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Abstract 
We consider the nonlinear boundary value problems for elliptic partial differential equations and 
using a maximum principle for this problem we show uniqueness and continuous dependence on 
data. We use the strong version of the maximum principle to prove that all solutions of two-point 
BVP are positives and we also show a numerical example by applying finite difference method for 
a two-point BVP in one dimension based on discrete version of the maximum principle. 

 
Keywords 
Two-Point Boundary, Variational Problem, Stability Restriction 

 
 

1. Introduction 
In this paper, we have considered a simple two-point boundary value problem (BVP) for a second order linear 
ordinary differential equation. Using a maximum principle for this problem, we show uniqueness and conti-
nuous dependence on data. 

We write the BVP in variational form and use this together (with elements from functional analysis) we prove 
existence, uniqueness and continuous dependence on data. The finite difference method is a method for early 
development of numerical analysis to differential equations. In such a method, an approximate solution is sought 
at the points of a finite grid of points reducing the problem to a finite linear system of algebraic equations [1]. 

In this paper, we illustrate this for a two-point BVP in one dimension in which the analysis is based on dis-
crete versions of maximum principle. Much attention has been paid to the development, analysis and implemen-
tation of accurate methods for the numerical solution of this problem in the literature. Many problems are mod-
eled by smooth initial conditions and Dirichlet boundary conditions, see [2] and [3]. We can say that three 
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classes of solution techniques have emerged for solution of BVP for differential equations: the finite difference 
techniques, the finite element methods and the spectral techniques (see [4] and [5]). The last one has the advan-
tage of high accuracy attained by the resulting discretization for a given number of nodes [6] [7] and [8]. 

2. Variational Formulation 
We treat the two-point boundary value problem in Hilbert space ( )2 ΩL . We consider the problem 

( ):u u u u gα β γ′′ ′= − + + =  

in ] [Ω 0,1=  with ( )0 0u =  and ( )1 0u = . Here the coefficients ,  α β  and γ  are smooth and 

( ) ( ) ( )
00 ,    0,    Ω

2
x

x x x
β

α α γ
′

< ≤ − ≥ ∈  

Let φ  an auxiliary function on ( )1
0 ΩC , so multiplying Equation (1) by φ  and integrating over Ω  we have 

( )( )1 1

0 0
d du u u x g xφ α β γ φ′′ ′− + + =∫ ∫  

By using integration by parts with ( ) ( )0 1 0φ φ= =  we obtain 

( )1 1

0 0
d du u u x g xαφ βφ γφ φ′ ′ ′− + + =∫ ∫  

Here (4) is the variational formulation of the problem (1). If we introduce the bilinear form 

( ) ( )1

0
d ,r s r s rs x r sα β γ α′ ′ ′+ + =∫  

with the functional ( ) ( ) 1

0
, dL s g s gs x= = ∫ , we can write (3) as 

( ) ( ),L uφ α φ=  

for all 1
0Hφ ∈ . We can say that function u  is a weak solution of the problem (1) provided that 1

0u H∈  and (6) 
holds. 

Next we show two theorems that demonstrate the existence of a solution of the variational equation (6). 
Theorem 1. Let 2g L∈  and we assume that (2) holds. Then there exists a unique solution 1

0u H∈  of the 
problem (6) satisfying the condition 

1u k g≤ . 
Theorem 2. Let 0β =  and we assume that (2) holds. Furthermore let 2g L∈  and 1

0u H∈  be the solution 
of the problem (6), then ( ) ( )F u F φ≤  for all 1

0Hφ ∈  where 

( ) ( )( )1 12 2
0 0

1 d d
2

F x g xφ α φ γφ φ′= + −∫ ∫  

In theorem 1, we obtain the weak solution u of (6) and this solution is more regular than stated there, therefore 
u′′  exists as a weak function (derivative) and ( ) 2u g u u Lα β α γ′′ ′= − + − + ∈ . Hence, it follows that 2u H∈  
and also 

0 1u u g K u K gα α′′ ′′≤ ≤ + ≤  

This expression together with 
1u K g≤  where 1

02K α−=  implies the regularity estimates 
2u K g≤ . 

We can see that the weak solution of (1) is a strong solution, but we can also see that with α  less smooth we 
still obtain a weak solution in 1

0H . 
The next nonlinear boundary problem shows that all solutions are positive by using the strong version of 

maximum principle. 

2.1. Numerical Examples 
We consider the nonlinear boundary value problem 

( ) ( ),    0 1 0uu u e u u′′ = − + = =  

in ( )Ω 0,1= . In the maximum principle, we need to consider a differential operator  , i.e. in this case we have 
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0uu u u e′′= − = − + ≥  
for all u∈ . We can see that u  usually takes the general form 

u u u uα β γ′′ ′= − + +  

Therefore, we have 1α γ= =  and 0β = . Now, the maximum principle states that for a differential operator 
  and a function ( )2 Ωu∈  with the property that 0u ≥  in Ω , if 0γ ≥  in Ω , then 

( ) ( ){ }
Ω

min min 0 , 1 ,0u u u≥  

u and u  respect the conditions of the principle, the boundary conditions of the problem are ( ) ( )0 1 0u u= = . 
Thus, all solutions of u are 

( ) 0,    Ωu x u≥ ∀ ∈  

The strong version of the principle refers to the case when there is a minimum interior point inside Ω , which 
results in a constant value of the function u inside the domain Ω . We know already that 0u ≥ , and if we 
assume that u has a minimum point inside Ω  say x0 then 

( ) ( ) ( )0 0 00,    0,    0u x u x u x′ ′′= = ≥  

After this assumption, the expression 0u u′′= − + ≤ , but 0u ≥  by the initial hypothesis. Here, we have 
a contradiction, because the assumption that there is a minimum interior point is false. In the other words, the 
minimum 0 is attained only at the boundaries and all solutions inside the interval ( )0,1  are positive, i.e. 

( ) 0,    Ωu x u> ∀ ∈  

2.2. Variation Formulation and Existence of ′′u g− =  
In this case, we are going to solve 

( )   in   Ω 0,1u g′′− = =  

with the following boundary conditions: 

( ) ( ) ( ) ( ) ( ) ( ) ( )0 1 0,    0 1 0   and   0 0 1 0u u u u u u u′ ′ ′= = = = − + = =  

2.2.1. Solution with BCs: ( ) ( )0 1 0u u= =  
Let ( )1

0 ΩCφ ∈  an auxiliary function with the homogeneous boundary conditions as u, ( ) ( )0 1 0φ φ= = . Mul-
tiplying the initial differential operator u′′−  and the function f by φ , then expression (7) becomes 

( ) ( ) ( ) ( )u x x g x xφ φ′′− =  

Next, integrate over Ω  we have 

( ) ( ) ( ) ( )1 1

0 0
d du x x x g x x xφ φ′′− =∫ ∫  

By using integration by parts, we can write the left hand side as 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]
1 1 1

0,10 0 0
d d du x x x u x x x u x x x u x xφ φ φ φ′′ ′′ ′ ′ ′− = − = −∫ ∫ ∫  

The last term comes down to 0, 

( ) ( )[ ] ( ) ( ) ( ) ( )( ) ( ) ( )0,1 1 1 0 0 1 0 0 0 0u x x u u u uφ φ φ′ ′ ′ ′ ′− = − − − = − ⋅ + ⋅ =  

therefore, the Equation (8) becomes 

( ) ( ) ( ) ( )1 1

0 0
d du x x x g x x xφ φ′ ′ =∫ ∫  

which is the variational form of the (7). 
Lax-Milgram lemma may allow us to prove existence of a solution. First we consider the LHS and the RHS as 

a bilinear form and a linear functional respectively, in fact 
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* ( ) 1

0
, da v w v w x′ ′= ∫  (LHS) is a bilinear form because ( ),a v w  on Ω  is a function :Ω Ωa × →  . Now it 

is linear in each argument separately, 

( ) ( )

( ) ( )

1 1 1

0 0 0

1 1 1

0 0 0

, d d d ;

, d d d .

a u v w u v w x u w x v w x

a w u v w u v x w u x w v x

λ µ λ µ λ µ

λ µ λ µ λ µ

′ ′ ′ ′ ′ ′+ = + = +

′′ ′ ′ ′ ′+ = + = +

∫ ∫ ∫

∫ ∫ ∫
 

then ( ),a v w  is symmetric. To show coercivity of ( ),a ⋅ ⋅ , we can apply Cauchy-Schwarz inequality 

( ) ( ) ( )
2 12 22

0 0
d d

x
v x v y y v y v′ ′ ′= ≤ ≤∫ ∫  

( )1 22 2

1 2v v v v′ ′= − ≤ √  

Coercivity of ( ),a ⋅ ⋅  in Ω  follows 

( ) ( ) ( )
2

1 1 22 1
Ω0 0

, d d min
2x

v
a v v v v x v x v∈

′ ′ ′ ′= = ≥ ≥∫ ∫  

* ( ) ( ) 1

0
, dL w g w gw x= = ∫  (RHS). We can see that ( )L w  is a function :ΩL →   and L is linear, in fact 

( ) ( ) ( ) ( )1 1 1

0 0 0
d d dL u v g u v x gu x gv x L u L vλ µ λ µ λ µ λ µ+ = + = + = +∫ ∫ ∫  

The Equation (9) can be written as 
( ) ( ),v w L w=  

since ( ),a ⋅ ⋅  is a bounded bilinear form, coercive in the Hilbert space Ω  and ( )L ⋅  is a bounded linear form 
in the same space, so the Lax-Milgram theorem states that there exists a unique vector Ωu∈  i.e. a solution of 
u exists. 

2.2.2. Solution with BCs: ( ) ( )′0 1 0u u= =  
Similar to (7), this equation can be written using the auxiliary function φ  and integration over the domain Ω  
and ( ) ( )0 1 0φ φ′= =  in this case. 

( ) ( ) ( ) ( ) ( ) ( )[ ]

( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )

( ) ( )

1 1

0,10 0

1

0
1

0
1

0

d d

d 1 1 0 0

d 0

d .

u x x x u x x x u x x

u x x x u u

u x x x

u x x x

φ φ φ

φ φ φ

φ

φ

′′ ′ ′ ′− = −

′ ′ ′ ′= − −

′ ′= −

′ ′=

∫ ∫

∫

∫

∫

 

Therefore, we can see that this function has the same variational formulation, i.e. 

( ) ( ) ( ) ( )1 1

0 0
d du x x x g x x xφ φ′ ′ =∫ ∫  

Then, we can use the bilinear form and linear functional. Lax-Milgram lemma shows can be subsequently ap-
plied to prove the existence of solution in a similar way as before. 

2.2.3. Solution with BCs: ( ) ( ) ( )′ ′0 0 1 0u u u− + = =  
Let the auxiliary function φ  with the same boundary conditions ( )1 0φ′ = , ( ) ( )0 0 0φ φ′ ′− + = . In this case, 
the LHS of (7) can be written as 

( ) ( ) ( ) ( ) ( ) ( )[ ]

( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )

1 1

0,10 0

1

0
1

0
1

0

d d

d 1 1 0 0

d 0 0 0

d 0 0 ,

u x x x u x x x u x x

u x x x u u

u x x x u

u x x x u

φ φ φ

φ φ φ

φ φ

φ φ

′′ ′ ′ ′− = −

′ ′ ′ ′= − −

′ ′= − −

′ ′= +

∫ ∫

∫

∫

∫
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We can see that this quantity represents still a bilinear form 

( ) ( ) ( ) ( )1

0
, d 0 0a v w v w x v w′ ′= +∫  

therefore, ( ),a v w  on Ω  is a function :Ω Ωa × →   and it is linear each argument separately, i.e. 

( ) ( )( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )( )

1 1

0 0

1

0

, d 0 0 0 d 0 0

                          d 0 0 ,

a u v w u v w x u v w u w x u w

v w x v w

λ µ λ µ λ µ λ

µ

′ ′ ′ ′+ = + + + + +

′ ′+ +

∫ ∫

∫
 

( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )
( ) ( ) ( )( )

1 1

0 0

1

0

, d 0 0 0 d 0 0

                          d 0 0 ,

a w u v w u v x w u v w u x w u

w v x w v

λ µ λ µ λ µ λ

µ

′′ ′ ′+ = + + + + +

′ ′+ +

∫ ∫

∫
 

then, ( ),a v w  is also symmetric. In this case the coercivity on the Hilbert space ω  also applies, in fact 

( ) ( ) ( ) ( )( ) ( )
2 2

1 1 22 2 21 1
Ω0 0

, d d min 0 0
2 2x

v v
a v w v v x v x v v v∈

′ ′ ′ ′= = ≥ + ≥ + ≥∫ ∫  

hence Lax-Milgram lemma can be applied to 

( ) ( ),a u Lφ φ=  

where ( ),a ⋅ ⋅  is a bilinear, symmetric coercive form and L a linear functional. A solution of u needs to exist in 
the domain Ω . 

3. Case of the Beam Equation 
In this section, we give the variational formulation for the beam equation and we prove the existence and uni-
queness of solution. We consider the beam equation 

( )
4

4

d ,    Ω 0,1
d

u g
x

= =  

with the boundary conditions ( ) ( ) ( ) ( )0 0 1 1 0u u u u′ ′= = = = . 
Now, using an auxiliary function 1

0Cφ ∈  with the same BCs as u, and integrating on Ω  we get 

( )( )1 13

0 0
d du x f xφ φ′ =∫ ∫  

therefore 

( )( ) ( )
[ ]

( ) ( )1 1 13 3 3 3
0,10 0 0

d d 0 du x u u x u xφ φ φ φ′ ′ ′= − = −∫ ∫ ∫  

Thus, the variational form of the beam equation is 
( )1 13

0 0
d du x f xφ φ′− =∫ ∫  

Again, let the bilinear form and linear functional ( ),a v w  and ( )L w  to be equal to 

( ) 1

0
, da v w v w x′ ′= −∫  

We can see that ( ),a v w  is a function :Ω Ωa × →   and it is linear in each argument separately (as shown 
previously). Finally ( ),a v w  is also symmetric, i.e. 

( ) ( ) 1

0
, dL w g w fw x= = ∫  

Here, the Lax-Milgram theorem can be applied to this system and show existence of a solution for u. 
Note: In mechanical representations, the boundary conditions ( ) ( ) ( ) ( )0 0 1 1 0u u u u′ ′= = = =  represent the  



P. P. Cárdenas Alzate 
 

 
705 

 
Figure 1. Solutions using the finite difference method (11) for (a) h = 1/10 and (b) h = 1/10. (c) Error when comparing 
these 2 grid choices with the exact solution. (d) Logarithmic plot of the error vs. the choice of h. 

 
deflection and the slope of the deflection at the boundaries is 0 which means that the ends of the beam are fixed. 

4. Maximum of the Error at the Mesh-Points for 2-Point BVP 
In this example, we consider the two-point boundary value problem [9] 

( )2 ,    Ω 0,1u u x′′− + = =  

with ( ) ( )0 1 0u u= = . Applying the finite difference method 
ˆ:h j j j j j j j jU a U b U c U g= − ∂∂ + ∂ + =  

with 1 10,  1 20h =  we show in Figure 1 the exact solution and the maximum of the error at the mesh-points. 
Figure 1(a) and Figure 1(b) present similar plots. However, a h twice as small decreases the maximal error a 

4 fold, shown in Figure 1(c). At the same point x = 0.6, the error is 2.209 × 10−5 vs. 8.829 × 10−5. The Loga-
rithmic plot in Figure 1(d) shows a linear relationship between the error and h with slope 8 units. 
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