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Abstract 
In this article, we prove that if B  is a simple binary-Lie superalgebra whose even part is isomor- 
phic to ( )2 sl  and whose odd part is a completely reducible binary-Lie-module over the even 

part, then B  is a Lie superalgebra. We introduce also a binary-Lie module over ( )2 sl  which is 
not completely reducible. 
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1. Introduction 
All algebras mentioned in this article are algebras over a fixed arbitrary field   of characteristic zero. 

A superalgebra is a 2 -graded algebra, i.e., an algebra 0 1= ⊕A A A  such that i j i j+
⊆A A A  for every  

{ } 2, 0,1i j∈ =  . The elements of 0 1∪A A  are called homogeneous. Given a homogeneous element x we de-  

fine ( )x iρ =  if ix∈A , { }0,1i∈  If x  is homogeneous we say that x  is even if ( ) 0xρ = , and that x  
is odd if ( ) 1xρ = . A superalgebra A  is said to be anti-commutative if  

( ) ( ) ( )
0 11 ,    ,  .x yxy yx x yρ ρ= − − ∀ ∈ ∪A A  

Let us remember that for any anti-commutative algebra we define the Jacobian :J × × →A A A A  by the 
formula ( ) ( ) ( ) ( ) ( ) ( ), , , ,J x y z xy z yz x zx y x y z xz y= + + = − , and a Lie algebra is an anti-commutative alge- 
bra whose Jacobian is the null function (see [1] or [2] for properties of Lie algebras). The super-analog of the 
Jacobian, i.e. the analog of the Jacobian for anti-commutative superalgebras is the function defined by 
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( ) ( ) ( ) ( ) ( ) ( ) 0 1, , , , 1 ,    ,  ,  .y z
sJ x y z x y z xz y x y zρ ρ= − − ∀ ∈ ∪A A  

Since the Jacobian is an 3-linear alternating function, its super-analog sJ  satisfies the identities 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 , , , , 1 , ,x y y z
s s sJ y x z J x y z J x z yρ ρ ρ ρ− − = = − −                   (1) 

for every ,  ,  x y z  homogeneous. A superalgebra 0 1= ⊕L L L  is a Lie superalgebra if and only if  
( ), , 0sJ x y z =  for every 0 1, ,x y z∈ ∪L L , (see [3] for information about Lie superalgebras). 
Lie algebras are a particular case of Malcev algebras (see [4]-[7] for definition and properties of Malcev 

algebras). Analogously Lie superalgebras are a particular case of Malcev superalgebras, (see [8]-[10] for infor- 
mation about Malcev superalgebras). 

An algebra is called binary-Lie if every pair of elements generates a Lie algebra. This class of algebras con- 
tains properly the class of Malcev algebras and it was characterized by A. T. Gainov (see Id. (2) in [11], Section 
2, p. 142). Gainov proved that an anti-commutative algebra B  was binary Lie if and only if 

( )( ) ( )( ) 0xy y x yx x y+ =                                  (2) 

or equivalently 
( ), , 0J xy x y =                                        (3) 

for every ,x y∈B . If we define the function 

( ) ( ) ( ) ( ) ( ), , , , , , , , , , ,a b c d J ab c d J a bc d J a b cd J ad b cφ = + + −                     (4) 

we have that the identity ( ), , , 0a b c dφ =  is the complete linearization of (3), so it is satisfied in every binary- 
Lie algebra (see also [12]-[18] for information about binary-Lie algebras). 

In consequence, we say that an anti-commutative superalgebra B  is a binary-Lie superalgebra, if it satisfies 
( ), , , 0s a b c dφ =  for every , , ,a b c d  homogeneous in B , where sφ  is the super-analog of the function φ , 

i.e. 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ), , , , , , , , , 1 , , .d b c
s s s s ssa b c d J ab c d J a bc d J a b cd J ad b cρ ρ ρφ += + + − −      (5) 

A subset J  of a superalgebra A  is said to be a super-ideal of A , if and only if J  is an ideal of A  and 
0 1= ⊕J J J  where i i⊆J A  for every { }0,1i∈ . We say that a superalgebra is simple if its unique super- 

ideals are { }0  and the superalgebra itself. Simple Lie superalgebras have been classified by V. G. Kac in [3] 
and simple Malcev superalgebras have been classified by I. P. Shestakov in [19]. 

For every superalgebra A , the space 0A  is an algebra and 1A  is a module over 0A . If L  is a Lie 
superalgebra then 0L  is a Lie algebra and 1L  is a Lie module. The same is true for binary-Lie superalgebras, 
i.e., for any binary-Lie superalgebra B  the algebra 0B  is a binary-Lie algebra and 1B  is a binary-Lie mo- 
dule over 0B . 

As usual we call ( )2 sl  the Lie algebra consisting in all two by two matrices with coficients in   and null 
trace. This algebra is a simple Lie algebra of dimension three, moreover if   is algebraically closed, ( )2 sl  
is the unique 3-dimensional simple Lie algebra over  . Our aim is to characterize binary-Lie superalgebras 
whose even part is isomorphic to ( )2 sl  and whose odd part is a completely reducible module over the even 
part. In particular we want to prove the following theorem. 

Main Theorem. Let 0 1= ⊕B B B  be a simple binary-Lie superalgebra, such that 0B  is isomorphic to 
( )2 sl  and 1B  is a completely reducible module over 0B . Then B  is a Lie superalgebra. 

In Section 2, we explain some basics facts about binary-Lie superalgebras and irreducible binary-Lie modules 
over ( )2 .sl   We also give an example of a non-completely reducible binary-Lie module over ( )2 sl . In 
Section 3, we prove that, under the conditions described in the last parragraph the odd part is a Lie module over 
the even part. Finally in Section 4, we prove the main theorem. 

2. Modules and Superalgebras 
According to our main purpose, we must pay attention to the theory of modules over ( )2 sl . We know that 

( )2 sl  has a basis { }, ,A X H  whose products are given by AX H= , 2AH A= , 2XH X= − . If N  is an 
irreducible Lie module over ( )2 sl  of dimension n , then N  has a basis { }0 , , nu u  whose products are 
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defined by  

( )( )

( ) { }

0 1

1

0, 1 , 0

0, ,
2 , 0, , .

i i

n i i

i i

u A u A i i ni u i

u X u X u i n
u H n i u i n

−

+

= = − − ∀ ≠

= = ∀ ≠
= − ∀ ∈ 

                  (6) 

We call this module, the irreducible Lie module of type n . Besides those modules, there is a non-Lie, binary- 
Lie module over ( )2 sl  (in fact it is Malcev) called the irreducible module of type 2M  (see Id. (5) in [16], 
Section 1, p. 245). This module have a basis { }2 2,v v−  with products given by: 

2 2 2 2 2

2 2 2 2 2

2 , 0, 2 ,
0, 2 , 2 .

v A v v X v H v
v A v X v v H v

−

− − − −

= − = =
= = = −

                          (7) 

The following result of A. N. Grishkov (see Lemma 3 in [16], Section 1, p. 247) implies that there is no other 
irreducible ( )2 sl -module: 

Let M  be a binary-Lie module over ( )2 sl  Then M  has a Lie sub-module N  such that M N  can 
be decomposed as the direct sum of ( )2 sl -modules of type 2M . 

We conclude that if an irreducible module over ( )2 sl  is not Lie it has to be isomorphic to the irreducible 
binary-Lie module of type 2M . 

Remark 1. For every ( )2y∈ sl  let yad  be the adjoint operator in ( )2 sl , i.e., yz ad zy⋅ = . Since 
Aad  and Xad  are nilpotent operators, both have 0 as its only eigenvalue. Therefore, if ( )2y∈ sl  satisfies 

that Ay ad yλ⋅ =  or Xy ad yλ⋅ =  for some 0λ ≠ , then 0y = . The set of eigenvalues of Had  is 
{ }2,0,2− . Therefore, if ( )2y∈ sl  satisfies that Hy ad yλ⋅ =  for some { }2,0,2λ ∉ − , then 0y = . 

Remark 2. For every ( )2y∈ sl  we have that 0yA =  implies y Aα=  for some α ∈ , also 0yX =  
implies y Xβ=  for some β ∈ , and finally 0yH =  implies y Hγ=  for some γ ∈ . 

We notice that not every binary Lie module over ( )2 sl  is completely reducible as we can see in the 
following example: 

Example 1. Let u v w= ⊕ ⊕  M  be the ( )2 sl -module where the products are given by  
0, 0, 0,

2 , , 2 ,
, 2 , 2 .

uA uX uH
vA u w vX u vH u v
wA u wX u v wH u w

= = =
= − = = +
= = + = −

                         (8) 

We observe that u  is an irreducible Lie module of type 0 and the quotient FuM  is an irreducible mo- 
dule of type 2M . Let N  be a non trivial sub-module of M , then we have that y u v wα β γ= + + ∈N  for 
some scalars , ,α β γ ∈  and at least one of them is different from zero. We have that ( ) 2yX X uγ= ∈N  and 
( ) 2yA A uβ= − ∈N . Thus, if 0β ≠  or 0γ ≠ , then u ⊆ N . If 0β γ= = , then uα ∈M  with 0α ≠ . We 
conclude that in any case Fu ⊆N  therefore FuN  is a sub-module of FuM , but FuM  is irreducible. 
This implies that either Fu=N  or =N M . We conclude that Fu  is the only irreducible sub-module of 
M  which is not completely reducible. 

Therefore, it only remains to prove that the split null extension ( )2= ⊕B sl M  is a binary-Lie algebra. To 
do that we define 12 12:m →   by: 

( )

( )
( )

( ) ( )( ) ( ) ( )( )
( )
( )

2

2

, , , , , , , , , , , .

2

2

a i c g

c h b i

a h b g
m a b c d e f g h i j k l

e f g h i a b c k l

e i f h c k b l

a k c l e g f i

∗ ∗ ∗

∗ ∗ ∗

∗ ∗

∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

 −
 
 −
 
 −
 =
 + + + − + + +
 
 + − −
 
 + − − 

 

Note that the vector on the right hand side is written as a column to fit the equation in one line. This function 
gives the coordinates of the product xy  in the ordered basis ( ), , , , ,A X H u v w , where  
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x aA bX cH du ev fw= + + + + +  and y gA hX iH ju kv lw= + + + + +  hence the expression  
( )( ) ( )( )xy y x yx x y+  is checked to be identically 0. 
In what follows B  is a binary-Lie superalgebra whose even part 0B  is ( )2 sl  and whose odd part 1B  

is a completely reducible module over 0B , Under such conditions we have that  

( )2
1 1

p q

i j
i j= =

  
= ⊕ ⊕  

   
⊕ ⊕B sl U V                              (9) 

for some pair ( ),p q , where iU  is a Lie irreducible module of type in  for every 1, ,i p=  , and jV  is a 
module of type 2M  for every 1, ,j q=  .  

We finish this section with the following lemma. 
Lemma 1. Let 0 1= ⊕B B B  be a simple binary-Lie superalgebra with a direct decomposition as in (9).  

Then 0in ≠  for any { }1, ,i p∈  . 
Proof. Assume 0in =  for some i . Without loss of generality we can suppose that i p= . It follows that 
p u= U , where 0uX uA uH= = = . We conclude 0 0p =U B . Define 

1

1
1 1

.
p q

i j
i j

−

= =

  ′ = ⊕  
   
⊕ ⊕B U V  

We have that 1
′B  is a sub-module of 1B  over 0B . Next define 0 1

′= +J B B  and note that p= +B J U .  
We can easily see that ⊆JJ J , and 0p ⊆ ⊆JU B J . It follows that ( )p= + ⊆JB J J U J , whence J  is a  

super-ideal of B  with 0 0=J B  and 1 1
′=J B . It is not zero because 0 ⊆B J , and it is not B  since 

p U J . We obtain a contradiction with the simplicity of B .                                       □ 

3. Sub-Modules of Type 2M  
The aim of this section is to prove that none element of type 2M  can be found in the decomposition given by 
(9). This implies that 1B  is a Lie module over 0B . Since ( )2 sl  is a Lie algebra, ( ), ,sJ r s t  is zero for 
every 0, ,r s t∈B . So, if we set ,a b  even and ,c d  odd in (5), we get  

( ) ( ) ( ) ( )0 , , , , , , , , ,s s s sa b c d J ab c d J a bc d J ad b cφ= = + + .                    (10) 

On the other hand, if we set 0a∈B , and 1, ,b c d ∈B  in (5) we get 
( ) ( ) ( ) ( ) ( )0 , , , , , , , , , , ,s s s s sa b c d J ab c d J ad b c J cd a b J bc a dφ= = − + − .               (11) 

Lemma 2. Let B  be a binary-Lie superalgebra with a decomposition given by (9). Let { }2, 2,,i iv v−  be the 
basis of iV  that satisfies (7). Then, there are three functions { } { }, , : 1, 2, , 1, 2, ,q qα β γ × →    such that,  
for every ( ) { } { }, 1, 2, , 1, 2, ,i j q q∈ ×  , we have ( )2, 2, ,i jv v i j Aα= , ( )2, 2, ,i jv v i j Xβ− − =  and  

( )2, 2, ,i jv v i j Aγ− = . 
Remark 3. Observe that, since odd elements commute, the functions α  and β  are always symmetric 

while γ  might fail to be. 
Proof. Using (10), a straightforward computation gives  

( ) ( ) ( )2, 2, 2, 2, 2, 2,0 , , , , , .s i j s i j i jA X v v J H v v v v Hφ − − −= = =  

Therefore, Remark 2 implies that ( )2, 2, ,i jv v i j Hγ− =  for some ( ),i jγ ∈ . In the same way we obtain  

( ) ( ) ( )2, 2, 2, 2, 2, 2,0 , , , 4 , , 4s i j s i j i jH X v v J X v v v v Xφ= = = , 

and 

( ) ( ) ( )2, 2, 2, 2, 2, 2,, , , 4 , , 4s i j s i j i jH A v v J A v v v v Aφ − − − − − −= − = − . 

It follows that ( )2, 2, ,i jv v i j Xβ= , for some ( ),i jβ ∈ , and ( )2, 2, ,i jv v i j Aα− − = , for some ( ),i jα ∈ . □ 
Lemma 3. Let B  be a binary-Lie superalgebra with a decomposition given by (9). Let i=V V  for some 

1 i q≤ ≤ , be a sub-module of type 2M . Then 2 0=V . 
Proof. Let { }2 2,v v−  be the basis of V  satisfying (7), while we write ( ),i iα α= , ( ),i iβ β=  and  

( ),i iγ γ=  for simplicity. It suffices to prove that 0α β γ= = = . Using (11), straightforward computations 
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give both  

( ) ( )2 2 2 20 , , , 4 4s H v v v vφ β γ−= = − , 

and  

( ) ( )2 2 2 20 , , , 4 4s H v v v vφ α γ− − −= = − . 

It follows that 4α β γ= = . Assuming this result, and using (11) again, we obtain  

( )2 2 2 20 , , , 36s X v v v vφ γ− −= = − , 

we conclude 0γ β α= = =  as claimed.                                                        □ 
Lemma 4. Let B  be a simple binary-Lie superalgebra with decomposition given by (9). Let be iV  and 
jV  for some pair ( ),i j  with 1 i q≤ ≤ , and 1 j q≤ ≤ , two sub-modules of type 2M . Then 0i j =VV . 
Proof. If i j=  the result follows from lemma 3. Fix a pair ( ),i j  with i j≠ . Denote by { }2, 2,,i iv v−  and  

{ }2, 2,,j jv v−  the basis of iV  and jV  respectively satisfying (7). Because of remark 3, it suffices to prove that  

( ) ( ) ( ) ( ), , , , 0i j i j i j j iα β γ γ= = = = . Using (11) and Lemma 3, straightforward computations give us the 
following results:  

( ) ( )2, 2, 2, 2,0 , , , 16 ,s i j j jH v v v i j vφ γ− − −= = −  

( ) ( )2, 2, 2, 2,0 , , , 16 , .s j i i iH v v v j i vφ γ− − −= = −  

It follows that ( ) ( ), , 0i j j iγ γ= = . Using this last result and (11) we get that  

( ) ( )2, 2, 2, 2,0 , , , 4 ,s j i j jH v v v i j vφ α− − −= =  

and  
( ) ( )2, 2, 2, 2,0 , , , 4 , .s j i j jH v v v i j vφ β−= =  

We conclude ( ) ( ), , 0i j i jα β= =  as claimed.                                                □ 
Lemma 5. Let B  be a superalgebra with a direct decomposition given by (9). Let i=U U  for some 

1 i p≤ ≤  be a Lie sub-module of type in n=  and let = jV V  for some 1 j q≤ ≤ , be a sub-module of type 
2M . Then 0=UV . 
Proof. Call iu , 0 i n≤ ≤ , the elements of the basis of U  satisfying (6) and 2v , 2v−  the elements of the 

basis of V  satisfying (7). Let 1, ,i n=  . Using (10) we obtain ( ) ( )1 2 1 2, , , , ,s i s iX X u v J X u X vφ − −= − , whence 
it follows 

( )2, , 0s iJ X u v = ,                                       (12) 

for every { }1, ,i n∈  . On the other hand, setting a H= , b X= , 2c v= , 0d u=  in (10), we obtain  
( ) ( ) ( )2 0 0 2, , , 2 , , 0s sH X v u n J X u vφ = + = . So (12) is satisfied by every 1, ,i n=  . Computing the left hand 

side of (12), we find that, for every { }1, ,i n∈  , identity ( )2 1 2i iu v u v X−=  holds. At this point, a simple in- 
duction proves that 

( )( )2 0 2
i

i Xu v u v ad=                                     (13) 

for every 1, ,i n=   (the case 0i =  is trivial). Now using (10), we obtain  

( ) ( ) ( )( ) ( )0 2 0 2 0 2 0 2, , , , , 2 0s sX A u v J H u v n u v u v Hφ = = − + + = . 

Since, 0n ≠  by Lemma 1, we have that { }2 2,0,2n + ∉ − . Thus Remark 1 implies that 0 2 0u v = , and (13) 
implies that 2 0iu v =  for every { }0, ,i n∈  . 

Let be 0, , 1i n= − . Using (10) again we conclude  
( ) ( ) ( )( ) ( )1 2 1 2 2, , , , , 1 , ,s i s i s iA A u v J A u A v i n i J A u vφ + − + − −= − = − +  and since i n≠  it follows that 

( )2, , 0s iJ A u v− = ,                                     (14) 

for every { }0, , 1i n∈ − . On the other hand, setting a A= , b H= , nc u= , 2d v−=  in (10), we obtain  
( ) ( ) ( )2 2, , , 2 , , 0s n s nA H u v n J A u vφ − −= + = . So (14) is satisfied by every { }0, ,i n∈  . Computing the left side 
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of (14) when { }0, , 1i n∈ − , we have 

( ) ( )1 2 2
1 .

1i iu v u v A
n i i− − −

−
=

+ −
                               (15) 

Form here a simple induction proves 

( )( )2 2
i

n i i n Au v u v adζ− − −=                                  (16) 

for every { }0, ,i n∈  , where  

( ) ( )!
1 ,    0 .

! !
i

i

n i
i n

i n
ζ

−
= − ∀ ≤ ≤  

Now using (10) we obtain ( ) ( ) ( )( ) ( )2 2 2 2, , , , , 2s n s n n nA X u v J H u v n u v u v Hφ − − − −= = + + . Since 0n ≠  we 
have ( ) { }2 2,0,2n− + ∉ − , whence remark 1 implies that 2 0nu v− = , and therefore (16) implies 2 0iu v− =  for 
every 0, ,i n=  .                                                                          □ 

Now we can prove the following: 
Theorem 1. Let 0 1= ⊕B B B  be a simple binary-Lie superalgebra, such that 0B  is ( )2 sl  and 1B  

has a decomposition given by (9). Then 0q = , i.e there is no sub-module of type 2M  in the decomposition. In 
other words 1B  is a Lie module over 0B . 

Proof. Let i=J V  be a space of type 2M  in the direct decomposition given by (9). Thanks to Lemma 4 we 
have 0j =V J  for every 1 j q≤ ≤ . As a consequence of Lemma 5 we get 0i =U J  for every 1 i p≤ ≤ . Thus 

1 0=B J , and since 0 ⊆B J J , we conclude that J  is a super-ideal of B  with 1 =J J  and { }0 0=J  Since 
≠J B  and B  is simple, necessarily 0=J . 
We have prove that the decomposition of B  given by (9) reduces to 

( )2
1

p

i
i=

 
= ⊕ 

 
⊕B sl U                                    (17) 

where iU  is a Lie irreducible sub-module of type in , for every 1 i p≤ ≤ . Therefore 1B  is a Lie module 
over 0B .                                                                                 □ 

4. The Main Theorem 
In this section we are going to prove that A  is a Lie superalgebra. We need two previous lemmas. 

Lemma 6. Let U  and V  be two sub-modules of type n  and m respectively in the decomposition given by 
(17). Then ( )1, , 0sJ =B U V , which clearly implies that ( )1 1 1, , 0sJ B B B = .  

Proof. Since 1B  is a Lie module if 0a∈B  and 1, ,b c d ∈B  we have that ( ) ( ), , , , 0s sJ bc a d J cd a b= = , 
whence (11) becomes 

( ) ( ) ( ), , , , , , , 0.s s sa b c d J ab c d J ad b cφ = − =                      (18) 

Without loss of generality, we assume that n m≤ . Let w be an arbitrary element of 1B . Set a H= , ib u= , 
c w= , and jd v=  in (18). We have 

( ) ( )( ) ( )2 , , 0.s i jm n i j J u w v− + − =  

Therefore, if ,i j  satisfy ( ) ( )2 0m n i j− + − ≠  then ( ), , 0s i jJ u v w = . In particular, if m n−  is odd, then 
( ), , 0s i jJ u v w =  for every 0 i n≤ ≤  and 0 j m≤ ≤ . Assume that m n−  is an even integer (zero included). 

If we set a X= , ib u= , c w= , and jd v=  in (18) we get 

( ) ( ), , , , 0.s i j s j iJ u X w v J v X u w− =                             (19) 

If ,i j  are two indices such that ( ) ( )2 0n m j i− + − =  and 0i ≠ , then  
( ) ( )( ) ( )2 1 1 2 4 4 0n m j i n m j i− + + − − = − + − + = ≠ . Thus Equation (18) implies  

( ) ( ) ( ) ( )1 1 1 1, , , , , , , , 0s i j s i j s j i s j iJ u w v J u X w v J v X w u J v w u− − + −= = = = . 

for every j m≠  and every 0i ≠ . On the other hand (19) implies  
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( ) ( ) ( ) ( )1, , , , , , 0, , 0s i m s i m s m i s iJ u w v J u X w v J v X w u J w u−= = = =  

for every 0i ≠ . Observe that ( ) ( )2 0n m j i− + − =  implies j i≤ . Then ( ), , 0s i jJ u v w =  for every  
( ) ( ), 0,0i j ≠ . 

Next, set a A= , 1b u= , c w= , and 0d v=  in (18). It follows that  

( )0 0, , 0.snJ u w v− =  

Since 0n ≠  by lemma (1), necessarily ( )0 0, , 0sJ u w v = . We conclude that ( ), , 0s i jJ u v w =  for every 
{ }, 1, ,i j p∈  .                                                                            □ 

Lemma 7. Let i=U U , j=V U  be two submodules of type in n=  and jm n=  respectively in the decom-  
position given by (17). Then ( )0 , , 0sJ =B U V , which clearly implies that ( )0 1 1, , 0sJ B B B = . 

Proof. Let be { }0 , , nu u  and { }0 , , mv v  the basis of U  and V  respectively satisfying (6). It is enough 
to prove that every pair of indices ( ) { } { }, 0, , 0, ,i j n m∈ ×   satisfies  

( ) ( ) ( ), , , , , , 0s i j s i j s i jJ H u v J X u v J A u v= = = . For simplicity we use the notation ( ), , ,i j s i jH J H u v= ,  

( ), , ,i j s i jX J X u v=  and ( ), , ,i j s i jA J A u v= . We call H -matrix to the 1n +  by 1m +  matrix with entrances 
in 0B  whose ( ),i j  entrence is ,i jH  (called the H -coefficients). Similarly we define the X -matrix and 
the A -matrix. We need to prove that these three matrices are the null matrix. Table 1 shows us some identities 
obtained using (10) by evaluating sφ  in different 4-tuples in 0 0 1 1× × ×B B B B . 

We claim that the eight identities of Table 1 suffice to prove that the X -coefficient and the H -coefficient 
are zero, with the only possible exception of 0,0H  when n m= . 

To explain how this implication works we notice that identity (1) of Table 1 implies that the H -matrix is 
zero if m n−  is odd and has the form in Figure 1 if m n−  is even. We also see that identities (4), (5), (7) and 
(8) imply that the X -matrix is as in Figure 2, note that, in every position where neither (4) nor (5) implies that 
X -coefficient is zero, either (7) or (8) does. 

We introduce now a diagram notation to keep track of the information involved by the other identities. First 
we write down two matrices in the same diagram as follows: If M  and N  are two matrices of the same size 
we put both in a double matrix diagram as in the left side of Figure 3. 
 
Table 1. Some identities involving H-coefficients and X-coefficients implied by (10).                                          

  Identity Restriction 

(1) ( ), , ,s i jH H u vφ  ( ) ( )( ) ,2 0i jm n j i H− − − =   

(2) ( ), , ,s i jH X u vφ  ( ) , 1,2 2 i j i jm j X H ++ − =  ( )i n≠  

(3) ( ), , ,s j iH X v uφ  ( ) , , 12 2 i j i jn i X H ++ − =  ( )j m≠  

(4) ( ), , ,s n jH X u vφ  ( ) ,2 2 0n im j X+ − =   

(5) ( ), , ,s i mX H u vφ  ( ) ,2 2 0i mn i X+ − =   

(6) ( ), , ,s i jX X u vφ  1, , 1i j i jX X+ +=  ( ),i n j m≠ ≠  

(7) ( ), , ,s n jX X u vφ  , 1 0n jX + =  ( )j m≠  

(8) ( ), , ,s i mX X u vφ  1, 0i mX + =  ( )i n≠  

 

1
2 2

0 0 0 0 0

0 0 0 0 0
m n n m n− + −

 
 • 
 
 

• 
 
 
  

  

        

  

 

Figure 1. The H-matrix with m − n even. 
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0

0
0 0 0

• • 
 
 
 • •
  
 



   





 

Figure 2. The X-matrix with m and n arbitrary. 
 

 
Figure 3. Left: Example of a 2 × 2 double matrix. Right: Digram of identity (6) in 
Table 1.                                                                   

 
In those diagrams we draw an arrow from a coefficient to another one if the nullity of the second one can be 

obtained from the nullity of the first one. We use a full triangle on the tip of the arrow if the implication works 
without any restriction and an empty triangle on the tip of the arrow if the implication depend of some restriction 
explained in the legend of the figure. With this notation, the information from identities (2) and (3) of Table 1 is 
encoded in Figure 4, and information from identity (6) of Table 1 is encoded in the right side of Figure 3. If a 
coefficient of the X -matrix is in the last column or in the last row it is zero as we see in Figure 2. Otherwise 
we can see in Figure 4 that we can apply identity (2) or (3) in Table 1 and conclude that it is zero except in the 
following situations. 

1) Neither identity (2) nor identity (3) can be applied. This occurs only when 2 2i n= +  and 2 2j m= + .  
2) Identity (2) cannot be applied and the H -coefficient that is pointed by the empty triangle in the right side 

of Figure 4 corresponds to a bullet in Figure 1. This occurs only when 2 2j m= +  and ( )( )2 1m n j i− = + − .  
3) Identity (3) cannot be applied and the H -coefficient that is pointed by the empty triangle in the left side of 

Figure 4 corresponds to a bullet in Figure 1. This occurs only when 2 2i n= +  and ( )( )2 1m n j i− = − + .  
Therefore, the only coefficients that might be different from zero are 

1, 1
2 2
n mX
+ +

, 
2, 1

2 2
n mX
+ +

 or 
1, 2

2 2

.n mX
+ +

 We  

call them the exceptional X -coefficients. 
As we see in Figure 2, if any of this three coefficients is in the last row or the last column, then it is zero. 

Otherwise this X -coefficient can be put in the right side of Figure 3 with a non-exceptional X -coefficient in  
the other side of the arrow. Therefore, it is zero (notice that 

2, 1
2 2
n mX
+ +

 and 
1, 2

2 2
n mX
+ +

 can be put in the left side 

of Figure 3 in each tip of the arrow, but if one them is not in the last row or column, then either 
3,

2 2
n mX
+

 or 

, 3
2 2
n mX

+
 is available). 

We have proved that the X -matrix is the matrix zero. Now we can see that every H -coefficient different 
than 0,0H  can be put either in the left side or in the right side of Figure 4 with an X -coefficient on the other 
side of the arrow. We conclude that , 0i jH = , for every ( ) ( ), 0,0i j ≠ . 

Now we have to look at Table 2. Information from identities (1) and (2) is encoded in Figure 5. We can see 
that the A -coefficients are 0 except in three cases. 

1) Neither identity (1) nor identity (2) can be applied. This occurs only for 0,0A .  
2) Identity (1) cannot be applied, and the H -coefficient pointed by the triangle in the right side of Figure 5 

is 0,0 0H ≠ . This occurs only for 1,0A  when mn = . 
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Figure 4. Diagram of identities (2) and (3) in Table 1 with their restrictions.           

 

 
Figure 5. Diagram of identities (1) and (2) in Table 2.                           

 
Table 2. Identities involving the H-coefficients and A-coefficients implied by (10) and the nullity of the X-matrix.                   

  Identity Restriction 

(1) ( ), , ,s i jA X u vφ  , 1,i j i jH A+= −  i n≠  

(2) ( ), , ,s i jX A u vφ  , , 1i j i jH A +=  j m≠  

(3) ( )0, , ,s iA A u vφ  ( ) 1,01 0in i iA−+ − =  0i ≠  

(4) ( )1 0, , ,s A H u vφ  1,0 0A =  1n =  

 
3) Identity (2) cannot be applied, and the H -coefficient pointed by the triangle in the left side of Figure 5 is 
0,0 0H ≠ . This occurs only for 0,1A  when n m= . 
To prove that 0,0 0A =  we set 1i =  in identity (3) of Table 2. This always can be done since 0n ≠ . The 

second and the third cases occur only if n m= , and in this case, it is enough to prove that just one among 0,0H , 
1,0A , 0,1A  is zero. In this case the desired result can be proved using identity (3) of Table 2 with 2i = , but we 

are able do that provided 2n ≥ . Thus, the only coefficients we have not proved yet to be zero, are  
0,0 1,0 0,1H A A= − =  when 1n m= = . This is the reason why we included identity (4) in Table 2. At this point 

we have proved that every H -coefficient is zero, every X -coefficient is zero and every A -coefficient is zero. 
This means that  

( ) ( ) ( ), , , , , , 0s i j s i j s i jJ H u v J X u v J A u v= = =  

for every pair ,i j  finishing thus the proof of the lemma.                                           □ 
Proof of the main theorem: We need to prove that ( ), , 0sJ w u v =  for every w, u, v homogeneous. Since 0B  

is a Lie algebra ( ) ( ), , , , 0sJ w u v J w u v= =  whenever these three elements are even. Theorem 1 implies that 
the identity holds whenever two of these elements are even and the other one is odd. So we only have to prove 
that ( ), , 0sJ w u v =  when at least two of this three elements are odd. Thanks to the simmetries described in 
identity (1) it suffices to prove that ( ), , 0sJ w u v =  when u and v are odd. Because of the decomposition given 
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by (17) we only have to prove that the identity holds when iu∈ U  for some { }1, ,i p∈   and jv∈V  for 
some { }1, ,j p∈  , but this follows from Lemma 7 if w is even, and from Lemma 6 if w is odd. This proves 
that B  is a Lie superalgebra.                                                                □ 
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