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Abstract 
The trace of a Wishart matrix, either central or non-central, has important roles in various multi-
variate statistical questions. We review several expressions of its distribution given in the litera-
ture, establish some new results and provide a discussion on computing methods on the distribu-
tion of the ratio: the largest eigenvalue to trace. 
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1. Introduction 
Let ( )~ ,pN ΣX µ  be a normal vector and { }1, , NX X  be a sample taken from this multivariate normal  

population. Classical results show that the sample mean vector 
1

1 N

i
iN =

= ∑X X  is independent of the sample  

covariance matrix S , where 

( )( )T

1
,    1

N

j
n n N p

=

= = − − = − ≥∑ j jS V X X X X , 

and they are distributed respectively, as a normal vector ( ),pN NΣX µ  and a central Wishart matrix 
( )~ ,pW n ΣV , with n  degrees of freedom and covariance matrix Σ , with density 
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where ( ) ( )tretr e= XX , > 0V  means that V  is positive definite matrix, and 
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If n p< , the distribution is singular and no density exists. The case of pseudo-Wishart matrices will not 
be considered in detail here. 

Several important results in Multivariate analysis are associated with either the determinant, trace or the ei-
genvalues of this matrix. 

For T

1

N

j j
j=

= ∑U X X , we have the non-central Wishart ( )~ , ,pW N Σ ΘU , with non-centrality parameter  

1 TN −=Θ Σ µµ , which has the more complicated density expression:  
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where > 0U , and ( )0 1 .F  is the hypergeometric function with one matrix argument, and reduces to (1) when 
=Θ 0 . 
We can also have the matrix X  formed by the n column vectors ( )~ ,j pN ΣX µ , and consider the product 

matrix TXX . We have then ( )T ~ , ,pW n Σ ΘXX , where 1 Tn −=Θ Σ µµ . More general is the case where jX  
are independent observations from ( ),p jN Σµ , 1 j n≤ ≤ , with different values for jµ . We then form the 
p n×  matrix [ ]1 2 n= µ µ µ µ  and we again have: 

( )T ~ , ,pW n Σ ΘXX , where 1 T−=Θ Σ µµ . 

If we consider at the start the p n×  rectangular matrix as variate, i.e. ( )~ ,p n nN × ⊗ΣX M I , n p≥ , the 
product matrix TXX  is Wishart, i.e. ( )T ~ , ,pW n Σ ΘXX , where 1 T−=Θ Σ MM , central if = 0M  and 

=Θ 0 , or non-central with density (2) otherwise. 
We wish to avoid too technical results in this article, that could digress us from the real purpose of this survey- 

type article, which is to gather results on the distribution of the trace of the Wishart matrix, that are still scattered 
in the literature. But several new research results related to this trace, are also presented. In most cases, we will 
present both the central and the non-central cases, or the null and non-null distributions of a test criterion. It is 
also natural that we will encounter zonal polynomials, the values of which are not completely known. Finally, 
due to the extremely complicated mathematical expressions of certain results we will refer the reader to the 
original publications when this approach appears to be more convenient. 

The non-central Wishart distribution has an important role in theoretical Multivariate analysis, but recently 
has also found some applications, for example in Image Processing [1]. 

The Wishart distribution has been generalized in several directions and the most general extension of the Wi-
shart is made by Díaz-García and Guttiérez-Jáimez [2] to which we refer the reader for additional details. Con-
cerning the product of several positive common random univariate random variables, or the ratio of two positive 
random variates, H-function, or G-function distributions [3] will be used but we will not discuss the best tech-
nique to compute the values of these functions by the residue theorem, since this challenging mathematical 
problem is already an important topic in itself. Maple and Mathematica can deal with fairly complex cases. 

In Section 2 we will first recall several special functions that will be used later. In Section 3 we consider the 
central Wishart distribution and its trace. Similar results are established for the non-central Wishart and its trace 
in Section 4. Section 5 studies the moments of the trace while Section 6 considers the Wishartness of some qua-
dratic forms. Section 7 considers the sphericity problem where the trace of the Wishart matrix has an important 
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role. Finally, Section 8 considers the latent roots and their ratios to the trace and shows the need of further re-
search in this area. It also proposes the simulation approach that has proven to be very effective in some of our 
previous works. 

2. Some Special Functions 
2.1. Special Functions 
Table 1 gives all the probability densities treated here. 

Advanced statistics make use of several special functions and integral transforms: the Humbert function of the 
second kind and the Lauricella D-function. They are both defined as infinite series, and extended by analytic 
continuation and are related to each other. We define: 

 
Table 1. Table of densities.                                                                                       

RANDOM VARIABLE X  RANDOM MATRIX Y  
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1) The Lauricella D-function, in 2n +  parameters and n  scalar variables, by: 
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and ( ),0 1α = , which converges for all values of 1it < , 1, ,i n=  . 
2) Similarly, we define the Humbert function, in 1n +  parameters and n  scalar variables, by: 
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which converges for all values of t . 
We have the Dirichlet distribution (in n + 1 parameters and n variables), ( )~ Dir ;n bX a , with ( )1, , na a= a , 

which also has a key role in multivariate analysis. It has density: 
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The ( ) ( )2 .nΦ  function in n  variables is, in fact, the Laplace transform of the Dirichlet distribution. We 

have: 
( ) ( ) ( )( )2 ; ; expn b EΦ =a t t, X , 

where ( )1, , nt t= t , ( )1, , n
na a= ∈ a  and ( ) ( )1, , ~ Dir ;n nX X b= X a .  

The relation between ( ) ( )2 .nΦ  and ( ) ( ).n
DF  is [4]: 

( ) ( ) ( )
( ) ( )1
2

0
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An extension of ( ) ( )2 .nΦ  to the matrix variates is given by [5] and an application of ( ) ( )2 .nΦ  in renewal 
processes can be found in [6]. On the other hand, ( ) ( ); ; ;n

DF c ba t  has several integral representations, the most 
interesting one should be Euler’s type representation, as an hypergeometric integral in one variable:  

( ) ( ) ( ) ( ) ( )1
1

11 11
1

0

; ; ; 1 1 1 dnab c an c
D nF c b u u t u t u u−− − −−= − − −∫ a t ,                   (4) 

also known as Picard’s integral for ( ) ( ).n
DF .  

2.2. Integral Representations 
Formulas (3) and (4) above allow us to use several interesting mathematical results related to Hypergeometric 
integrals, which are the focus of much recent work by Gelfand, Krapalov and Zelevinsky [7], named GKZ inte-
grals. They are also known under the topic of A-Hypergeometric functions [8] during the last thirty years. The 
various hypergeometric functions in several variables, defined differently according to how variables are 
summed, and named as Horn, Lauricella, Wright, MacRobert functions etc., can now be integrated into a single 
approach. The introduction of Grobner basis in their study, by Saito, Sturmfels and Takayama [9], has lead to 
other important results.  

Since some of the results obtained by our research group are highly mathematical we do not reproduce them 
here but they can be obtained by writing to the third author. 

The trace of a square matrix is defined as the sum of its diagonal elements, and is sometimes used to measure 
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the total variance. So, let ( )trT = V , and its univariate density is under study in this article. 
For the central Wishart distribution, we will show in the next two sections that when 2

pσ=Σ I , the trace, T , 
is a central Chi-square variable. 

3. Central Wishart Distribution 
3.1. Two Cases for Σ   
Essentially there are two cases: 

1) The matrix sigma is diagonal, 2
pσ=Σ I : There are several ways to determine the distribution of T : 

Bartlett’s classical decomposition of the Wishart matrix, ( )2 21 ~ npTσ χ , is as follows: Let T=V W W  
where ( )ijt=W  is upper-triangular p p×  matrix with positive diagonal elements. Then the elements, ijt , 
1 i j p≤ ≤ ≤ , are all independent, with the diagonal elements 2

iit  being ( ) 2 22
11 ~ii n it χσ − + , 1, ,i p= 

, while 
the off-diagonal elements ijt  being 

( ) ( )1 0,1ijt Nσ  . 

Since we have ( ) ( ) 22 21 1
p

ij
i j

tTσ σ
≤

= ∑ , the diagonal elements will give a chi square with ( )1 2n n p p+ −  +  

degree of freedom, while the off-diagonal give a chi square with ( )1 2p p −  degree of freedom. Adding them 

together we then have a chi square with np  degree of freedom, i.e. ( )2 21 npTσ χ . 
Another approach: Consists in considering the latent roots on the diagonal matrix Ω  equivalent to V , 

( )T 2, ppW n σ= BVB IΩ , with B  is orthogonal matrix. These latent roots are iω , 1, 2, ,i p= 
 being in-  

dependent, with ( )21 iσ ω  being a chi square with n  degree of freedom.   

REMARK: In the more general case when ( )11 22Diag , , , ppσ σ σ=Σ  , then 2~ii
n

ii

v
χ

σ
. The trace is then a  

linear combination of independent central Chi-squares, each with n  degree of freedom.  
PROPOSITION 1. Let iT , 1, ,i k=   be the traces of k  independent Wishart matrices ( )~ ,i p i pW nU I .  

Then we have 2
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can have their densities expressed as G-functions. 
PROOF: Immediate from the above results and from [10], where products and ratios of G-functions are pre-

sented. 
QED. 
2) The matrix sigma is not diagonal, p≠Σ I : 
Results are quite complicated for this case since it involves zonal polynomials, whose expressions are only 

known for simple cases ([11], p. 341).  
For 2p = , the density is a mixture of gamma distributions, and various expressions of it are available in the 

statistical literature. 
For 2p > , T  has density  
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We have the usual notations: 0 λ< < ∞  is arbitrary (chosen to be ( )1 12 ppλ λλ λ+ ), where 1λ  and pλ   

are respectively the largest and the smallest latent roots of matrix Σ , ( )1 2, , , pk k kκ =   is a partition of k   
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3.2. Other Expressions 
Mathai and Pillai (1980) give another expression, quite similar: 

( ) ( )( ) ( )
( ) ( )( )

( )

1
12 22 1 2

0

2 2
2 2 e

! 2

k
p

n tnp np

k k

n C t
f t np t

k np

κκ
η κ

η −
∞−

−− +

=

−
= Γ ⋅

∑
∑

Σ
Σ

I
. 

However, using Mellin Transform methods [12] gives the following density function for T , which avoids the 
use of zonal polynomials 
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where 
1 2 1

1 1 1 1, ,
2 2p

t t
λ λ λ λ

   
= − −          

t , and ( )1
2

p−Φ  is the Humbert hypergeometric function of the second 

type mentioned earlier. 

4. Non-Central Wishart Distribution 
4.1. The Non-Central Chi-Square Distribution 
This distribution is present in many aspects of statistics. Its density is given in our table of densities but below is 
an alternate expression. 

Let ( )I wν  be the modified first Bessel function of the 1st kind 
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A particular case of (6) is the non-central Chi-square density with n  degrees of freedom and non-centrality 
parameter β , ( )2~ nY χ β , obtained when 

2,    1 2nν θ= = . 

Its density is then [13]: 
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where 0y > .  
Using the above functions Laha [14] proved that the reproductive property of the non-central Chi-square, i.e. 

the sum of m  independent non-central Chi-square is itself a non-central Chi-square, with parameters β  and 
n  being the corresponding sums of the related parameters.  

The density of the product or quotient of two non-central chi square variables can be established in closed 
form using either Fourier transform [14] or Mellin Transform [13]. Following the latter we have: 

PROPOSITION 2. Let iX , 1, 2i = , be two independent non-central Chi-square random variables ( )2
in iχ β , 

with densities given by (7). Then the product 1 2P X X=  has as density  
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where ( )vK x  is the modified Bessel function of the third kind and given by 

( ) ( ) ( ) ( )( )1πsin π1
2v v vv I xK Ix x−

− −= . 

While the ratio 1

2

XR
X

=  has as density 

( )
( )( ) ( ) ( )

1

1 2

22 2
1 2 11 2

2
2 2 12

2
0 0 1 2

exp
2 2

! !2 11
2 2

i

j ij
n

jn n
j i

n n j
rg r r

n ni j irr i j i

β β β
ββ∞

−
+

= =

   + + − Γ +          = ⋅  −    + + Γ + Γ + −   
   

∑ ∑ .        (9) 

4.2. The Non-Central Wishart Distribution 
As given by (2), its trace T  can now be shown to be a non-central Chi-square in some cases. 

First, a simple case is the linear non-central case where the non-centrality parameter is concentrated at one 
component, can be treated as the central case [15]. For a normal vector X , this will happen when only the first 
component of µ  is different from 0 and for a normal p m×  matrix X , when only the first line of M  is 
different from 0. More precisely, let 

( )~ , ,p pW n ΘX I , 

where ( )Diag ,0, ,0θ=Θ  . Then there is a decomposition of T=X TT , where T  is lower triangular with 
independent elements such that only the first element is a non-central Chi-square, i.e.  

( )2 2 2 2
11 1~ ,    ~ ,    2, ,n ii n it t i pχ θ χ − + =  , 

and ( )~ 0,1ijt N , 1 j i p≤ < ≤ .  
Hence we have  

( )2~ npT χ θ .                                       (10) 

The above result on Bessel function distributions now allows us to have the density of sums, product and ra-
tios of the traces of independent linear non-central Wishart distributions. We have the following 

THEOREM 1. Let ( )~ , ,j p j p jW n ΘX I , 1, 2j =  with ( )Diag ,0, ,0j jθ=Θ   and 1X  and 2X  be in-
dependent, and let 1T  and 2T  be the two respective traces. The sum 1 2S T T= +  is a non-central Chi-square, 
while for the product 1 2T T  and ratio 1 2T T , their densities can be expressed in closed form, using (8) and (9). 

PROOF. Applying (10), we have ( )
1

2
1 1~ n pT χ θ , and similarly for ( )

2

2
2 2~ n pT χ θ .  

For 1 2+X X , we have 

( ) ( ) ( )
1 2

2
1 2 1 2 1 2tr ~ n n pT T χ θ θ++ = + +X X . 

For the product, we have 1 2T T  having density given by (8) for its first component, while for the ratio 1 2T T , 
it has density (9) where 1 1β θ=  and 2 2β θ= , also for its first component. We then use the reproductive prop-
erty of the non-central Chi-square. 

QED. 

4.3. Numerical Example 
We can use (8) and (9) to graph the density of the product and quotient of the two traces. Some computer alge-
bra software, Maple and Mathematica, for example, can do the computation in (8) (9) as an infinite series. But 
the computation, especially for (8), is very slow. Here, we approximate (8) by taking a large number of terms.  
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with the value 500M = , this approximation seems to be very good. Let  

( )1 2 2 12, ,W ΘX I  and ( )2 2 2 23, ,W ΘX I , 

where 1

1 15 0
0 0

 
=  
 

Θ  and 2

1 10 0
0 0

 
=  
 

Θ . We get the following graphs of densities of ( )1 1trT = X ,  

( )2 2trT = X , 1 2P T T=  and 1

2

TR
T

= , where the horizontal scales are very different (Figure 1). 

In the case of planar non-centrality, i.e. ( )1 2Diag , ,0, ,0θ θ=Θ  , as remarked by Anderson [16], we run into 
an infinite series of Bessel functions and formulas become very complicated. 

4.4. Case Σ pI≠  
We have the following argument, based on the  Moment Generating Function (MGF) of T  given by [17]:  

For ( )~ ,i p iN ΣX µ , 1, ,i n=  , we let [ ]1 2 n= X X X X , [ ]1 2 n= M µ µ µ , and  
1 2 1 2T1 2 − −= Σ ΣΩ MM , we have  

( )T , ,pW n Σ ΘXX . 

Here we set 2=Θ Ω , as in [17] where it is shown that the MGF of ( )TtrT = XX  is given by 

( ) ( ) ( ) ( ){ }2 1

1
etr 1 2 exp 1 2

p n
T jj j

j
jM t t b tλ λ

− −

=

= − − −∏Ω , 

where jjb  is the j-th diagonal element of TQ QΩ , Q  is the orthogonal matrix such that 

( )T
1 2Diag , , , pλ λ λ= =ΛΣ Q Q . 

 

 
Figure 1. Density of ( )1 1trT = X , ( )2 2trT = X , 1 2P T T=  and 1 2R T T= .                         
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Using ( ) ( )T

1
tr tr

p

jj
j

b
=

= − = −− ∑QQΩ Ω  and, writing ( ) 2
exp exp exp

1 2 1 2
j

j j

jj jj
jj

b b
b

t
t
t

λ
λ λ

      − =   
−   −   

, we have 

( )
( ) ( ){ }
( ) 2

1

1

exp 12

1 2

2p jj j

j
n

j

j

T

t tb
M t

t

λ λ

λ=

−

−

−
=∏ . 

Using the MGF of the Non-Central Chi-square in our table of densities we have the expression of the trace T  
in terms of a linear combination of non-central Chi square variables with n  degrees of freedom each and non- 
centrality parameter 2 jjb , the j-th diagonalelement of TQ QΩ , i.e.  

1

p

j j
j

T Yλ
=

= ∑ ,                                         (11) 

where ( )2 2j n jjY bχ , with 1, , pY Y  independent.  
The density of T  can be given under a variety of forms by inverting the MGF of T . [12], for example, 

gives 3 forms (see Section 4.7). 
The density of a linear combination of non-central chi-square variables has been the subject of investigation 

by several authors, since it is associated with quadratic forms in normal variables. Ruben [18], Press [19] and 
Hartville [20] seemed to be among the first investigators. More recent is the work of Provost and Ruduik [21]. 

The approach using Laguerre expansions seems promising, as shown by some authors, including Castano- 
Martinez and Lopez-Blasquez [22]. But all the formulas obtained are quite complicated and we refer the readers 
to these articles. It should be mentioned that using the same MGF, Kourouklis and Moschopoulos [23] give this 
density as an infinite combination of gamma densities. 

4.5. A Simulation Study 
Simulation for the density of the trace of non-central Wishart matrix. Following 4.4, let the covariance matrix be  

3 2 0
2 4 2
0 2 5

 
 = − 
 − 

Σ , positive, definite. And the four means be: 

( ) ( ) ( ) ( )1 2 3 4
T T T T,    ,  1 2,2,1 1 3,1, 2 3,  ,   1 3 3,2,2 ,= = = =µ µ µ µ . 

With the above means and covariance matrix, we have: 
1 2 2

1 2 1 2
3

2 2 1

− − 
 = − 
 
 

Q , 
7 0 0
0 4 0
0 0 1

 
 =  
 
 

Λ , 

1 2

7 0 0
0 2 0
0 0 1

 
 

=  
 
 

Λ , T

3 2 1
2 3 2
1 2 2

 
 =  
 
 

MM ,  

and the matrix TΘQ Q  is computed using: 

( )T T T 1 1 2T22 − −= =Θ Σ ΣQ Q MM QQ Q QΩ . 

T

0.3020 0.5471 0.2286
0.5471 10.2809 1.4383
0.2286 1.4383 3.1235

− − 
 = − 
 − 

ΘQQ . 

We finally have: 1 7λ = , 2 4λ = , 3 1λ =  and 112 0.3020b = , 222 10.2809b = , 332 3.1235b = . 
Now, two approaches are used to obtain the density of ( )Ttr XX : 
1) Direct approach 1: We use 
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( ) [ ][ ]( )TT
1 2 3 4 1 2 3 4tr tr ,T = =XX X X X X X X X X . 

We use Matlab command ( )mvnrnd ,i Σµ  to generate 4 normal vectors ( ) ( )3 ,j
ii N ΣX µ , 1, , 4i =  , from 

which we obtain a value of the trace ( ) ( ) ( )( )TtrT j j j= X X . Doing this operation 10,000 times we have the 
density of T  given by Figure 2. 

2) Approach using non-central Chi-squares: We use  

( ) 1 2 3
T 7tr 4Y Y YT = += +XX , 

where ( )2
1 4 0.3020Y χ , ( )2

2 4 10.2809Y χ , and ( )2
3 4 3.1235Y χ . 

We use Matlab routine ( )ncx2rnd 4,ψ  to generate observations ( )j
iy  from ( )2

4χ ψ , and compute  
( ) ( ) ( ) ( )

1 1 2 2 3 3
j j jy y yT j λ λ λ+ +=  10000 times and we have Figure 3. 

We can see that the two graphs are very close to each other. 

4.6. Modified Traces 
The influence of Σ  on T  is through the coefficients iλ . If we remove these coefficients we have the modi- 

 

 
Figure 2. ( )TtrT = XX  using Matlab. mndvn.                  

 

 
Figure 3. 1 1 2 2 3 3y yT yλ λ λ+ +=  using Matlab.ncxrdn.            
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fied trace Z . 
PROPOSITION 3: Let ( )~ , ,j p j j jW n Σ ΘV , 1, 2j =  with non-diagonal jΘ , be independent and jT , 

1, 2j =  be their traces. Let Zi, 1, 2j =  be the “modified traces” obtained from Ti by taking 1 2 1pλ λ λ= = = = . 
Then the sum 1 2Z Z+ , and of the product, 1 2Z Z  and ratio 1 2Z Z , can be obtained in closed form. 

PROOF: Using (11) with p=Σ I  and 

1 1pλ λ= = = . 

Thus, we have 

( )( )2 2

1
2 tr ,    1, 2

j j

p

jj n p ii n p
i

Z b jχ χ
=

 
= = 

 
∑ Θ , 

and their sum 1 2Z Z+  is itself a non-central Chi- square, with, as parameters the corresponding sums of indi-
vidual parameters, i.e.  

( ) ( ) ( )( )
1 2 1 2

2
1 2 tr trn n pZ Z χ ++ +Θ Θ . 

For the product: 1 2Z Z , we have the same distribution as the product of two non-central Chi-squared random 
variables, i.e. its density is given by (8). Similarly for the ratio, using (9). 

QED. 
Glueck and Muller [24] also relate the trace of any type of Wishart, singular or nonsingular, central or non- 

central, true or pseudo, to a weighted sum of non-central Chi-squared random variables and constants. However, 
the expression of this density is not given, although computational methods are presented, either approximate or 
permitting to prescribe a degree of accuracy. 

4.7. Some Expressions of the Density of T  
For some values of the parameters, there can be closed form expression for the density of T . For example, [12] 
gives this density when n  is even (or the sample size 1N n= +  is odd). The formula is however complicated, 
with reference to other works. 

When the general case we have an expression similar to (5), but preceded by the non-central factor:  

( )
( )

( )
( ) ( )

1

0 1 1 1
2 2

1

etr exp
! 2

, , ; ;
2

i

j

kp
mii

k i i p
pp

mm
j

j

b tt
k

f t m m m
m

κ λ

λ

∞
−

= = −

=

   
−   
  = ⋅Φ

−

Γ

∑∑ ∏

∏
 t

Ω

,              (12) 

with 
1 2 1

1 1 1 1, ,
2 2p

t t
λ λ λ λ

   
= − −          

t , 0 t< < ∞ , and ( ) 0f t = , 0t ≤ .  

where 
2i i
nm k= + , 1, ,i p= 

, 1 pm m m= + + , ( )1, , pk kκ =  , 
1

p

i
i

k k
=

= ∑ .  

In terms of zonal polynomials, we have Formula (14) of [12] using common zonal polynomials, or a more 
compact formula, using Davis expended zonal polynomials ( ), ,Cκ λ

φ X Y .  

( ) ( ) ( ) ( ) ( )
2 2 1

2 , , 1 1
2

, :

eetr 2 ,
2 2

qt np f
n

p np f

tf t n C q
np f

κ λ κ λ
φ φ

κ λ φ
θ φ

− + −∞
− − −

+= − −
Γ +∑Σ Σ ΣIΩ Ω .          (13) 

For 0t >  and ( ) 0f t = , 0t ≤ . 

5. Moments of the Trace 
The trace of V  is present in the expressions of several of its moments, and moments are frequently easier to  

obtain than densities themselves. For example, the r-th cumulant of T , rK , which is the coefficient of 
!

rt
r

 in  
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the expansion of ( )log TM t , where ( )TM t  is the moment generating function of T  is found in [17] to be  

( ) ( )!2 tr tr
2

r r rnr
r

 + 
 

Σ ΣΩ , which gives the mean of the trace ( ) ( ) ( )1 2 tr tr
2
nK E T  = = + 

 
Σ ΣΩ , a result  

also found in [25]. Saw [26], and Shah and Khatri [27] proved several other results on moments of the trace of 
the non-central Wishart. 

Some results are unexpected. For example, for ( )~ ,PW n ΣS , and A  is a p p×  constant matrix: 
( ) ( )T 2trE n n n= + +Σ Σ Σ Σ Σ ΣSAS A A A , and using zonal polynomials, 

( )( ) ( )tr 2 ,    0,1,2,
2

k k nE C kκ
κ κ

 = = 
 

∑S Σ  ([15], p. 98 and p. 106). 

Several other equalities can be found in the same reference. 
Letac and Massam [28], on the other hand, computed the moments of the Wishart matrix V , of the form 

( )( )E Q V , where ( )Q V  is an invariant polynomial in the entries of the matrix V , i.e. depending only on the 
eigenvalues of V . Finally, there are several results available in the literature on the expectation of ( )tr j V , 
which is the sum of all principal minors of order j of matrix V . For example, for ( ),pW n ΣV , we have: 

( ) ( ) ( )tr p
pE E n= = ΣV V  and ( )( ) ( ) ( )tr trj

j jE n= ΣV , 

where ( ) ( ) ( )1 1jn n n n j= − − + . 

6. The Wishartness of Certain Quadratic Forms 
For ( )~ ,pN ΣX µ , it is of interest to look for more general quadratic forms that could also be Wishart. 

There are 3 cases of Quadratic forms: 
• TX AX  is a unidimensional random variable when ( )~ ,pN ΣX µ . We are interested at  TX AX  being a 

non-central Chi-square variable. 
• TXAX  is a matrix if [ ]1 2 n= X X X X , where ( ),i pN ΣX µ . We are interested in the condition for this 

matrix to be Wishart. 
• Similarly, TXAX  is a random matrix, possibly Wishart when X  is a p n×  normal random matrix.  

PROPOSITION 4. ([15], p. 256-257) Let T=S XAX , where ( ),~ ,p n nN ⊗ΣX M I . Then the necessary  
and sufficient condition for S  to be distributed as ( )1 T, ,pW t −Σ Σ MAM  is that A  is idempotent of rank  

t p≥ . A similar condition applies to ( ),~ 0,p n nN ⊗ΣX I  to be ( ),pW t Σ .  
The trace T  of S  in these cases can be studied as previously. We will not elaborate on this point. 

7. Sphericity Testing Criterion 
In this section we limit ourselves to the vector case, i.e. of ( )~ ,pN ΣX µ . Understandably, as seen from what 
precedes, the case 2

pσ=Σ I  is important, and this test would permit us to accept, or not, that the matrix is di-
agonal with same diagonal value. 

7.1. Sphericity Test 
An interesting property of the Gamma distribution in shape parameter α  and scale parameter β , ( ),Ga α β , 
is that, for a random sample of observations the distribution of the arithmetic mean to the geometric mean is in-
dependent of the parameters [29]. An application in telecommunication is given by [30].  

Let ( )~ ,pNX Σµ and let { }1, , NX X be a sample from this distribution. Let 

( ) ( )T

1
,    1

N

i i
i

n N
=

= − − = −∑V X X X X . 

In testing the hypothesis 2
0 : pH σ= IΣ  (or the p  components are equally variable), called sphericity, we 

can use:  
1) The classical likelihood ratio criterion (LRC), ( ),W n p , first used by Mauchly [31] 

( )
( )

1

,
tr

p

W n p
p

=
  

V
V

.                                    (14) 
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The LRC above is hence the ratio of the geometric mean of the eigenvalues to their arithmetic mean. The 
null-distribution is the distribution of this criterion under 0H  is the density of the product of betas of the first 
kind, 

1

1

p

j
j

X
−

=
∏ ,                                          (15) 

where 1
1 1beta ,

2 2 2
I

j
j nX n j

p
  

− − + +  
  


, 

as shown by [32]. This product can be shown to have a G-function density, namely 

( ) ( )

2 1 2 1, ,
1 0 2 2,
1 1 2 1 2 1, ,

2 2 2 2

n n p
p p pf w K n p w
p p n n p

 − − − 
+ + −  =

− −  − − −
− −  





G ,                      (16)  

where 0 1w≤ ≤ , and  

( )
1

1

2
,

2

p

i

n i
p

K n p
n i

−

=

 
Γ + 
 =

− Γ 
 

∏ . 

2) The product of 2 independent beta products [16]: 

( ) 1 2,W n p W W∗ ∗= , 

with 1
2

p

j
j

W X∗

=

=∏  and ( )1
2

2
1

p
p i

i i
i

W p Y Y∗ −

=

= −∏ , where ( ) ( )( )1~ beta 1 2, 1 2I
iX n i i+ − − are mutually inde-

pendent from each other, while ( )( )1~ beta 1 2, 2I
iY n i n−  are also mutually independent.  

• ( ) 2

1 1

n
Wλ∗ ∗=  is the test criterion for 1H : The matrix is diagonal, and 

• ( ) 2

2 2

n
Wλ∗ ∗=  is the criterion for 2H : The diagonal elements are equal. 

Their product is 

( )1
1 2

2 2
1

p p
p i

j i i
j i

W W p X Y Y∗ ∗ −

= =

 
= − 

 
∏ ∏ . 

Since these two tests are in fact independent the product of the two criteria gives the above sphericity test cri-
terion. [32] has adopted a simulation approach to deal with this product. 

7.2. Bartlett’s Test 
In univariate statistics, using p  different samples to test that the variances of p  independent normal popula-  

tions are equal, we have Bartlett’s test for homogeneity, based on 
2 2

2
2

1

in
p

N i

i

s
L

S=

 
=  

 
∏ , where 2 2

1

p
i

i
i

n
S s

N=

= ∑ ,  

with 
1

p

i
i

N n
=

= ∑ .  

When the samples have the same size, Glaser [33] has shown that the null distribution of nU  is a product  

of independent betas: 
1

1j
j

n
X

−

=
∏ , where 

( )1beta ,I
j nX jα , 

n is sample size and α  is shape parameter of the Gamma distribution. U  is the ratio of the geometric mean 
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to the arithmetic mean. 
But when these sizes are different [33] shows that the distribution of Bartlett’s statistic, which now is the ad-

justed ratio of weighted geometric mean of the sample variances to their weighted arithmetic mean, can be ob-
tained with incomplete beta functions.  

Gleser ([34]) considered the two criteria 1λ
∗  and 2λ

∗  above and discussed the interesting relationship be-
tween Bartlett’s test and the sphericity test, which become equivalent under a change of variables. In the case of 
non-normality, Hartley’s test or Levene’s test, can be used to the same purpose. 

Accepting the hypothesis of sphericity allows us to proceed on to other topics, such as analysis of variance 
using repeated measures. A generalization of this test to g covariance matrices is possible, and is often known 
as the Mendoza test. 

7.3. Non-Null Distribution 
When 2

pσ≠Σ I , we have the non-null distribution of λ .   
1) Khatri and Srivastava [35] gives the following expression for the density of the LRC, using both zonal po-

lynomials and Meijer functions: 

( )
( )( )

( ) ( ) ( )
( )( ) ( )( ) ( )1

1 2 4 11 2

2 2 1 2
0

1

1

2π
!2 2

1 1 1, ,
0 2 2              ,

1 1, ,
2 2

p p pn p p
k pnp p

kp
i

i

p

C qnp k
p

p kp n

p k p p k
p p p
p p p pk k

κ

κ

λ
λ λ

λ

λ

−
− + ∞− −∗ ∗

− − −
=

=

∗

−Γ +
= ⋅

Γ

 − − + − 
+ + 

 ⋅
 − −

+ + 
 

∑∑
∑

Σ





I

G

 

where Cκ  is the zonal polynomial associated with κ .      
2) [36] propose a convenient strictly numerical method to approximate the power and test size under non- 

sphericity. 
REMARKS. The non-null density in testing diagonality, as given in [37], is a multiple infinite series involv-

ing Meijer functions:  

( )
( )1

1 1

1 1

0 0 0 0 0

1 1, 1, , ,, , ; , , 1 0 2 2
1 1 1! , 1, , ,

2 2

p

p p

aa s sm m p p

m a a j j

n na j s pL a a j j p
f y A y

p p n s nm s p m

∞

= = = = =

 − − 
+ − = +

 = ⋅
+ + − − = +  

∑ ∑ ∑ ∑ ∑


 

 



G , 

where A , ( )1 1, , , , ,p pL a a j j   is defined in [37]. 
Again, here, the computation of the values of this expression is very complicated and we refer the reader to 

the original paper. 

8. Distribution of Ratios of Latent Roots to the Trace 
This distribution has attracted renewed interest lately due to its uses in Physics, on random matrices. Krishnaiah 
and Shurmann [38] were among the first authors to investigate the distributions of these ratios. 

The Simulation approach: These distributions have been mentioned by [39] and Johnstone [40] in the con-
text of random matrices. There, the limit theorems are those of Tracy-Widom, or TW, and Wigner. In particular, 
Nadler reports that, under the hypothesis that ,p n →∞ , with p n c→ , than an approximate explicit expres-
sion of the distribution of this ratio 1l T , where 1l  is the largest latent root, can be derived, taking into con-
sideration the second derivative of the TW distribution. Computation and simulation methods are used to derive 
numerical results.  

1) Central case: 
a) When the matrix sigma is diagonal:  
Let { }1 2 pλ λ λ> > >  be the latent roots of the sample covariance matrix S . The ratio of two latent roots 

1 pλ λ  is also called “condition number” in regression and is associated with collinearity. Troskie [41] gives a 
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very complicated formula based on change of variable technique for the densities of these ratios, which we do 
not reproduce here. For the ratio of the largest to the trace ( )1 trλ S , this density is not even tractable. However, 
[42] gives a relation between the exact null-distribution of the j-th largest root and the distribution of the ratio of 
this root to the trace, but only for 2p ≤ .   

b) When the matrix sigma is not diagonal: 
This is even more complex and no result is available on this case. The only resort is by simulation, as in 

Pham-Gia and Turkkan (2010). Simulation of random matrices, using the appropriate technique, can be very 
accurate, as shown by several articles by Pham-Gia and Turkkan [39] [43].  

2) Non-central case:  
This case is naturally more complicated than the previous one and the simulation approach seems to be the 

only recourse. 

Example 
We give below the simulation results related to the ratio ( )1 trλ W . Where 1 2 pλ λ λ> > >  are latent roots 
of matrix ( ),pW n ΣW  with 10,000 generated observations in cases: 

1) 4p = , 8n = , ( )Diag 2,1,3,4=Σ . 
2) 1000p = , 2 2000n p= = , and ( )1 2 1000Diag , , ,λ λ λ=Σ  , where i iλ = , 1, ,1000i =  . 
The simulation results are given by Figure 4 & Figure 5. 

9. Conclusions 
We have gathered here several important research results related to the trace of a Wishart matrix, and also indi-
cated some potential research topics. Moreover, we have established several connections among these results 
and proved a few original results. The two main important applications of the trace are the sphericity test and the 
distribution of the ratio of a latent root to the trace. The lack of results in the second topic clearly shows that re-
search efforts should be made there, as already pointed out by some researchers. Matrix simulation can clearly 
supply several useful answers.  

 

 

Figure 4. Density function 
( )

1

tr
λ
W

 for 4, 2p n p= = .                            
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Figure 5. Density function 
( )

1

tr
λ
W

 for 1000, 2p n p= = .                          

 
Finally, as shown in our table of densities, the trace can be further investigated by considering the Gamma 

random matrix, of which the Wishart is only a special case. 
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