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Abstract 
In studies of HIV, interval-censored data occur naturally. HIV infection time is not usually known 
exactly, only that it occurred before the survey, within some time interval or has not occurred at 
the time of the survey. Infections are often clustered within geographical areas such as enumera-
tor areas (EAs) and thus inducing unobserved frailty. In this paper we consider an approach for 
estimating parameters when infection time is unknown and assumed correlated within an EA 
where dependency is modeled as frailties assuming a normal distribution for frailties and a Wei-
bull distribution for baseline hazards. The data was from a household based population survey 
that used a multi-stage stratified sample design to randomly select 23,275 interviewed individuals 
from 10,584 households of whom 15,851 interviewed individuals were further tested for HIV 
(crude prevalence = 9.1%). A further test conducted among those that tested HIV positive found 
181 (12.5%) recently infected. Results show high degree of heterogeneity in HIV distribution be-
tween EAs translating to a modest correlation of 0.198. Intervention strategies should target geo-
graphical areas that contribute disproportionately to the epidemic of HIV. Further research needs 
to identify such hot spot areas and understand what factors make these areas prone to HIV. 
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1. Introduction 
Interval-censored data arise in research settings where the exact time an event occurs is not directly observed. In 
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epidemiological studies that are cross-sectional in design, the time of the occurrence of an event is not observed 
but only an indication that it has either occurred or not. Knowing exact time of the occurrence of an event is 
crucial when interest is in estimating incidence of diseases such as HIV. HIV prevalence data is the most com-
monly available surveillance data. However, HIV incidence provides a more useful measure of epidemiological 
trends and sensitive indicator for evaluating impact of interventions. Incidence data are rarely available because 
their collection requires difficult, time-consuming and expensive follow-up of large cohorts. Thus, alternative 
laboratory based assays that can distinguish recent from long-term HIV infections from changes in antibody 
characteristics after seroconversion are becoming popular [1]. One such method is the BED capture enzyme 
immunoassay technique which can detect if HIV positive blood is infected within the last six months or longer 
[2] and thus leading to interval-censored data for those that are infected within the last six months, left censored 
data for those that are infected longer than six months and right censored data for those that are HIV negative at 
the time of the study. Estimation techniques for interval-censored data often stem from Cox proportional hazards 
model [3]. The model has been generalized to handle interval-censored data [4]. 

In multi-stage cluster sampling, individuals belonging to the same cluster such as an EA share the same un-
observed cluster-specific frailty effect and thus making them positively correlated. For example, in the HIV 
prevalence survey conducted in South Africa as described in Reference [5], individuals from the same EA are 
considered to be more similar than those that are from different EA with respect to their observed risk behaviour, 
risk of HIV infection and other unobserved factors. These data are the subject of our analysis in Section 2. Frail-
ties are considered mutually as independent random variables specified by some parametric distribution. Frail-
ties are assumed independent given the parameters of their marginal distribution. The topic of frailty models has 
received considerable attention in demography [6] and statistics [7] in recent years. Gamma distribution for 
frailties, commonly assumed in frailty models, is conjugate to the right-censored data likelihood and thus simpl-
ifies computations. Several authors in both frequentist [8] [9] and the Bayesian viewpoints [10]-[12] have used 
gamma frailty. 

The inclusion of frailty effects in the interval-censored data likelihoods proposed in references [4] [13] results 
in complex and intractable likelihood functions that often require numerical integration methods. The gamma 
frailty distribution is no longer conjugate. In the univariate context, the common fix-up approach is to assume 
that the event occurred at the beginning or end of each examination time and then use standard estimation tech-
niques. However, this approach has been shown to lead to misleading results [14] [15]. The alternative approach 
is to ignore correlation in the data and utilize standard univariate techniques for interval-censored data [4] [13]. 
But, naive standard errors obtained through this approach can lead to invalid statistical inference [16] [17]. Oth-
er approaches that consider both infection time and frailties as unobserved random variables thus facilitating the 
use of expectation- maximization algorithm have been proposed [12] [18]. 

In cross-sectional prevalence survey, the numbers of recently infected, and HIV negative can be used to esti-
mate HIV incidence [19]. However, these estimation methods only provide point estimates of incidence with no 
functional forms for modeling the data and inclusion of key determinants of incidence. In this paper, we present 
an approach for joint modeling of left, right and interval-censored data when event times are correlated. The 
model is implemented using a population based household HIV prevalence survey that used BED techniques to 
classify infection as either recent or latent to estimate HIV incidence by different reporting domains [19]. 

2. The Data 
The data is from a household based population survey conducted in 2005 in South Africa. The design of the 
survey was based on a multistage stratified, clustered sampling scheme. The survey is conducted every after 
three years since 2002 to measure, partly, the impact of HIV. The survey targeted all persons that are 2 years old 
and above living in households. The survey excluded individuals living in educational institutions, old-age 
homes, hospitals and uniformed services barracks but included those living in hostels. The survey applied a mul-
ti-stage stratified sampling approach based on a master sample of 1 000 EA used by Statistics South Africa for 
the 2001 census. An EA consists of about 250 households. In this survey, 15 households were systematically se-
lected within each EA. Three persons in each household were potentially eligible to be selected for the survey. 
And only one person was selected from each of the following age groups: 2 to 14 years old, 15 to 24 years old 
and 25 years old and above. 

A total of 23,275 individuals aged 2 years old and older from 10,584 households were interviewed in the 2005 
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survey and 15,851 respondents agreed to be tested for HIV. Linked anonymous HIV testing was performed us-
ing dried blood spot (DBS) specimens. Socio-demographic and behavioural data were collected using a detailed 
questionnaire. Among those that were tested, 1449 tested HIV positive and among those that were HIV positive, 
181 were diagnosed as recent infections using the BED [1]. This meant that 1268 (8%) were considered left 
censored, 14,402 (90.9%) right censored and 181 (1.1%) interval-censored. Point estimates of incidence from 
these data have been reported elsewhere [19]. The average number of people who were tested in an EA were 22 
(standard deviation = 9.3). Covariates in our analysis include sex, race, age, locality type and marital status. 
Summary statistics for these variables are presented in Table 1. 

3. Model and Parameter Estimation 
The data to be analysed in this paper is clustered within an EA. Let ijt  ( )1, , ; 1, , ii I j J= =   denote the 
event time for the jth individual in cluster i. Due to interval-censored nature of the data, the exact event time ijt  
is unobserved. Instead, we only observe clinical endpoints { },1 ,2;ij ij ijv v v=  encompassing interval-censored 
event time ijt  for those that are considered recently infected (infected within the last six months), ,1ij ijt v<  and 

,2ij ijt v>  for those that are left and right censored respectively. Define censoring indicator ,1 1ijδ =  and ,2 0ijδ =  
if left censored; ,1 0ijδ =  and ,2 1ijδ =  if interval-censored and ,1 0ijδ =  and ,2 0ijδ =  if right censored. This 
is similar to defining ,3 ,1 ,21ij ij ijδ δ δ= − −  if right censored. The ith cluster specific frailty is denoted by iw . The 
frailties are assumed to operate multiplicatively on the hazard function. Furthermore, Weibull baseline hazards 

( ) 1
0 ij ijy yαλ γα −=  are assumed. The corresponding integrated baseline hazards are ( )0 ij ijH y yαγ= . 
The model is framed as a shared frailty model defined as 

( ) ( ) ( )0 expij ij ij ih y h y x wβ′= +  

where ( )ijh y  is the conditional hazard function of the jth subject from the ith EA. Conditional on unobserved 
 
Table 1. Summary statistics for variables used in the hazard model. 

Parameter Total tested  HIV prevalence (%) Incident cases Incidence % per year 

Sex of respondent      

Male 6 342  8.2 40 1.5 

Female 9 509  13.3 141 3.6 

Age (years old)      

2 to 14 3 815  3.3 11 0.5 

15 to 24 4 120  10.3 70 2.2 

25 and above 7 912  15.6 100 1.7 

Race      

African 9 950  13.3 167 1.8 

Other races 5 874  1.2 14 0.2 

Locality type      

Urban formal 8 629  9.1 58 1.6 

Urban informal 1 854  17.6 52 5.1 

Rural formal 3 859  11.6 16 0.8 

Rural informal 1 509  9.9 55 1.4 

Marital status      

Never married 9 375  10.1 125 3.0 

Ever married 6 277  11.7 54 2.5 
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frailty ( )iw , observations from cluster i are independent. The contribution from cluster i can thus be expressed 
as 

( ) ( ) ( ){ } ( ) ( ){ } ( ){ },1 ,2 ,3

,1 ,1 ,2 ,2
1

, , , 1 d
i ij ij ij

i

J

i i ij i ij i ij i ij i iw
j

L f w S v w S v w S v w S v w w
δ δ δ

β γ α σ σ
=

= − −∏∫  

where ( )if w σ  is the assumed density function for unobserved frailties. The conditional survival distribution  
is ( ) ( )expij i ij iS y w H y w = −   where ( ) ( )0ij i ij ijH y w H y θ=  is the integrated hazards corresponding to  

( ) 1
ij i i ij ijh y w w yααγ θ−= , ( )expij ij ix wθ β′= +  and ijx  is the vector of covariates and β represents the corres-

ponding covariate effect. The likelihood ( ), , ,iL β γ α σ  is an extension of a classical case of general interval 
censoring described by [13] with  

( ) ( ) ( ) ( ) ( ) ( ),2 ,3,1

,1 ,2 ,1 ,2 ,1 ,2 ,1 ,2 ,1 ,2Pr , , , , 1 , ,ij ijij
ij ij i ij ij ij ij ij ij ij ij iw v v F v F v F v F v f v v w

δ δδ
δ δ    = − −     

where ( ),1 ,2; ,ij ij if v v w  is the joint density function of ,1 ,2,  ,  ij ij iv v w  
In this model, the density function for unobserved frailties is assumed to follow a Normal ( )0,σ  distribution. 

The likelihood has no closed form solution and thus numerical integration methods will be used before max-
imising the marginal likelihood function. Since ( )if w σ  is assumed to be normally distributed then Gaussian 
quadratures will be used for numerical integration. The full data likelihood is then approximated by 

( ) ( ), , , , , ,I
iiL Lβ γ α σ β γ α σ=∏  

Maximum likelihood estimates are calculated using Newton-Raphson optimization for the corresponding (ap-
proximate) full data log-likelihood function. 

A similar model with parameterization consistent with the accelerated failure time model formulation used in 
PROC LIFEREG in SAS has been used before [20]. Here, we have formulated the likelihood in the proportional 
hazards settings by adding a frailty term to the (linear) log-hazard component of the model. PROC NLMIXED 
in SAS can be used to find maximum likelihood estimates for this model. NLMIXED uses adaptive Gaussian 
quadrature to approximate the cluster-specific likelihood contribution. This is an attractive feature of this ap-
proach that it can be readily implemented using existing commercial statistical computing software. 

4. Results 
The methods of estimating point estimate of incidence described by [1] uses an adjustment formulae that cor-
rects for both sensitivity and specificity specified by the BED analysis. Using this method, the incidence of HIV 
among persons aged 2 years old and older is estimated at 1.4% per 100 person-years [95% CI: 1.0 - 1.18] with 
571,000 new HIV infections estimated for 2005 in South Africa as first reported in [19]. Incidence of HIV ap-
pears to vary by age, sex, race, geographical type of the area and by other socio-behavioural factors. Being fe-
male or aged between 15 to 24 years old or being an African is associated with high incidence of HIV. Those re-
siding in informal settlements have the highest incidence of HIV compared with other residential areas. Similar 
results are observed for those that are never married. 

Table 2 presents univariate and multivariate results of the model presented in Section 3. In univariate analysis 
nearly all of the covariates are statistically significant, and the estimated effects of the covariates are in close 
agreement with findings from previous research. The hazards of being infected with HIV is significantly lower 
for males than females [HR = 0.72, 95% CI: 0.64 - 0.81]. The hazards of HIV infection are [HR = 1.68, 95% CI: 
1.34 - 2.11] times higher for youth aged 15 to 24 years old compared with those aged 2 to 14 years old and sim-
ilar to those aged 25 years old and above [HR = 1.57, 95% CI: 1.22 - 2.01]. Africans are associated with signifi-
cantly higher risk of HIV infection than any other race [HR = 7.43, 95% CI: 6.17 - 8.95]. Urban informal areas 
have the highest risk of HIV infection compared with other residential areas [HR = 2.38, 95% CI: 2.24 - 2.54], 
rural formal [HR = 1.56, 95% CI: 1.30 - 1.87] and rural informal [HR = 1.94, 95% CI: 1.71 - 2.20] in relation to 
urban formal. Being married or ever been married has a protective effect against being infected with HIV. Those 
who have never been married are [HR = 2.91, 95% CI: 2.57 - 3.30] times more likely to be infected with HIV 
compared to those who have ever been married or are cohabiting. 



K. Zuma, G. Mafoko 
 

 
124 

Table 2. Parameter estimates of univariate and multivariate analyses. 

Parameter 
Univariate  Multivariate model 

Beta SE  Beta SE 

Sex of respondent      

Male vs female −0.329 0.0580  −0.3208 0.0590 

Race      

African vs other 2.006 0.0949  1.9621 0.1071 

Age (years old)      

15 to 24 0.519 0.117  0.6356 0.1207 

25 and above 0.450 0.127  0.3689 0.1336 

Locality type      

Rural formal 0.444 0.094  0.09461 0.1176 

Rural informal 0.663 0.064  −0.1414 0.0860 

Urban informal 0.869 0.033  0.4267 0.0973 

Marital status      

Never vs ever married 1.069 0.063  . . 

Baseline hazards parameters      

γ  . .  0.0010 0.0002 

α  . .  0.7744 0.0492 

Frailty parameter      

σ  . .  0.4947 0.0437 

 
Table 2 further presents results from a multivariate frailty models. The model with frailty term contains the 

effects of other covariates not specifically included in the model, which are common to individuals from the 
same EA. For example, the clustering effects at an EA may result from common community norms, exposure to 
common underlying risk factors of HIV such as other sexually transmitted infections that are endemic in some 
geographical areas. The frailty parameter represents the EA effect. The parameter is interpreted as the variance 
of the random effects distribution. Large values of the variance indicate greater heterogeneity between EAs and 
stronger association within members from the same EA. The estimated variance of the EA is 0.4947 (SD = 
0.0437), highly significant when compared to the one-sided Z-test with critical value of 1.645 at 5 per cent level 
of significance. The estimate of the variance implies moderate degree of correlation in the risk of HIV infection 
between members from the same EA even after controlling for observed covariate effects. The estimated corre-
lation is 0.198. Standard errors are slightly magnified in the model with frailty indicating that the fixed effect 
parameters are now estimated more realistically, but with lower precision. Therefore, treating each individual 
response as independent gives false impression that there is more information in the data than there really is. 

The hazard estimates for locality type are drastically reduced in the multivariate frailty model. The inclusion 
of EA random effect term accounts for unobserved proneness of individuals within specific EAs which is a lo-
cality type in its own right. Therefore, the magnitude of the effect of locality type is reduced in the model that 
includes EA effect. This is important especially for intervention programs as it indicates the need to focus inter-
ventions more in some locality types than others. The lack of striking differences between the model with and 
without frailty is reassuring since the effect of EA is rarely considered in studies of HIV incidence. 

5. Conclusions 
Analyses conducted in this paper provide an approach to a complex problem of correlated interval-censored data, 
where the event time is not observed precisely. The model demonstrates the possibility of multivariate analyses 
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of HIV incident data and also includes frailty effect in this complex model. Inclusion of frailties in the analyses 
of correlated HIV infection risk at an EA level is of critical programatic value. Evaluation of the impact of HIV 
intervention programs and their planning relies heavily on incident data. The importance of clustering effect at 
an enumerator level demonstrates the importance of focusing interventions at key geographical areas. HIV in 
South Africa is at an epidemic level with considerable geographical variability in HIV distribution with some 
areas carrying much higher burden at local levels than others [21]. Even in high HIV prevalence areas, there is 
considerable evidence of localised epidemics [22]. Analyses of data that adjusts for clustering effect provides an 
opportunity to investigate factors and identify potential geographical areas that contribute disproportionately to 
the epidemic of HIV. Even after controlling for some important risk factors, the risk of HIV infection varies 
considerably across EA. The importance of EA frailty term indicates that some geographical areas are at in-
creased risk of HIV infection compared with others. Control measures of HIV should extend further from 
high-risk individuals to high-risk areas. 

In a study conducted at Africa center [23] the hazard of HIV seroconversion was approximately twice higher 
in people who were currently unmarried but had a partner than among people who were currently married. In 
our univariate analyses the hazard of HIV seroconversion was approximately three times higher in unmarried. 
However, in the multivariate model, marital status was excluded due to collinearity with age. Baseline hazard 
parameters indicated a higher risk of HIV infection at young ages that gradually subsided for older people. 

In the estimation phase, Gaussian-Hermite quadratures are used to approximate intractable integrals [24]. The 
final results are based on six quadrature points. Brillinger and Preisler [25] reported that results did not change 
much for quadrature points greater than eight. Moreover, even five quadrature points have been considered suf-
ficient [26] [27]. The inherent disadvantage of using large number of quadrature points is the need for strong 
assumption of normally distributed random effects. For example, ten quadrature points fit a symmetric distribu-
tion thus forcing the tails of random effects distribution to be normal. 

In conclusion, the results provide further insight to the understanding of the epidemic of HIV. The models fit-
ted are quite complex. However, the ability of fitting these complex models using the standard software is en-
couraging. 
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