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Abstract 
In conjunction with general integral control, and synthesizing Singular perturbation and Equal ra-
tio gain techniques, this paper proposes a new control design technique, named Power ratio gain 
technique, and then by Lyapunov method, theorem to ensure regionally as well as semi-globally 
asymptotic stability is established in terms of some bounded information. The highlight point is 
that it not only inherits all the essences of Singular perturbation and Equal ratio gain techniques 
but also makes up for their shortcomings, and then the conservatism of control input can be im-
proved by compromising the Power ratio coefficients. Theoretical analysis, design example and 
simulation results show that Power ratio gain technique is a simple, practical and powerful tool to 
deal with the uncertain nonlinear system. 

 
Keywords 
General Integral Control, Nonlinear Control, Robust Control, Equal Ratio Gain Technique, Singular 
Perturbation Technique, Power Ratio Gain Technique, Output Regulation 

 
 

1. Introduction 
Faced with the complexity of uncertain nonlinear system, it is clear that we cannot expect a particular method to 
apply to all nonlinear systems [1]. Therefore, although there are Linearization technique, Gain scheduling tech-
nique, Singular perturbation technique, Feedback linearization technique, Sliding mode technique, Equal ratio 
gain technique and so on, nonlinear design tools, this paper still develops a new control design technique, named 
Power ratio gain technique, in conjunction with general integral control since integral control plays an irrepla-
ceable role in the control domain because it ensures asymptotic tracking and disturbance rejection when ex-
ogenous signals are constants or planting parametric uncertainties appears.  

For general integral control, there were various design techniques, such as Linearization technique [2], Sliding 
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mode technique [3], Feedback linearization technique [4], Singular perturbation technique [5], Perturbation 
technique [6]-[9] and Equal ratio gain technique [10] [11]. Although Singular perturbation and Equal ratio gain 
techniques can all effectively deal with the uncertain nonlinear system, respectively, the results could be too 
conservative, especially for Singular perturbation technique. Therefore, it is of important significance to develop 
a new control design technique such that all the essences of Singular perturbation and Equal ratio gain tech-
niques are preserved and their shortcomings are removed. 

Motivated by the cognition above, in conjunction with general integral control, this paper proposes a new 
control design technique, named Power ratio gain technique. The main contributions are: 1) the perfect combi-
nation of Singular perturbation and Equal ratio gain techniques is achieved, and then the conservatism of control 
input can be improved by compromising the Power ratio coefficients; 2) by Lyapunov method, theorem to en-
sure regionally as well as semi-globally asymptotic stability is established in terms of some bounded information. 
Theoretical analysis, design example and simulation results show that Power ratio gain technique is a simple, 
practical and powerful tool to deal with the uncertain nonlinear system. 

Throughout this paper, we use the notation ( )m Aλ  and ( )M Aλ  to indicate the smallest and largest eigen-
values, respectively, of a symmetric positive define bounded matrix ( )A x , for any nx R∈ . The norm of vector  
x is defined as Tx x x= , and that of matrix A is defined as the corresponding induced norm  

( )T
MA A Aλ= .  

The remainder of the paper is organized as follows: Section 2 describes the system under consideration, as-
sumption, definition and propositions. Section 3 presents Power ratio gain technique and general integral control 
design. Example and simulation are provided in Section 4. Conclusions are presented in Section 5. 

2. Problem Formulation 
Consider the following controllable nonlinear system, 

( ) ( )

1 2

2 3

    
, ,n

x x
x x

x f x w g x w u

=
 =


 = +









                               (1) 

where nx R∈  is the state; u R∈  is the control input; lw R∈  is a vector of unknown constant parameters 
and disturbances. The uncertain nonlinear functions ( ),f x w  and ( ),g x w  are all continuous in ( ),x w  on 
the control domain n l

x wD D R R× ⊂ × . We want to design a control law u such that ( ) 0x t →  as t →∞ .  
Assumption 1: There is a unique pair ( )00,u  that satisfies the equation, 

( ) ( ) 00 0, 0,f w g w u= +                                 (2) 

so that 0x =  is the desired equilibrium point and u0 is the steady-state control that is needed to maintain equi-
librium at 0x = .  

Assumption 2: Suppose that the functions ( ),f x w  and ( ),g x w  satisfy the following inequalities, 

( ) ( ), 0, x
ff x w f w l x− ≤                                (3) 

( )0 ,m Mg g x w g< < <                                  (4) 

( ) ( ), 0, x
gg x w g w l x− ≤                                (5) 

( ) ( )10, 0, f
gf w g w γ− ≤                                 (6) 

for all xx D∈  and ww D∈ , where x
fl , x

gl , mg , Mg  and f
gγ  are all positive constants. 

For the purpose of this paper, it is convenient to introduce the following definition [12] and propositions [10]. 
Definition 1: ( ), ,F a b xΦ Φ Φ  with 0aΦ > , 0bΦ > , and x R∈  denotes the set of all continuous differential 

increasing function, ( )xΦ  such that 
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(0) 0Φ = , 

( )x bΦΦ ≥  :x R x aΦ∀ ∈ >  

( )d d 0x xΦ >  x R∀ ∈  

where   stands for the absolute value. 
Figure 1 depicts the example curves for the functions belonging to the function set FΦ . For instance, for all 

x R∈ , the functions, ( )arcsinh x , ( )tanh x , 3ax bx+  (a > 0, b > 0), ( )sinh x , ax and so on, all belong to 
function set FΦ . 

Proposition 1: a canonical system matrix can be designed to be Hurwitz as any row controller and its inte-
grator gains increase with the same ratio. 

Proposition 2: as any row controller and its integrator gains of a canonical system matrix tend to infinity with 
the same ratio, if it is always Hurwitz, and then the same row solutions of Lyapunov equation all tend to zero. 

3. Power Ratio Gain Technique and General Integral Control 
For developing Power ratio gain technique, general integral controller is given as,  

( )( ) ( )

( ) ( )

1 1 1 1
1 1 2 2 1

1
1 1 2 1

1 1 2 2 1 1

d
d

n n
n n n

n n
n n n n

u x x x x

x x x x

µ ε α ε α ε α ε α ϕ σ φ

ϕ σ
σ µ ε β ε β ε β ε β

σ

− − − + − −
+

−

− − − + − −
− −

 = − + + + + −

  

= + + + +  
  






               (7) 

where iα  ( )1,2, , 1i n= + , jβ  ( )1, 2, ,j n=  , µ  and ε  are all positive constants; ( )ϕ   belongs to the 
function set FΦ ; ( )xφ  ( )( )0 0φ =  is used to attenuate the uncertain nonlinear action of ( ) ( ), 0,f x w f w− . 

Assumptions 3: By the inequalities (3), (4) and definition of the controller (7), it is reasonable to suppose that 
the following inequality, 

( ) ( ) ( ) ( ) ( ), 0, , x
ff x w f w g x w x l xφφ− − ≤                           (8) 

holds for all xx D∈  and ww D∈ . where x
fl φ  is a positive constant. 

Thus, substituting (7) into (1), obtain the augmented system, 

( ) ( ) ( ) ( ) ( )( )
( ) ( )
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2 3

1 1 1 1
1 1 2 2 1

1 1 2 1
1 1 2 2 1 1

    

, , , n n
n n n n

n n
n n n n
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

     (9) 

 

 
Figure 1. Example curves for the func-
tions belonging to the function set FΦ.  
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By Assumption 1 and choosing 1 1
1nε µ α− −
+  to be large enough, and then setting 0x =  and 0x =  of the 

system (9), obtain, 

( ) ( ) ( )1 1
1 00 0, 0, nf w g w ε µ α ϕ σ− −
+= −                           (10) 

Therefore, we ensure that there is a unique solution 0σ , and then ( )00,σ  is a unique equilibrium point of 
the closed-loop system (9) in the domain of interest. At the equilibrium point, 0x = , irrespective of the value 
of w. 

Now, defining  

[ ]T1 2 1n nη η η η η += 
, 

n i
i ixη ε − +=  ( )1,2, ,i n=  , 

( ) ( )1 0nη ϕ σ ϕ σ+ = − , 

and substituting (10) into (9), obtain, 

( ),A F x wεη η ε= +                                   (11) 

where  

( ) ( )
TT

0xη ϕ σ ϕ σ = −   

1 1 1 1
1 2 1

1 1 1
1 2

0 1 0 0
0 0 0 0
0 0 1 0

0
n n

n

A
µ α µ α µ α µ α
µ β µ β µ β

− − − −
+

− − −

 
 
 
 =
 
− − − − 
  











, 

and ( ),F x w  is an 1 1n + ×  matrix, all its elements are equal to zero except for 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1
1 , 0, , , 0, 0, 0,nf f x w f w g x w x g x w g w f w g wφ −= − − − −   . 

Moreover, it is worthy to note that the function ( ),g x w  is integrated into iα  via a change of variable. This 
has not influence on the results if the inequality (4) holds and it can be taken as mg  in the design. Therefore, it 
is omitted in all the following demonstrations. 

By Proposition 1 proposed by [10], the system matrix A can be designed to be Hurwitz for all iα , jβ  and 
0 µ µ∗< < . Thus, by linear system theory, if the matrix A is Hurwitz, and then for any given positive define 
symmetric matrix Q, there exists positive define symmetric matrix P that satisfies Lyapunov equation  

TPA A P Q+ = − . Therefore, there exists a quadratic Lyapunov function, 

( ) TV Pη η η=                                      (12) 

Thus, using ( ) TV Pη η η=  as Lyapunov function candidate, and then its time derivative along the trajecto-
ries of the closed-loop systems (11) is, 

( ) ( ) ( ) ( )T T

T
1

1 ,

1 2 ,n n

V
V PA A P F x w

Q P f

η
η η η

ε η

η η η
ε

∂
= + +

∂

= − +



                        (13) 

where 1 2 , 1n n n n nP p p p + =  
. 

Now, using the inequalities (5), (6), (8) and definition of iη , we have, 

( )1n ff ηκ ε η≤                                    (14) 

where ( )f
ηκ ε  is a positive constant, which is dependent on ε .  

By Proposition 2 proposed by [10], we have,  
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0   as   0n nP Pµ µ µ= → →                               (15) 

where 1 2 , 1n n n n n nP P p p pµµ + = =  
. 

Substituting (14) and (15) into (13), obtain, 

( ) ( ) ( ) 21 2m f nV Q Pη µη λ µκ ε η
ε

 ≤ − − 
 

                          (16) 

It is obvious that there are µ∗∗  and ε ∗  such that 

( ) ( )1 2m f nQ Pη µλ µκ ε
ε

>                                (17) 

holds for all 0 µ µ µ∗∗ ∗< < <  and 0 ε ε ∗< < . Therefore, we have ( ) 0V η ≤ . 
Using the fact that Lyapunov function ( )V η  is a positive define function and its time derivative is a nega-

tive define function if the inequality (17) holds, we conclude that the closed-loop system (11) is stable. In fact, 
( ) 0V η =  means 0x =  and 0σ σ= . By invoking LaSalle’s invariance principle, it is easy to know that the 

closed-loop system (11) is exponentially stable. As a result, the following theorem can be established. 
Theorem 1: Under Assumptions 1, 2 and 3, if the system matrix A is Hurwitz for all iα , jβ  and 

0 µ µ∗< <  and the inequality, 

( ) ( )1 1
1 0,m ng a f wε µ α ϕ− −
+ Φ >                              (18) 

holds, and then the equilibrium point 0x =  and 0σ σ=  of the closed-loop system (11) is an exponentially 
stable for all 0 µ µ µ∗∗ ∗< < <  and 0 ε ε ∗< < . Moreover, if all assumptions hold globally, then it is globally 
exponentially stable. 

Discussion 1: From the demonstration above, it is obvious that: 1) as 1µ = , the design method degenerates 
into Singular perturbation one, and then the stability can be ensured by decreasing ε  to enhance the positive 
effect ( )m Qλ ; 2) as 1ε = , the design method reduces to Equal ratio gain one, and then the asymptotically sta-
ble control can be achieved by decreasing µ  to attenuate the negative influence 1nf ; 3) as ε  and µ  are all 
used as the control parameters, not only the positive effect ( )m Qλ  can be enhanced but also the negative in-
fluence 1nf  can be attenuated, and then the perfect combination of Singular perturbation and Equal ratio gain 
methods is achieved. All these mean that this is a new control design technique since it not only inherits all the 
essences of Singular perturbation and Equal ratio gain techniques but also makes up for their shortcomings, and 
then the conservatism of control input can be improved by compromising the Power ratio coefficients ε  and 
µ . Thus, it is not only more perfect in theory but also easier to tune a stable controller with the less conservat-
ism in practice. 

Discussion 2: From the statements above, it is easy to see that: Just there are two special coefficients µ  and 
ε  in the controller (7), the closed-loop system (9) can be transformed into the singular perturbation form (11) 
with a canonical system matrix A, and then by Lyapunov method, theorem to ensure regionally as well as 
semi-globally asymptotic stability is established in terms of some bounded information. All of them synthesize a 
systematic control design method to deal with the uncertain nonlinear system. It is obvious that the key point of 
this design method originates in the controller gains, that is, iα  and jβ  are all multiplied by the Power ratio 
coefficients 1µ−  and kε − . This is the reason why our method is called as Power Ratio Gain Technique. 

Discussion 3: From the design procedure above, it is obvious that: 1) general integral controller (7), trans-
formation from (9) to (11) and stability conditions (17) and (18) are all very simple; 2) so long as the bounded 
condition (14) is satisfied, the asymptotically stable control can be achieved; 3) by compromising the Power ra-
tio coefficients ε  and µ , the conservatism of control input can be improved. This demonstrates not only the 
striking feature of general integral control, that is, its robustness with respect to ( ),f x w  and ( ),g x w  but also 
Power ratio gain technique is a simple, practical and powerful tool to solve the control design problem of uncer-
tain nonlinear system. 

4. Example and Simulation 
Consider the pendulum system [1] described by, 
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( )sina b cTθ θ θ= − − +   

where a, b, c > 0, θ is the angle subtended by the rod and the vertical axis, and T is the torque applied to the 
pendulum. View T as the control input and suppose we want to regulate θ to r. Now, taking 1x rθ= − , 2x θ=  , 
the pendulum system can be written as, 

( )
1 2

2 1 2sin
x x
x a x r bx cu
=

 = − + − +





 

and then it can be verified that ( )0 sinu a r c=  is the steady-state control that is needed to maintain equili-
brium at the origin. 

By the controller (7), we have, 

( )( ) ( )
( ) ( )

1 1 1
1 1 2 2 3 1

1 1 1 1
1 1 2 2

sinh 4sin 3

cosh

u x x x

x x

µ ε ε α α α σ

σ σ µ ε ε β β

− − −

− − − −

 = − − − +


= + 
 

Thus, the closed-loop system can be written as,  

( ),A F x wεη η ε= +  

where  

( ) ( ) T
1 2 0sinh sinhx xη σ σ = −  , 

( )1 1 1 1
1 2 3

1 1
1 2

0 1 0

0

A c c c b cµ α µ α µε µ α

µ β µ β

− − − −

− −

 
 

= − − + − 
 
 

, 

( ) ( ) ( ) ( ) T
1 1, 0 sin sin 4 3sin 0F x w a r a x r c x= − + +   . 

The normal parameters are a = c = 10 and b = 2, and in the perturbed case, b and c are reduced to 1 and 5, re-
spectively, corresponding to double the mass. Thus, we have, 

( ) ( ) ( )1 1sin sin 4 3sin 3.34a r a x r c x ε η− + + ≤ . 

Now, the gains are taken as 1 8α = , 2 5α = , 3 9α = , 1 5β =  and 2 3β = , and then with 10a = , 5c = , 
1b =  and 1ε = , the following inequality, 

( )2 3 2 2 1 3 2 3 1 1 0c c b bα α β µ α α α β α β µµ α+ + − + >  

holds for all 0 µ< < ∞ , and then the matrix A is Hurwitz for all 0 µ< < ∞ . Thus, we obtain µ∗ = ∞ . 
Using 1 8α = , 2 5α = , 3 9α = , 1 5β = , 2 3β = , 5c = , 1b = , 1.6ε =  and 1.5µ =  to solve Lyapunov 

equation TPA A P I+ = − , obtain 2 0.056P ≈ , and then solve the equation 2
21 6.68 0P ε− = , we obtain 

1.62ε ∗ = . Thus, the asymptotical stability of the whole closed-loop system can be ensured for all 0 1.62ε< <  
and 1.5µ ≤ . Therefore, taking 1.5µ =  and 1.2ε = , the simulation is implemented under the normal and 
perturbed cases, respectively. Moreover, in the perturbed case, we consider an additive impulse-like disturbance 
( )d t  of magnitude 60 acting on the system input between 30 s and 31 s. 
Figure 2 showed the simulation results under normal (solid line) and perturbed (dashed line) cases. From the 

simulation results and design procedure, the following observations can be made: 1) The optimum responses are 
almost identical before the additive impulse-like disturbance appears. This means that by Power ratio gain tech-
nique, we can tune a general integral controller with high control performance and good robustness. 2) It is also 
important to note that µ  and ε  are taken as 1.5 and 1.2, respectively. This means that Power ratio gain tech-
nique can be used to improve the conservatism. All these demonstrates that not only general integral control can 
effectively deal with the uncertain nonlinearity but also Power ratio gain technique is a simple, practical and 
powerful tool to solve the control design problem of uncertain nonlinear system, and then makes the engineers 
more easily design a stable controller with the less conservatism.  
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Figure 2. System output under normal (solid 
line) and per-turbed (dashed line) cases. 

5. Conclusion 
In conjunction with general integral control, this paper proposes a new control design technique, named Power 
ratio gain technique. The main contributions are: 1) the perfect combination of Singular perturbation and Equal 
ratio gain techniques is achieved, and then the conservatism of control input can be improved by compromising 
the Power ratio coefficients; 2) by Lyapunov method, theorem to ensure regionally as well as semi-globally 
asymptotic stability is established in terms of some bounded information. Theoretical analysis, design example 
and simulation results show that Power ratio gain technique is a simple, practical and powerful tool to deal with 
the uncertain nonlinear system. Consequently, Power ratio gain technique has not only the important theoretical 
significance but also the broad application prospects. 
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