6866 0.4193 0.3610 0.4314 0.8481 

0.5 0.9157 0.8833 0.4977 0.4943 0.4980 0.9631 
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Table 4. Power for measurement invariance testing by method, number of latent classes, and group ratio.                          

Classes Group ratio 2G∆  AIC BIC CAIC aBIC BLRT 

2 
1/1 0.7780 0.7510 0.3950 0.3516 0.5333 0.7821 

3/1 0.7386 0.7055 0.3351 0.2858 0.4866 0.7531 

4 
1/1 0.3567 0.2275 0.0002 0.0000 0.0003 0.5935 

3/1 0.1988 0.1014 0.0000 0.0000 0.0003 0.5547 

 
slightly higher when the group ratios were equal, and the BLRT, 2G∆  test and AIC had higher rates than the 
other approaches. When 4 classes were present, all of the methods displayed lower power than for 2 classes. In 
addition, the BLRT had higher power rates than any of the other methods, and both 2G∆  and AIC demonstrated 
approximately twice as much power when the groups were of equal size as when they were unequal. Finally, 
BIC, CAIC and aBIC all had power rates at or near 0 for 4 latent classes.  

3.3. Measurement Invariance Summary 
To summarize the measurement invariance results presented above, all of the methods studied here maintained 
the nominal Type I error rate of 0.05, except for the 2G∆  test with a sample size of 2000 and 4 latent classes 
present in the data. In terms of power, the BLRT yielded the highest rates across conditions, followed by the 

2G∆  test and AIC. The BIC, CAIC, and aBIC all yielded much lower power than the other three methods. Fur-
thermore, all of the methods studied here yielded higher power rates when 2 latent classes were present, as op-
posed to 4. Thus, the BLRT can be said to yield the highest power among the methods studied here, while si-
multaneously maintaining the Type I error rate at approximately the nominal 0.05 level.  

3.4. Equivalence of Latent Class Prevalences: Type I Error Rate 
ANOVA results for the Type I error rate for assessment of latent class prevalence equivalence across observed 
groups found that the only significant term was the interaction of method by group ratio ( )20.0019, 0.132p η= = . 
Results in Table 5 reveal that for all of the methods, Type I error was larger when the group ratio was 3/1 as 
opposed to equal. In addition, except for BLRT and aBIC, all of the methods had rates above 0.06 in the unequal 
group size condition, while they all had rates of approximately 0.055 or lower for equal group sizes, with the 
exception of AIC.  

3.5. Equivalence of Latent Class Prevalences: Power 
With respect to power for detecting a lack of latent class prevalence equivalence across groups, ANOVA identi-
fied two significant interactions: method by N by magnitude of noninvariance ( )20.001, 0.633p η< =  and me-
thod by group ratio by magnitude of noninvariance ( )20.001, 0.942p η< = . An examination of Table 6 reveals 
that across simulated conditions, BLRT displayed the highest power rates except for the greatest magnitude of 
group separation and N of 200. While AIC generally had the second highest power rates across conditions, it 
must be noted that it also displayed inflated Type I error rates across all conditions simulated here, as discussed 
previously. Therefore, these results must be interpreted with caution. Among the other methods, the 2G∆  test 
displayed the highest power rates, again except for magnitude of noninvariance = 0.3 and N of 500 or more, in 
which case all of the statistics had power of 1.00. Finally, for 200N = , power never reached 0.8 for any of 
these techniques, except when the magnitude of difference was 0.3. For the lowest level of separation (0.05) the 
advantage of BLRT over the other methods was especially notable, particularly given that this method was also 
able to maintain the nominal Type I error rate of 0.05. 

Table 7 contains power rates by method, group ratio and difference. For lower values of difference, power 
rates of BLRT were greater than those of the other statistics. When magnitude = 0.3, power rates for all of the 
methods were just below 1.00. Thus, when the group prevalence rates differed by as much as 0.3, all of the sta-
tistics studied here were able to detect the noninvariance. Again, however, both 2G∆  and especially AIC had in-
flated Type I error rates for testing prevalence equality under many conditions, while BLRT did not. 
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Table 5. Type I error rate for testing equivalence of latent classes across groups, by method, class ratio, and group ratio.              

Group ratio 2G∆  AIC BIC CAIC aBIC BLRT 

1/1 0.0545 0.1610 0.0135 0.0080 0.0185 0.0475 

3/1 0.1863 0.3395 0.0905 0.0675 0.0540 0.0550 

 
Table 6. Power for testing prevalence equivalence of latent classes across groups, by testing method, magnitude of differ-
ence between groups (D), and sample size (N).                                                                         

D N 2G∆  AIC BIC CAIC aBIC BLRT 

0.05 

200 0.1720 0.3160 0.1075 0.0825 0.1915 0.4200 

500 0.2665 0.4410 0.1300 0.1040 0.0190 0.7500 

1000 0.3260 0.5085 0.1580 0.1270 0.0070 0.7450 

2000 0.5050 0.6880 0.2635 0.2235 0.0050 0.8800 

0.10 

200 0.3080 0.4725 0.2180 0.1675 0.3270 0.4500 

500 0.6560 0.7975 0.4655 0.3995 0.0800 0.8600 

1000 0.7675 0.8860 0.5495 0.4940 0.0750 0.9450 

2000 0.9485 0.9770 0.8445 0.8080 0.1225 0.9350 

0.15 

200 0.4635 0.6405 0.3540 0.2970 0.4830 0.5000 

500 0.9020 0.9560 0.8065 0.7615 0.2585 0.9550 

1000 0.9755 0.9920 0.9115 0.8760 0.3400 0.9750 

2000 1.0000 1.0000 0.9975 0.9945 0.6140 1.0000 

0.30 

200 0.9475 0.9845 0.9100 0.8740 0.9570 0.9750 

500 0.9995 0.9995 0.9995 0.9995 0.9855 0.9950 

1000 1.0000 1.0000 1.0000 1.0000 0.9990 1.0000 

2000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

 
Table 7. Power for testing prevalence equivalence of latent classes across groups, by testing method, magnitude of differ-
ence between groups (D), and group size ratio.                                                                         

D Group ratio 2G∆  AIC BIC CAIC aBIC BLRT 

0.05 
1/1 0.2472 0.4367 0.0927 0.0700 0.0250 0.7775 

3/1 0.3875 0.5400 0.2367 0.1985 0.0862 0.6200 

0.10 
1/1 0.6492 0.7810 0.4687 0.4092 0.0767 0.7900 

3/1 0.6907 0.7855 0.5700 0.5252 0.2255 0.8050 

0.15 
1/1 0.8375 0.9032 0.7652 0.7285 0.3040 0.8375 

3/1 0.8330 0.8910 0.7695 0.7360 0.5437 0.8775 

0.30 
1/1 0.9875 0.9962 0.9772 0.9670 0.9895 0.9725 

3/1 0.9860 0.9957 0.9775 0.9697 0.9812 0.9125 
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3.6. Summary of Prevalence Equivalence Testing Results 
The BLRT method of assessing the equivalence of latent class prevalences across the observed groups was able 
to maintain the nominal 0.05 Type I error rate across all conditions simulated here, while also yielding the high-
est power rates. Therefore, much as with measurement equivalence, it appears that BLRT is able to both main-
tain the Type I error rate and yield relatively high power when testing for the equivalence of latent class preva-
lence across observed groups.  

3.7. Analysis of Youth Risk Behavior Survey Data 
In this section of the manuscript an LCA invariance analysis for data from the Youth Risk Behavior Survey 
(YRBS) is conducted to compare latent class solutions across genders. The YRBS is a biennial survey adminis-
tered by the United States Centers for Disease Control and Prevention (CDC) designed for high school students. 
It consists of self-reports of past and current thoughts, emotions, behaviors, and exposure to health relevant cur-
riculum within schools, and provides a snapshot of the general health and risky behavior of America’s youth. 
The YRBS dataset is publicly available with individual identifying information, as well as school, state, and re-
gional identifiers removed.  

Of particular interest in this analysis is the assessment of gender differences in reckless behavior typologies 
among adolescents. Prior research has demonstrated that reckless physical behaviors increase in adolescence 
[28]. For example, as individuals move into their teen years the likelihood of their riding with an intoxicated 
driver increases [29], while the likelihood of their regularly using their seatbelt in a car [30], or wearing a helmet 
when riding a motorcycle decreases [31]. Furthermore, self care such as using sunscreen while outdoors [32], or 
wearing a helmet when riding a bicycle [33] decline during this period as well. Finally, fighting has also been 
shown to increase in frequency and severity as individuals move from childhood to adolescence [34]. Coincident 
with this research demonstrating the increasing problem of reckless behavior in youth, there is also research to 
demonstrate that such risk taking may not be equally prevalent among males and females, and that in fact there 
may be some differences in the types of reckless behavior that are engaged in by the two genders [35] [36].  

Given this prior research, the goal of the current analysis was to investigate typologies of reckless behavior in 
the adolescent population using items from the YRBS, and to determine the extent to which these typologies 
were invariant for males and females. To this end, confirmatory LCA was used to ascertain whether the same 
number of latent classes was present for males and females, and if so whether there was measurement invariance 
for the items used to identify these latent classes, and if measurement invariance held, whether the prevalence of 
the latent classes was equivalent for the two genders. In short, the goal was to determine whether and to what 
extent reckless behavior typologies in the population are equivalent across males and females both in terms of 
the types of reported behaviors, and the relative frequency of the typologies in the population.  

For this analysis, the items appearing in Table 8 (each coded as yes (1) or no (0)) were included in the inva- 
riance analysis. Each was selected because it measured a specific behavior that has been found in previous lite-
rature, cited above, to be associated with increased risk taking among adolescents. Of interest was whether the 
latent class solutions identified using these items were invariant for male and female respondents, first in terms 
of the number of latent classes found, second in terms of item response probabilities and if so, then third in 
terms of latent class prevalence. Based on the literature described above, it was anticipated that there would be 
distinct typologies of reckless behavior among adolescents, and that these patterns would differ by gender such 
that females would be relatively more risk averse than males.  

 
Table 8. Latent class prevalence and response probabilities with 3 classes for the full sample.                                  

Variable Overall Class 1 (0.25) Class 2 (0.29) Class 3 (0.46) 

Rarely/Never wear bicycle helmet 0.88 0.94 0.65 1.00 

Rarely/Never wear seat belt 0.10 0.27 0.01 0.07 

Rode 1+ times with drinking driver 0.30 0.70 0.10 0.21 

Fought 1+ times in last year 0.34 0.70 0.15 0.27 

Rarely/Never wear motorcycle helmet 0.38 0.45 0.01 0.57 

Rarely/Never wear sunscreen 0.92 0.95 0.80 0.97 
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A sample of 2000 subjects was drawn from the original YRBS data base, which contained 16,000 individuals. 
This sample of 2000 individuals was randomly drawn from among those who provided a valid response to each 
of the items appearing in Table 8 (a total of 13,743 respondents). In terms of gender, 1027 (51.9%) of the 2000 
adolescents used in the LCA invariance analysis were male, as compared to 52.0% of those in the total sample. 
In order to cross-validate the results for this sample, we drew a second sample (without replacement) of 2000 
individuals from the 11,743 remaining members of the YRBS data base who had responded to each of the items 
of interest, and conducted all of the analyses described below. While there were small differences in the percen-
tages of respondents endorsing each item, the overall results (i.e. number of latent classes, noninvariance status) 
were the same for the second sample as for the first. This great similarity in the results for the two samples 
serves to support the results and conclusions described below. 

Following the techniques for LCA invariance testing described in Collins and Lanza [5], the first step was to 
identify the number of latent classes present in the sample as a whole. Four model solutions were fit to the 
YRBS data, for 2, 3, 4, and 5 latent classes. In order to determine the optimal number of latent classes, the fit in-
dices described above, as well as model identification and interpretability of the solutions with regard to subs-
tantive meaning of the classes were considered. Based on the BLRT and the information indices, which appear 
in Table 9, particularly the AIC and aBIC, 3 latent classes appeared to fit the data best. Among the information 
indices, the aBIC in particular has been found to be most accurate in identifying the number of latent classes 
across a number of simulated conditions [14] [37]. In addition, research has found that among all currently 
available methods, the BLRT may be the most accurate approach for identifying the number of latent classes [6]. 
Therefore, given their generally greater accuracy, and the fact that they both (along with the AIC) identified the 
3-class solution as optimal, this was the one selected here. In addition, a review of the nature of the latent classes, 
in terms of their item response profiles, suggested that the 3 latent class solution made substantive sense as well. 

Table 8 includes the prevalence of each latent class, along with the proportion of individuals in the classes 
that endorsed each of the items used in the analysis, for the total sample. Based on these results, it appears that 
latent class 1 can be described as relatively high risk compared to the other two. Individuals in this group, which 
made up 25% of the total sample, were the least likely to use transportation safety devices such as seat belts in 
cars and helmets on bicycle/motorcycles, and were most likely to ride with a drinking driver and engage in  

 
Table 9. Model fit indices for LCA models with the full sample and with each gender.                                       

 Total sample  

Latent classes G2 (df) AIC BIC CAIC aBIC BLRT p-value 

2 96.07 (50) 122.07 194.88 207.88 153.58 0.001 

3 57.05 (43) 93.34 209.06 229.06 145.52 0.901 

4 40.34 (36) 97.04 245.56 272.56 159.78 0.876 

5 30.34 (39) 98.34 288.77 322.77 180.75 0.922 

 Females  

Latent classes G2 (df) AIC BIC CAIC aBIC BLRT p-value 

2 61.14 (50) 88.01 150.75 163.75 122.35 <0.001 

3 48.01 (43) 87.14 188.87 205.35 109.46 0.863 

4 43.54 (36) 97.54 229.64 256.64 143.89 0.856 

5 31.02 (39) 97.99 292.35 319.09 179.80 0.738 

 Males  

Latent classes G2 (df) AIC BIC CAIC aBIC BLRT p-value 

2 70.03 (50) 96.03 159.91 172.91 118.62 <0.001 

3 42.86 (43) 82.86 181.13 201.13 117.61 0.911 

4 30.55 (36) 84.55 217.22 244.22 131.47 0.917 

5 28.74 (39) 89.01 300.46 318.17 155.66 0.936 
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fighting in the last year. Latent class 2 was the most risk averse, being more likely to wear helmets on bicycles 
and motorcycles, more likely to wear a seat belt, and to use sunscreen, and the least likely to have ridden with a 
drinking driver or to have fought. Finally, latent class 3 displayed a pattern of behaviors that put them in be-
tween the highest and lowest risk groups. 

After determining the number of latent classes for the sample as a whole, the next step was to establish that 
the number of latent classes and their general patterns of item responses were similar to those of the overall 
population. In other words, in order to test whether the item response probabilities for the two genders were in-
variant, we must first ensure that the number of latent classes in each was the same. LCA was applied to each 
gender individually, and as can be seen in Table 9, for both males and females the 3 class solution proved op-
timal, based on the AIC and aBIC. An examination of Table 10 shows that for each gender, latent class 1 re-
ported relatively high rates of risky behavior, while latent class 2 reported the least risky behaviors and class 3 
fell somewhere in between the two. Thus, it does appear that the basic constituencies of the latent classes were 
present for both males and females. Before we can talk about any gender differences in the prevalence of these 
behaviors for specific latent classes, we must first assess whether LCA invariance holds or not. 

As described above, in order to determine whether measurement invariance holds, we fit two models. In the 
first model all item response probabilities were constrained to be equal across the genders, while in the second 
model they were all unconstrained. If the difference in model fit favored the unconstrained model (or was statis-
tically significant in the case of the 2G∆ test) we would conclude that invariance did not hold. For both the con-
strained and unconstrained models, we fit the 3 class solution, given that it had already been established as op-
timal for both the full and gender specific samples. The fit statistics for the constrained and unconstrained mod-
els appear in Table 11, along with the 2G∆  test and BLRT. BLRT, the 2G∆  test, and AIC indicated that the  

 
Table 10. Latent class prevalence and response probabilities with 3 classes by gender.                                         

Females (N = 944) 

Variable Class 1 (0.28) Class 2 (0.33) Class 3 (0.40) 

Rarely/Never wear bicycle helmet 1.00 0.60 1.00 

Rarely/Never wear seat belt 0.16 0.01 0.03 

Rode 1+ times with drinking driver 0.51 0.11 0.23 

Fought 1+ times in last year 0.54 0.11 0.01 

Rarely/Never wear motorcycle helmet 0.46 0.06 0.43 

Mostly/Always wear sunscreen 0.05 0.28 0.01 

Males (N = 1027) 

Variable Class 1 (0.25) Class 2 (0.39) Class 3 (0.36) 

Rarely/Never wear bicycle helmet 0.93 0.78 0.99 

Rarely/Never wear seat belt 0.31 0.03 0.10 

Rode 1+ times with drinking driver 0.81 0.11 0.13 

Fought 1+ times in last year 0.78 0.25 0.38 

Rarely/Never wear motorcycle helmet 0.46 0.00 0.80 

Mostly/Always wear sunscreen 0.04 0.11 0.02 

 
Table 11. Fit statistics and G2 difference test for the invariant and noninvariant models.                                          

Model G2 (df) AIC BIC CAIC aBIC BLRT p-value 

Constrained 153.94 (105) 197.94 321.06 343.06 257.16  

Unconstrained 90.84 (87) 170.84 394.70 434.70 267.62  

Difference 63.1 (18)*     <0.001 
*p = 0.00000064. 
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noninvariant LCA model provided better fit to the data, while the BIC, CAIC and aBIC all suggested that the 
best fit was given by the constrained model. Based on the results of the simulation study described previously, it 
would appear that the BLRT, in particular, may provide more accurate results for measurement invariance than 
the other approaches, because it displays higher power while maintaining the nominal (0.05) Type I error rate. 
Thus we will work under the presumption that item response probabilities did differ between clusters across 
genders. An examination of Table 10 suggests that females in the highest risk group (latent class 1) were more 
likely to wear a safety belt, and less likely to fight or ride with a drinking driver than their male counterparts. 
Similarly, females in the lowest risk category (latent class 2), were less likely to engage in risky behaviors such 
as not wearing a bicycle helmet, not wearing sunscreen or fighting than were males in the low risk class. Indeed, 
the same pattern across genders was also seen in latent class 3, where females were less likely to engage in risky 
behaviors (i.e. not wearing a seat belt, fighting, not wearing a motorcycle helmet) than males, except for riding 
with a drinking driver, which they were actually more likely to do than were males in the corresponding latent 
class. 

These results appear to support the a priori hypothesis that the nature of risk taking typologies differs between 
males and females. Male and female respondents did appear in the same basic latent classes based on their like-
lihood to engage in risky behaviors, including those who were relatively risk averse, those who were more likely 
to engage in reckless behavior, and a third group of individuals who were in the middle of the other two in terms 
of their likelihood to engage in reckless behavior. However, with respect to endorsement of specific reckless 
behaviors, females in each of these classes were more risk averse than their male counterparts, with the excep-
tion of latent class 3 and riding with a drinking driver. Thus, the hypothesis that there would be different typolo-
gies of individuals with respect to their propensity for engaging in reckless behaviors was upheld, as was the 
hypothesis that females would be less likely than males to engage in such behaviors regardless of typology. 
Given the lack of measurement invariance, it is not recommended that we test for the equality of latent class 
prevalences across groups [5]. 

4. Discussion 
The goal of this study was to compare several statistics in terms of their ability to correctly ascertain whether 
group invariance was present in the context of MGLCA. In addition, the use of MGLCA to conduct an inva-
riance analysis with risk assessment items from the YRBS was also demonstrated. It is hoped that the results 
presented here will aid researchers from a variety of fields in successfully conducting invariance testing with 
LCA models. The outcomes described above suggest that BLRT is the optimal method, of those studied here, 
for assessing the invariance question. Whether considering measurement invariance or the equivalence of class 
prevalences, the BLRT most consistently maintained the Type I error rate of 0.05, while simultaneously yielding 
among the highest power values in the simulation study. This combination of Type I error control with relatively 
high power was particularly notable in the comparison of class prevalence estimates across groups, where vir-
tually all of the other methods either kept the error rate at or below the nominal 0.05 level and had low power 
(i.e. CAIC, aBIC), or had higher power but were unable to control the Type I error rate (i.e. 2G∆ , AIC). Consi-
dering the hypotheses built upon earlier work and stated above, it does appear that BLRT is the most accurate 
method for investigating LCA invariance. This result is in keeping with work by Nylund, Asparouhov and 
Muthén [6] showing that BLRT was also optimal for selecting the number of latent classes. In addition, the 2G∆  
difference test did display some sensitivity to large sample size for assessing measurement invariance with 4 
classes, but not in most other simulated conditions, thus partially matching earlier work showing its sensitivity 
to large N [20]. Additionally, as noted above, prior research in the LCA model selection literature found that 
AIC had a tendency to identify the presence of more latent classes in the sample than were actually present in 
the population [15]. This tendency to be overly liberal was evident for the AIC in comparing the equivalence of 
group prevalence estimates as well, where it too often indicated that the groups differed in this regard when they 
did not. Finally, consistent with the mixed results from the body of prior research with regard to information in-
dices, no one of them was found to be clearly superior to the others. While the CAIC, BIC, and aBIC did not 
have the Type I error inflation of the AIC, neither did they have its power for rejecting the invariance null hy-
pothesis when it was incorrect. For example, for determining whether the latent class specific item response 
probabilities differ across known groups (i.e. measurement invariance), the AIC and perhaps the 2G∆  performed 
better than did CAIC, BIC, or aBIC in terms of power and Type I error. Indeed, while having error rates at or 



H. Finch 
 

 
208 

near 0, these latter three methods also had very low power for measurement invariance when compared to the 
other techniques. Therefore, it is not clear that having such low error rates is truly a positive characteristic, given 
the concomitant low power rates, as it appears that these statistics are simply unlikely to reject the invariant 
model whether it is true or not. Finally, it was of interest that the aBIC did not perform better than the other in-
formation indices, although in some model selection studies it had been shown to be superior [13] [14]. Clearly, 
further investigation of this statistic in the context of confirmatory LCA is called for. 

In addition to providing insights into which statistics worked best under a variety of conditions, this study also 
revealed situations in which invariance testing in LCA might be somewhat more problematic. Specifically, when 
the observed groups differ in size by as much as a 3/1 ratio, several of the statistical approaches to assessing 
LCA invariance will be adversely affected, yielding lower power, particularly in the presence of more latent 
classes. On the other hand, the null hypothesis of equivalence of latent class prevalences will too frequently be 
rejected incorrectly in the unequal known group sample size case, with the exception of aBIC and BLRT. While 
the BLRT did have slightly lower power values in the 3/1 group ratio case, this difference was quite modest 
when compared to the other methods, typically decreasing by less than 0.05. In addition, study results show that 
when more latent classes are present in the population, the ability to accurately detect a lack of invariance may 
be compromised. Indeed, across most of the methods studied here and most of the simulated conditions, power 
for finding such differences declined from the 2 class condition. This decline was much less precipitous, how-
ever, for the BLRT when compared to the other methods. 

4.1. Limitations and Directions for Future Research 
By its very nature, simulation research presents some limitations in that the results are only generalizable to real 
world situations that mirror those simulated. While the conditions used here were selected in order to match real 
world examples in the literature, they could not be exhaustive. Therefore, future research in this area needs to 
continue in several directions. First of all, the observed variables simulated here were all dichotomous in nature. 
Thus, future studies should focus on the application of MGLCA to the case of polytomous data. In addition, the 
use of 5 indicators, while relatively common in practice, was not varied, so that subsequent work needs to ex-
pand the conditions for the number indicators so as to ascertain to what extent it may impact both types of inva-
riance testing. The number of latent classes was also held constant for the two groups, which may not reflect all 
conditions encountered in actual practice. Therefore, future research should also consider cases when the num-
ber of classes in fact differs across observed groups. Likewise the number of groups was held constant at 2. 
While this is also very common in actual practice, it is nonetheless a limitation of this study in that we didn’t 
learn how well MGLCA can correctly determine invariance when the number of groups is larger. Finally, future 
studies should also examine a broader range of group size ratios. These results suggest strongly that the relative 
sizes of the groups matters, particularly in terms of testing the relative prevalence of latent classes. The two con-
ditions simulated here, 1/1 and 3/1, were selected to represent two disparate and perhaps extreme cases. Howev-
er, it would be very informative for practitioners wishing to use MGLCA to know at what point between the 1/1 
and 3/1 ratios group size inequality becomes problematic.  

4.2. Recommendations for Practice 
The use of MGLCA for invariance testing offers great promise for researchers interested in questions regarding 
latent class model invariance. It is hoped that the current study provides researchers with information leading to 
optimal practice in LCA invariance testing. Based on these results, it would appear that, as is true with model 
selection [6], the BLRT may be the optimal tool for assessing invariance in the context of LCA. It was able to 
both maintain the nominal Type I error rate across virtually all simulated conditions, and yielded power that was 
always as high as, or higher than the other methods. Furthermore, the BLRT worked relatively well for both 
types of invariance assessment, which was not the case for the other statistics studied here. For this reason, the 
BLRT appears to be an optimal choice. In addition, researchers must always consider the structure of their data 
when interpreting MGLCA results. The presence of relatively many latent classes, coupled with unequal ob-
served group sizes will result in diminished power, even for BLRT. Thus, in such conditions, those engaged in 
invariance assessment must carefully consider the meaning of a non-significant test result. Nonetheless, the 
BLRT is clearly a promising method for assessing LCA invariance and as such should prove to be quite useful 
for researchers interested in using MGLCA to conduct this analysis. 



H. Finch 
 

 
209 

References 
[1] Hoijtink, H. (2001) Confirmatory Latent Class Analysis: Model Selection Using Bayes Factors and (Pseudo) Likelih-

ood Ratio Statistics. Multivariate Behavioral Research, 36, 563-588.  
http://dx.doi.org/10.1207/S15327906MBR3604_04 

[2] McCutcheon, A.L. (2002) Basic Concepts and Procedures in Single- and Multiple-Group Latent Class Analysis. In: 
Hagenaars, J.A. and McCutcheon, A.L., Eds., Applied Latent Class Analysis, Cambridge University Press, Cambridge, 
56-86. http://dx.doi.org/10.1017/CBO9780511499531.003 

[3] Laudy, O., Boom, J. and Hoijtink, H. (2005) Bayesian Computational Methods for Inequality Constrained Latent Class 
Analysis. In: van der Ark, L.A., Croon, M.A. and Sijtsma, K., Eds., New Developments in Categorical Data Analysis 
for the Social and Behavioral Sciences, Lawrence Erlbaum Associates Publishers, Mahwah, 63-82.  

[4] Finch, W.H. and Bronk, K.C. (2011) Conducting Confirmatory Latent Class Analysis Using Mplus. Structural Equa-
tion Modeling, 18, 132-151. http://dx.doi.org/10.1080/10705511.2011.532732 

[5] Collins, L.M. and Lanza, S.T. (2010) Latent Class and Latent Transition Analysis: With Applications in the Social, 
Behavioral and Health Sciences. Wiley, New York.  

[6] Nylund, K.L., Asparouhov, T. and Muthén, B.O. (2007) Deciding on the Number of Classes in Latent Class Analysis 
and Growth Mixture Modeling: A Monte Carlo Simulation Study. Structural Equation Modeling, 14, 535-569.  
http://dx.doi.org/10.1080/10705510701575396 

[7] French, B.F. and Finch, W.H. (2006) Confirmatory Factor Analytic Procedures for the Determination of Measurement 
Invariance. Structural Equation Modeling, 13, 378-402. http://dx.doi.org/10.1207/s15328007sem1303_3 

[8] Lubke, G.H. and Muthén, B.O. (2004) Applying Multigroup Confirmatory Factor Models for Continuous Outcomes to 
Likert Scale Data Complicates Meaningful Group Comparisons. Structural Equation Modeling, 11, 514-534.  
http://dx.doi.org/10.1207/s15328007sem1104_2 

[9] Cheung, G.W. and Rensvold, R.B. (2002) Evaluating Goodness-of-Fit Indexes for Testing Measurement Invariance. 
Structural Equation Modeling, 9, 233-255. http://dx.doi.org/10.1207/S15328007SEM0902_5 

[10] Akaike, H. (1987) Factor Analysis and AIC. Psychometrika, 52, 317-332. http://dx.doi.org/10.1007/BF02294359 
[11] Bozdogan, H. (1987) Model Selection and Akaike’s Information Criterion (AIC): The General Theory and Its Analyti-

cal Extensions. Psychometrika, 52, 345-370. http://dx.doi.org/10.1007/BF02294361 
[12] McLachlan, G. and Peel, D. (2000) Finite Mixture Models. Wiley, New York. http://dx.doi.org/10.1002/0471721182 
[13] Tofighi, D. and Enders, C.K. (2007) Identifying the Correct Number of Classes in a Growth Mixture Model. In: Han-

cock, G.R., Ed., Advances in Latent Variable Mixture Models, Information Age, Greenwich, 317-341.  
[14] Yang, C. (2006) Evaluating Latent Class Analyses in Qualitative Phenotype Identification. Computational Statistics & 

Data Analysis, 50, 1090-1104. http://dx.doi.org/10.1016/j.csda.2004.11.004 
[15] Celeux, G. and Soromenho, G. (1996) An Entropy Criterion for Assessing the Number of Clusters in a Mixture Model. 

Journal of Classification, 13, 195-212. http://dx.doi.org/10.1007/BF01246098 
[16] Jedidi, K., Jagpal, H. and DeSarbo, W.S. (1997) Finite-Mixture Structural Equation Models for Response-Based Seg-

mentation and Unobserved Heterogeneity. Marketing Science, 16, 39-59. http://dx.doi.org/10.1287/mksc.16.1.39 
[17] Read, T.R.C. and Cressie, N.A.C. (1988) Goodness of Fit Statistics for Discrete Multivariate Data. Springer, New York. 

http://dx.doi.org/10.1007/978-1-4612-4578-0 
[18] Koehler, K.J. and Larntz, K. (1980) An Empirical Investigation of Goodness of Fit Statistics for Sparse Multinomials. 

Journal of the American Statistical Association, 75, 336-344. http://dx.doi.org/10.1080/01621459.1980.10477473 
[19] Koehler, K.J. (1986) Goodness-of-Fit Tests for Log-Linear Models in Sparse Contingency Tables. Journal of the 

American Statistical Association, 81, 483-493. http://dx.doi.org/10.1080/01621459.1986.10478294 
[20] Meade, A.W. and Lautenschlager, G.J. (2004) A Monte-Carlo Study of Confirmatory Factor Analytic Tests of Mea-

surement Equivalence/Invariance. Structural Equation Modeling, 11, 60-72.  
http://dx.doi.org/10.1207/S15328007SEM1101_5 

[21] Burnham, K. and Anderson, D. (2003) Model Selection and Multimodel Inference: A Practical-Theoretic Approach. 
Springer-Verlag, New York.  

[22] Vrieze, S.I. (2012) Model Selection and Psychological Theory: A Discussion of the Differences between the Akaike 
Information Criterion (AIC) and the Bayesian Information Criterion (BIC). Psychological Methods, 17, 228-243.  
http://dx.doi.org/10.1037/a0027127 

[23] Shao, J. (1997) An Asymptotic Theory for Linear Model Selection (with Discussion). Statistica Sinica, 7, 221-242.  
[24] Wicherts, J.M. and Dolan, C.V. (2004) A Cautionary Note on the Use of Information Fit Indexes in Covariance Struc-

http://dx.doi.org/10.1207/S15327906MBR3604_04
http://dx.doi.org/10.1017/CBO9780511499531.003
http://dx.doi.org/10.1080/10705511.2011.532732
http://dx.doi.org/10.1080/10705510701575396
http://dx.doi.org/10.1207/s15328007sem1303_3
http://dx.doi.org/10.1207/s15328007sem1104_2
http://dx.doi.org/10.1207/S15328007SEM0902_5
http://dx.doi.org/10.1007/BF02294359
http://dx.doi.org/10.1007/BF02294361
http://dx.doi.org/10.1002/0471721182
http://dx.doi.org/10.1016/j.csda.2004.11.004
http://dx.doi.org/10.1007/BF01246098
http://dx.doi.org/10.1287/mksc.16.1.39
http://dx.doi.org/10.1007/978-1-4612-4578-0
http://dx.doi.org/10.1080/01621459.1980.10477473
http://dx.doi.org/10.1080/01621459.1986.10478294
http://dx.doi.org/10.1207/S15328007SEM1101_5
http://dx.doi.org/10.1037/a0027127


H. Finch 
 

 
210 

ture Modeling with Mean. Structural Equation Modeling, 11, 45-50. http://dx.doi.org/10.1207/S15328007SEM1101_3 
[25] Dziak, J.J., Lanza, S.T. and Xu, S. (2011) SimulateLcaDataset SAS Macro Users Guide, Version 1.1.0. The Metho-

dology Center, Pennsylvania State University, University Park. http://methodology.psu.edu  
[26] Lanza, S.T., Dziak, J.J., Huang, L., Xu, S. and Collins, L.M. (2011) PROC LCA & PROC LTA Users’ Guide (Version 

1.2.3). The Methodology Center, Pennsylvania State University, University Park. http://methodology.psu.edu  
[27] SAS Institute (2009) SAS Version 9.1. SAS Institute, Cary.  
[28] Arnett, J. (1995) The Young and the Reckless: Adolescent Reckless Behavior. Current Directions in Psychological 

Science, 4, 67-70. http://dx.doi.org/10.1111/1467-8721.ep10772304 
[29] Poulin, C., Boudreau, B. and Asbridge, M. (2007) Adolescent Passengers of Drunk Drivers: A Multi-Level Exploration 

into the Inequities of Risk and Safety. Addiction, 102, 51-61. http://dx.doi.org/10.1111/j.1360-0443.2006.01654.x 
[30] McCartt, A.T. and Northrup, V.S. (2004) Factors Related to Seat Belt Use among Fatally Injured Teenage Drivers. 

Journal of Safety Research, 35, 29-38. http://dx.doi.org/10.1016/j.jsr.2003.09.016 
[31] Bianco, A., Trani, F., Santoro, G. and Angelillo, I.F. (2005) Adolescents’ Attitudes and Behavior towards Motorcycle 

Helmet Use in Italy. European Journal of Pediatrics, 164, 207-211. http://dx.doi.org/10.1007/s00431-004-1604-9 
[32] Everett, S., Miyamoto, J., Saraiya, M. and Berkowitz, Z. (2012) Trends in Sunscreen Use among U.S. High School 

Students: 1999-2009. The Journal of Adolescent Health, 50, 304-307.  
http://dx.doi.org/10.1016/j.jadohealth.2011.04.024 

[33] Klein, K., Thompson, D., Scheidt, P., Overpeck, M. and Gross, L., HBSC International Investigators (2005) Factors 
Associated with Bicycle Helmet Use among Young Adolescents in a Multinational Sample. Injury Prevention, 11, 
288-293. http://dx.doi.org/10.1136/ip.2004.007013 

[34] Lowry, R., Powell, K.E., Kann, L., Collins, J.L. and Kolbe, L.J. (1998) Weapon-Carrying, Physical Fighting, and Fight 
Related Injury among U.S. Adolescents. American Journal of Preventive Medicine, 14, 122-129.  
http://dx.doi.org/10.1016/S0749-3797(97)00020-2 

[35] Hirschberger, G., Florian, V., Mikulinger, M., Goldenberg, J.L. and Pyszczynski, T. (2002) Gender Differences in the 
Willingness to Engage in Risky Behavior: A Terror Management Perspective. Death Studies, 26, 117-141.  
http://dx.doi.org/10.1080/074811802753455244 

[36] Byrnes, J.P., Miller, D.C. and Schafer, W.D. (1999) Gender Differences in Risk Taking: A Meta-Analysis. Psycholog-
ical Bulletin, 125, 367-383. http://dx.doi.org/10.1037/0033-2909.125.3.367 

[37] Sclove, L. (1987) Application of Model-Selection Criteria to Some Problems in Multivariate Analysis. Psychometrika, 
52, 333-343. http://dx.doi.org/10.1007/BF02294360 
 

http://dx.doi.org/10.1207/S15328007SEM1101_3
http://methodology.psu.edu/
http://methodology.psu.edu/
http://dx.doi.org/10.1111/1467-8721.ep10772304
http://dx.doi.org/10.1111/j.1360-0443.2006.01654.x
http://dx.doi.org/10.1016/j.jsr.2003.09.016
http://dx.doi.org/10.1007/s00431-004-1604-9
http://dx.doi.org/10.1016/j.jadohealth.2011.04.024
http://dx.doi.org/10.1136/ip.2004.007013
http://dx.doi.org/10.1016/S0749-3797(97)00020-2
http://dx.doi.org/10.1080/074811802753455244
http://dx.doi.org/10.1037/0033-2909.125.3.367
http://dx.doi.org/10.1007/BF02294360

	A Comparison of Statistics for Assessing Model Invariance in Latent Class Analysis
	Abstract
	Keywords
	1. Introduction
	1.1. The LCA Model
	1.2. MG LCA and Invariance Testing
	1.3. Statistics Used in Assessing LCA Model Invariance
	1.4. Prior Research in LCA Model Selection and Model Invariance Assessment
	1.5. Goal of the Current Study

	2. Methods
	2.1. Manipulated Study Conditions
	Type of Invariance

	2.2. Number of Latent Classes
	2.3. Sample Size and Observed Group Size Ratio
	2.4. Latent Class Size Ratio
	2.5. Proportion of Noninvariant Items
	2.6. Magnitude of Measurement Noninvariance
	2.7. Magnitude of Class Prevalence Inequality
	2.8. Study Outcome Variables
	2.9. Analysis of Study Outcomes

	3. Results
	3.1. Measurement Invariance: Type I Error Rate
	3.2. Measurement Invariance: Power
	3.3. Measurement Invariance Summary
	3.4. Equivalence of Latent Class Prevalences: Type I Error Rate
	3.5. Equivalence of Latent Class Prevalences: Power
	3.6. Summary of Prevalence Equivalence Testing Results
	3.7. Analysis of Youth Risk Behavior Survey Data

	4. Discussion
	4.1. Limitations and Directions for Future Research
	4.2. Recommendations for Practice

	References

