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Abstract 

In this paper we propose a collocation method for solving Lane-Emden type equation which is nonlinear or-
dinary differential equation on the semi-infinite domain. This equation is categorized as singular initial value 
problems. We solve this equation by the generalized Laguerre polynomial collocation method based on 
Hermite-Gauss nodes. This method solves the problem on the semi-infinite domain without truncating it to a 
finite domain and transforming domain of the problem to a finite domain. In addition, this method reduces 
solution of the problem to solution of a system of algebraic equations. 
 
Keywords: Lane-Emden Equation, Generalized Laguerre Functions, Collocation Method, Hermite-Gauss Nodes, 
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1. Introduction 
 
There are many problems in science and engineering 
arising in unbounded domains. 

Spectral methods are famous ways to solve these kinds 
of problems. The most common approach on spectral 
methods, that is used in this paper too, is through the use 
of functions that are orthogonal over unbounded domains, 
such as the Hermite and the Laguerre functions [1-8]. 

The second approach is reformulating the original 
problem in the semi-infinite domain to a singular prob-
lem in a bounded domain by variable transformation and 
then using the Jacobi polynomials to approximate the 
resulting singular problem [9-11]. A third approach of 
spectral method is based on rational orthogonal functions, 
for example, Christov [12] and Boyd [13,14] developed 
some spectral methods on unbounded intervals by using 
mutually orthogonal systems of rational functions. Boyd 
[14] defined a new spectral basis, named rational Che-
byshev functions on the semi-infinite interval, by map-
ping it to the Chebyshev polynomials. Guo et al. [15] 
proposed and analyzed a set of Legendre rational func- 

tions which are mutually orthogonal in 2 0,L   with  

a non-uniform weight function    = 1x x 2 . A forth 
approach is replacing the semi-infinite domain with 

 interval by choosing L, sufficiently large, this 
method is named as the domain truncation [16]. 
[0, ]L

In this paper, we investigate the Generalized Laguerre- 
collocation method based on Hermite-Gauss Nodes 
which is another approach for solving ODEs on the half 
line. In [7] proposed spectral methods using Laguerre 
functions and analyzed for model elliptic equations on 
regular unbounded domains. It is shown that spectral- 
Galerkin approximations based on Laguerre functions are 
stable and convergent with spectral accuracy in the Sobo-
lev spaces. Siyyam [8] applied two numerical methods 
for solving initial value problem differential equations 
using the Laguerre Tau method. He generated linear sys-
tems and solved them. Maday, et al. [6] proposed a 
Laguerre type spectral method for solving partial differ-
ential equations. They introduced a general presentation 
of the method and a description of the derivation discre-
tization matrices and then determined the optimum esti-
mations in the adapted Hilbert norms. 
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2. The Lane-Emden Equation 
 
This equation is one of the basic equations in the theory 
of stellar structure and has been the focus of many stud-
ies [17-21]. This equation describes the temperature 
variation of a spherical gas cloud under the mutual attrac-
tion of its molecules and subject to the laws of classical 
thermodynamics. The polytropic theory of stars essen-
tially follows out of thermodynamic considerations, that 
deal with the issue of energy transport, through the trans-
fer of material between different levels of the star. We 
simply begin with the Poisson equation and the condition 
for hydrostatic equilibrium:  
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2
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d
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where  is the gravitational constant,  is the pres-
sure, 

G


P
M r  is the mass of a star at a certain radius , 

and 
r

  is the density, at a distance  from the center 
of a spherical star. Combination of these equations yields 
the following equation, which as should be noted, is an 
equivalent form of the Poisson Equation.  
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From these equations one can obtain the Lane-Emden 
equation through the simple supposition that the density 
is simply related to the density, while remaining inde-
pendent of the temperature. We already know that in the 
case of a degenerate electron gas that the pressure and  

density are 
3

5P  , assuming that such a relation exists 

for other states of the star we are led to consider a rela-
tion of the following form: 

1
1

= mP K


,                      (4) 

where K and m are constants, at this point it is important 
to note that m is the polytropic index which is related to 
the ratio of specific heats of the gas comprising the star. 
Based upon these assumptions we can insert this relation 
into our first equation for the hydrostatic equilibrium 
condition and from this rewrite equation to:  

  1
1 2

2

1 1 d d
=

4 d d
mm

K m y
r

G r rr



       

  
,y       (5) 

where the additional alteration to the expression for den-
sity has been inserted with   representing the central 
density of the star and  that of a related dimensionless 
quantity that are both related to 

y
  through the follow-

= .my                       (6) 

Additionally, if place this
tio

                   (7) 

 result into the Poisson equa-
n, we obtain a differential equation for the mass, with 

a dependance upon the polytropic index m. Though the 
differential equation is seemingly difficult to solve, this 
problem can be partially alleviated by the introduction of 
an additional dimensionless variable x, given by the fol-
lowing:  

= ,r ax  

 
1

1 211
= .

4
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K m
a

G

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            (8) 

Inserting these relations into our previous relations we 
obtain the famous form of the Lane-Emden equation, 
given below:  

2
2

1 d d
= .

d d
my

x y
x xx
   
 

              (9) 

Taking this simple relation we will have the Lane- 
Emden equation:  

2
= 0, > 0.my y y x

x
           (10) 

At this point it is also important to introduce the 
bo

     (11) 

As a result an additional condition must b
in

undary conditions, which are based upon the following 
boundary conditions for hydrostatic equilibrium, and nor- 
malization consideration of the newly introduced quanti-
ties x and y. What follows for 0r   is:  

 = 0 = 0, = 0 =r x y 1   

e introduced 
 order to maintain the condition of Equation (11) si-

multaneously: 

 0 = 0.y                   (12) 

In other words, the boundary conditions are as follow:  

   0 = 1, 0 = 0.y y             (13) 

Physically interesting value of m li
5]

r is arranged as : in Section 3, we ex-
pl

last section. 

e in the interval [0, 
. Exact soloution for Equation (??) are known only for 
= 0,1m  and 5. For other value of m the Lane-Emden 

 is to be integrated numerically. In this paper, we 
solve it for = 1.5,2,2.5,3m and 4. 

This pape follows

equation

ain the formulation of rational scaled generalized La-
guerre polynomials and Hermite functions required for 
our subsequent development. In Section 4, we summa-
rize the application of the method for solving Lane-Em-
den equation and compare it with the existing methods in 
the literature. Finally we give a brief conclusion in the 

ing relation  
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ials and Hermite Functions 

 
Th evoted to the introduction of the basic 

otions and working tools concerning orthogonal rational 

 Rational Scaled Generalized 
Laguerre Polynomials 

polynomial) is the th 
ction of the Sturm-Liouville problem [2,22,

3. Rational Scaled Generalized Laguerre 
Polynom
Properties 

is section is d
n
scaled generalized Laguerre polynomials and later we 
present some properties of Hermite function and Her-
mite-Gauss nodes. 
 
3.1. Properties of

 
 nL
igenfun

x  (generalized Laguerre n
23]: e
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       
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The generalized Laguerre 
with the following recurrence 

1

polynomials are defined 
formula: 
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Let  denotes a non-ne
valued n over the interval , we define 

( )w x
 functio
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Is the norm induced by the inner prod
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These are orthogonal polynomials for
tion 
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Let  be an integer and we define 1N  ,j Nx , j = 
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In particular  term on the right ha
vanishes when f nomial of degree at most 
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 

, the second
 is a poly

nd side 

2 2N  . For convenience, we shall set , =j N jx x  and 

, =j N jw w . 
ospectral approximations in unbou ains Pseud nded dom

by Laguerre polynom ad to ill-conditioned algo-
rit

ials le
hms and [24] introduced a scaling function and appro-

priate numerical procedures in order to limit these un-
pleasant phenomena. 

We define scaled Laguerre functions  n  as fol-
lows:  
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This system is an al basis with weight func-
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tion  
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generalized Laguerre-Gauss-type interpolation were in-
ced by [24,25]. It is nt to define the weights 

of 

Some of the relations of scaled Laguerre functions and 
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3.2. Properties of Hermite Functions 
 
The Hermite function is defined for all  and can 

 

Rx
be written in recursive formula as follows [27-29]: 
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4. ane-Emden Equation 
 
To apply rational scaled generalized Laguerre colloca-

on method to the standard Lane-Emden Equation in-
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But as mentioned before Lane-Emden equations are 
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and (35) gives N + 1 nonlinear algebrai
can be solved for the unknown coefficients 

c equations which 

jc

th

 by using 
the well known Newton's method by 
ming and we use  

Maple program-

= 0, = 0 1jc j N   

as starting points to obtain convergence of e method, 
consequently,  y x  given in Equation (10) can be cal-
culated. 

The resulting graph of Lane-Emden ned 
by present method for a 4 is shown 

equation obtai
nd = 1.5,2,2.5,3m  

in Figure 1. 
Tables 1  shows the comparison of the first zero of 
 N y x , between Padé approximation us  [17] and ed by

the present method for = 1  and = 1.5,2,2.5,3m  and 
4 respectively. 

Tables 2 and 3 show the approximations of  N y x  
fo
the ratio

r standard Lane-Emden with = 2.5,3m  obtained by 
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thod for = 1  and tho ained b
Table 4 show
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en equation by
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alized Laguerre functions obtained by present  
for the Lane-Emden equation with m . 
 
5. Summary and Conclusions 

A set of rational scaled generalized laguerre orthogonal 
functions are proposed to solve Lane-Em n 
w
gularity at x = 0, by collocation metho
m
location method we must equalize  Res x  to zero at 
suitable points in  0,  interval. Since Hermite func-
tions are derived in the infinite domain  ,  , we can't 
apply Hermite-Gauss nodes for equalizing  Res x  to 
zero, therefore we transform this nodes from  ,   to 

 0,  interval by a ing  
 

 mapp  2= ln 1x xx e e   . 

 

 

Figure 1. Lane-Emden equation graph obtained y present 
method for various m. 

Table 1.  Comp arison th e fi rst z ero of y(x), be tween P adé 
approximation used by  [17] a nd the rational scaled gener-
alized Laguerre collocation method for various m and a = 1. 

m N k Present method Bender[17] Exact value [20]
1.5 4 0.83200 3.653710928 - 3.65375374 
2 4 0.52990 4.352761605 4.3603 4.35287460 

2.5 4 0.39101 5.355236655 - 5.35527546 
3 6 0.29354 6.896951110 7.0521 6.89684862 
4 5 0.10022 1497174961 17.967 14.9715463 

 
Table 2. Approximation of y(x) obtained by present method 
and solutions of Horedt [20] for m = 2.5 and a = 1, N = 4. 

x Present method Solutions of Horedt [20]
0.000 1.000000 1.000000 

 b

0.100 0.998749 0.998335 
0.500 0.960372 0.959978 
1.000 0.851467 0.851944 
5.000 0.024267 0.029019 
5.355 0.000005 0.000021 

 
Table 3. Approximation of  
o nd l

 tions ]

 y(x) obtained by present m
 H o

eth-
 a  d a  so utions of oredt [20] f r m 3 and=  = 1, N = 6.

x Present method Solu  of Horedt [20
0.00 10 1.000000 .000000 
0.10 0

0 0
1.000 0.854839 0.855058 

96 

0 0.998293 .998336 
0.5 0 0.959837 .959839 

5.000 0.110415 0.110820 
6.000 0.048132 0.043738 
6.800 0.004952 0.004168 
6.8 0.000048 0.000036 

 
Tabl efficients ional scaled d Lag- 
uerr s of th den equatio s m. 

ci 

e 4. Co  of the rat generalize
e function e Lane-Em n for variou

I
m = 5 m =  = 4 m = 1.5 2 m = 2.  3 m

0 0.5552687 0.7618023 0.8553158 0.9108075 0.9786309
1 0.7098163 0.5800179 0.3986864 0.2657800 0.0483911
2 0.5796016 0.2517954 0.2748482 0.2308814 0.0525097
3 1.4222221 0.2455873 0.0468485 0.0164809 0.0455987
4 0.577 54 0.155 5 
5 -
6 -  069

53 5624 0.067694
 

0.0448774 0.0152142
0.0032424 968- - 0.0048

- - - 0.0103

 
Through the compar ong the exact solutions of 

Horedt and the appro lutions of B d the 
curren , it has be  has 
provid re exact s ne-Emd ions. 
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