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Abstract 
The effect of nonzero extent of an electric charge is considered within the assumption that the 
structure of the charge at rest is spherically-symmetric and the current vector is linear in the ac-
celeration. An exact expression for the electromagnetic field of the charge is obtained, which de-
pends on the specific form of the charge distribution. We have developed the approximations 
which deal with the charge distribution through its low-order moments, for the case in which the 
particle velocity does not considerably change over the time it covers a distance of the order of its 
own size. We have also rigorously justified the Lorentz-Abraham-Dirac expression for the radia-
tion friction (we have identified a more general context for this expression as well as its applica-
bility domain). We have also studied the radiation field and demonstrated that in some cases, the 
radiation virtually vanishes even for large accelerations. Ways of further development of the 
theory have been pointed out, in order to include more general forms of the current vector (de-
pendence of the deformation of the charge structure on the acceleration, rotation of the structure 
around the centre of the charge, ultrarelativistic regimes). 
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1. Introduction 
Many problems of the relativistic theory of microscopic particles originate from their representation as point- 
like particles. Renormalization procedures that are invoked to eliminate the divergences, despite their efficiency, 
violate the internal integrity of the theory. An account for the nonzero size of a particle is quite challenging 
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within the quantum theory because of its statistical nature. On the other hand, the non-relativistic classical 
theory is able to describe an extended particle; still, to date, hardly enough attention has been paid to the relati-
vistic generalization of such a description (perhaps, due to considerable mathematical difficulties arising in the 
way to it). 

One of the problems in which a point idealization leads to paradoxes is the problem of the interaction of a 
charge with its own field. This physical situation takes place, in particular, within the process of braking by rad-
iation (radiation friction) described by the Lorentz-Abraham-Dirac formula. The traditional techniques of deriv-
ing this formula (see Ref. [1]) cannot be considered strict enough. Some approaches are based on obtaining first 
the non-relativistic expression and then transforming it to a relativistically-invariant form [2]. More rigorous is 
the Dirac’s approach [3], within which the action of the field upon a charge is accounted for by taking the limit 
of the difference between the retarded and the advanced potentials as the charge radius tends to zero. The diver-
gence arising within such a consideration is then eliminated using renormalization techniques (see Ref. [4]). 

Within the present paper, we assume that the extent of the particle has a real physical meaning and can be de-
scribed in terms of a certain internal charge distribution. This charge distribution is unknown to us yet; still, we 
can put forward hypotheses on its general properties and, correspondingly, construct this or that expression for 
the current density. Then, the approximate final results will depend on the distribution through its integral prop-
erties (total charge, low-order moments, field energy of the charge at rest, etc.). 

Let us denote kx ( )00,1, 2,3;  k x ct= =  the space-time coordinates of the point to evaluate the electromag-
netic field in. Moreover, let ( )kf s  be the trajectory of the charge centre, parameterized by the space-time in-
terval s  so that 2d d d k

ks f f=  (assuming a summation over repeated upper and lower indices). A four-vector 
( ) ( )0 1 2 3 0, , , ,q q q q q= q  will also be sometimes denoted as q , without specifying the vector index. The veloc-
ity vector d du f f s= = , where we have chosen the positive direction for s  in such a way that 0 1u >   

( )( )1 20 21u = + u . Finally, in what follows, we assume infinite integration intervals, unless the integration limits  

are explicitly specified. 

2. The Current Density Vector 
An integral of the form 

( ) ( ), dk kJ x J x s s= ∫                                    (1) 

is a 4-vector if and only if ( ),kJ x s  is also a 4-vector. For a point-like charge, Equation (1) represents the cur-
rent if ( ) ( )4k kJ ecu x fδ= − , where e is the charge and c is the speed of light. However, a replacement of the 
4-dimensional delta function by its “realistic” (extended) prototype does not lead to a 4-vector anymore. In par-
ticular, a domain defined by the inequalities k k

kx f δ− ≤  ( 0,1, 2,3k =  and 0kδ >  are certain fixed scalars), 
is not relativistically-invariant. In order to define a bounded domain around a space-time point in the scalar (in-
variant) form, one needs at least one extra vector quantity to be introduced. For an extended charge in question, 

the vectors are d, , ,
d
ux f u u
s

∆ = − = 
 (x and f are not “true” vectors themselves since they depend on the 

choice of the origin of the coordinate system). From these quantities, we can construct scalar functions 

( ) ( ) ( )2 2 2 2,    ,    ,    0,k k k
k k ku y uτ σ τ= ∆ = ∆ ∆ = ∆ ∆ = −∆ ≥

                  (2) 

It is quite easy to show that the inequalities 1τ δ≤ , 2σ δ≤  define a bounded space-time domain for fixed 
positive 1δ  and 2δ . For a charge at rest, ct sτ = − , rσ =  (r is the distance between the centre of the charge 
and the observation point). Thus, it is natural to call τ  and σ  the generalized time and distance, respectively. 

If one assumes a spherically symmetric spatial structure of the charge, one may let ( ),k kJ cq D τ σ= , and 
then, assuming that ( ),D τ σ  is a localized and even function of both arguments, search for various possible 
expressions for the vector kq . For a simplest choice k kq u= , the continuity equation 0k kJ x∂ ∂ =  is satisfied 
only for uniform motion. In general, however, it is necessary to account for the effect of the acceleration as well. 
For this purpose, let us assume a linear dependence of kq  on the acceleration. Then the continuity equation 
yields ( )1k k kq y u uτ= − +   and 
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( ) ( )1 , dk k kJ c y u u D sτ τ σ = − + ∫  .                            (3) 

It is worth pointing out here that, due to the localization of the function D , the vector kJ  is defined up to  

an additive term of the form d
dS

( )kP D  (where kP  is a polynomial in ∆ , u , u ), which does not contri-  

bute to the integral (1). For instance, it is sometimes useful to employ this arbitrariness and present Equation (3) 
in the form 

( )
2

1 2 dk kD y DJ c y D u sττ
τ σ σ

 ∂ ∂ = − + −  ∂ ∂  
∫ . 

Let us also note that 

( ) ( )0 3 2

0

d 4π d d , constJ x c D r ceσ σ τ σ
∞

= = =∫ ∫ ∫r .                       (4) 

3. The Electromagnetic Field 
We will search for a solution of the Maxwell equations 

( ) ( )
, , , ,

4π ,       kn k
n kn n k k n kkF J F A A

c x
∂ 

= − = − = 
∂ 



 ,                      (5) 

with kJ  given by Equation (3), restricting ourselves to the retarded potentials and taking into account the Lo-
rentz gauge condition. As a result, we obtain 

( )d ,

1 1 d ,

k k

kn kn kn

A u A yQ s

A QF y b Qa s
σ σ σ σ

′= −

 ∂ ∂   ′= − +  ∂ ∂  

∫

∫
                          (6) 

where 

( ) ( )

( ) ( )

10

1

2π, d , d ,

1 , d ,    , 2 ,

,    ,

z

z

kn k n k n kn k n k n

A z z D z

DQ A A D D

b u u a u u u u

σ

σ

τ

τ σ τ τ τ
σ

τ τ σ τ τ σ τ
σ σ τ

∞ +

−

∞

′ ′= −

∂ ∂′ ′ ′= − = +
∂ ∂

= ∆ − ∆ = −

∫ ∫

∫
 

                    (7) 

(everywhere in the integrands, ( ) ( ),  ,  s u u s′ ′∆ = ∆ =  ). 
Further, we will assume that the time has zero “spread” and 

( ) ( ) ( ) ( ) ( )1k kD J c y uδ τ µ σ δ τ µ σ= → = − .                        (8) 

By definition, ( )zµ  is an even function, thus, it can be presented in the form 

( )2
π

B zµ ′′= , where ( ) ( )
2z z
∂′ =

∂



, ( ) 0B′ ∞ = , ( ) 0B ∞ = . 

Then, by virtue of Equation (8), we obtain from Equation (7) the following expressions for A and Q, 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )2 3

2 ,    ,    ,

2 2 1 ,

A B B B B B B B

Q B B B B B B

θ τ σ τ σ τ τ σ
σ

τθ τ
σ σ σ

+ − + −

+ − + − + −

′ ′= − = + = − = −

 ′ ′ ′ ′= − + + − −  

               (9) 

(θ  is the Heaviside step function, 0θ =  for 0τ < , ( ) 10
2

θ = , and 1θ =  for 0τ > ). 
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The function ( )µ σ  is a prototype of the three-dimensional delta function, 

( ) 2
3
0 0 0

,    4π d 1e z z zσµ
σ σ

∞ 
= Φ Φ = 

 
∫ , 

where ( )zΦ  is assumed to decrease rapidly for 1z > ; the parameter 0σ  can be called the “charge radius”. 
The localization of ( )µ σ  mentioned above implies that, in Equation (6), the integration domain is limited by 
the inequality 0 0s s σ′ − < , where 0s  can be found from the equation 

( ) ( ) ( ) ( ) ( )( )0
0 0 ,    ,   , .f s R s ct R s s x ct+ = = − =r f r                     (10) 

In fact, one can use the above equation for moderate accelerations. Let the quantity 0β  reflect the degree of  

stationarity of the velocity 
0

d 1~
ds β

 
 
 

. Then, in Equation (6), we can expand all functions of s′  in powers of  

( )0s s′ − , provided that 

0 0β σ .                                     (11) 

In general, this technique results in quite a complicated form of the expansion for the field, because the form 
of the series for ( )sσ ′  depends on the relation between 0σ  and ( )0sσ . At the same time, in the two follow-
ing situations, 

( ) ( )0 0 0 0   or   s sσ σ σ σ  ,                            (12) 

the expansions are substantially simplified, and the integration is reduced to the evaluation of the “moments” 

( ) ( ) ( )( )2
0

4π d ,    1,2,3, ,   n
nq n q eµ σ σ σ

∞

= = =∫  .                     (13) 

Now, in the first of the two cases in Equation (12), we will obtain the field near the centre of the charge; in the 
second case, outside the charge. 

The field in the centre оf the charge ( ( )s=r f  and 0s s= , ( )0 0s∆ = ). By neglecting fourth- and higher- 
order derivatives of the velocity, by virtue of Equation (9), we obtain 

( )
( )

( ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

0 0,2 0,3 1,2
1 3

,

2 2 1 1 ,
3 3 60 6 12

d0,    ,    .
d

kn
kn kn kn kn kn

m
l m l m m l mk k

k kn k n k n k m

aF q a eP P P q

uu u P u u u u u
s

λ

λ

 = − + + + 
 

= ≥ = − =

                 (14) 

The quantity ( )1q  is divergent for 0 0σ →  if µ  is a sign-definite function. On the other hand, if the latter  

changes sign, ( )1q  may vanish (for instance, ( )1 0q ≡  for ( )
2 2

2 2
0 0

~ 1 expσ σµ σ
σ σ
   

− −   
   

). 

The field outside the charge. In the ( )0 0sσ σ  case chosen in Equation (9), we can neglect the contribu-
tions of the functions B+  and B +′ . Now, the quantity 0s  is a function of ct  and r  which is determined by 
Equation (10). The integrals in Equation (6) can be expanded into power series in the small parameters 0 0σ β  
and ( )0 0sσ σ , up to arbitrary accuracy. By neglecting the terms of the order of ( )( )4

0 0sσ σ  and third- and 
higher-order derivatives of the velocity, we obtain 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

2
1 0 1 0 10 00 0

43 2 5 4 3 3
0 0 0 0 0 0

1 1
6 2 6 6

kn kn
kn kn kn kn kn

y a sV y bF e b b b b q
a a a a a a

 − 
= − + + + −  

    
            (15) 

where 

( ) ( ) ( )( )0 0 0 0
k

ka s u s sσ= = ∆ , 
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( ) ( )( )0 0 0
k

ky u s s= ∆ , 

( )
0

2
0 3 1 2 3

s s
V y y yσ σ λ

=
 = − + −  , 

( ) ( ) ( )

0

m m m
kn k n k n s s

b u u
=

 = ∆ − ∆  . 

The first term in Equation (15) gives the field of a point change described by the well-known Liénard-  
Wiechert potentials. This does not imply, however, that the second term introduces only (small) corrections to 
the first one. Depending on the relation between the values of 0β  and 0a , the orders of magnitude of the two 
terms may vary. 

4. Interaction of the Charge with Its Own Field 
If the field inside of the charge were homogeneous enough, the force acting on the charge from the field could  

be defined as the Lorentz force ( )0
2

n
k kn

eg F u
c

= . However, this conjecture is adequate only within those ap-  

proaches in which the size of the charge is set to zero and renormalization is employed in order to eliminate the 
divergences. In contrast, we will work within the assumption that the charge has a “true” extended structure and, 
having already figured out the form of the field created by such a charge, will follow the method of the classical 
theory. 

The part of the Lagrangian containing the field of the charge, is totally determined by the space-time trajecto-
ry of the charge. The equations of motion for the charge are derived by equating the variation of the action to 
zero, with respect to variations of the trajectory. Note that 0k

ku uδ = , thus, the functional derivative with re-  

spect to the trajectory should include a term ( )d
d

kPu
s

, with P chosen so that 0k
kg u =  ( kg  is the force to  

be determined). Assuming that the current is expressible in the form (8), we arrive at the general expression for 
the force 

( ) ( ) ( )

( ) ( )

4
3

4
2

1 , d

1 d ,

,n
k kn k

n n
k k n k n k

g s F x f J x f s x C
c

C yA yA u u A u x x
c

δ τ µ σ

= + + +

 = − − 

∫

∫







                  (16) 

where ( )k
ku xτ = , ( )k

ky u x=  , 2 2 k
kx xσ τ= − , ( )k kA A x f= +  (we have shifted the integration variables, 

x x f→ − ). Further, we will also obtain the expression for the force acting on the charge from the external field, 
which will be quite analogous to Equation (16). Here, the only correction should be taken into account, the ex-
ternal field should not depend on the trajectory of the charge. If the external field varies slowly at the length 
scale of the charge size, then the external force is the Lorentz force. Otherwise, this force should be calculated 
from an expression analogous to Equation (16). 

Quite naturally, in the general case, a sufficient analysis of Equation (16) requires the information on the spe-
cific form of the function ( )µ σ . Still, once the condition (11) is met, we are able to obtain a rapidly convergent 
series, with its terms depending on ( )µ σ  through its integral properties. Moreover, in this case, the second 
term in Equation (16) is a contribution proportional to at least forth-order derivatives of the velocity. By neg-
lecting such contributions, we obtain from Equation (16) 

( )
2

02 2
2 1 d 3 ,
3 3 d 2k k k k k k

eg Mu u u u u
c c s

λ α λ = − + − + − 
 

                            (17) 

( )( ) ( ) ( )2
02 0

8 d ,    16 d d dM B BB r q
c

σ σ α σ µ µ
∞

′ ′= = − = −∫ ∫ ∫∫ r q r q .           (18) 

For a charge at rest, the field strengths and the total energy of the field read 
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( ) ( )2 0

4 1 d ,    
r
B B r

rr
σ σ ′ ′= − − =  ∫ 0rE H ,                     (19) 

( )22 3 2
0

1 d 8 d
8π

W B Mcσ
∞

′= = =∫ ∫E r .                         (20) 

Thus, we can realistically refer to the quantity M in Equation (17) as to the “rest” mass of the field and, by 
moving the first term in Equation (17) to the left side of the equation of motion for the charge, operate with the 
total mass of the charge and the field (in fact, today, the latter is the only quantity we possess information on!). 
The second term in Equation (17) coincides with the well-known expression for the radiation friction. The cor-
rection to the first term in Equation (17), namely, the third term, is subject to an additional quadratic suppression 
in 0 0σ β , compared to the first term. 

5. The Radiation 
For the terms of the order of 1 r  in the r →∞  limit, we obtain 

( ) [ ]

[ ] ( ) ( )( )0 0 0

2 d ,    ,    ,    0,

1 1,    ,    .

B z
s

r r

u u z r ct f s s

ε

ε
ε ε

′
= − = = =

 = − = − = − + − 

∫ 
rE H nE n En

b n u un

b

nf
              (21) 

If the condition (11) holds, we can make an expansion in Equation (21) in powers of ( )0s s− , where 0s  is 
determined by equation (10) now taking the form ( ) ( )( )0 0 0f s s ct r− = −nf . By neglecting fourth- and higher- 
order derivatives of the velocity, we obtain 

( )
2

4 2
3 2 ,

6

qe
rc t rc t t

ε∂ ∂ ∂ = +  ∂ ∂ ∂ 
bE b                             (22) 

where ( )0k ku u s=  аnd 0s  is itself a function of ( )ct r−  and n . 
Of much current interest are the cases in which the condition (11) is not met. Here, depending on the form of 

the distribution ( )µ σ  and the motion dynamics of the charge, various regimes might be possible, up to the 
case of virtually vanishing radiation. For example, let us consider a periodic motion. By changing the integration 
variable from s to ( )0t f s c′ =  in Equation (21), we obtain 

10
0 0 0

1 2π 2πcos d ,
T

m

m m z t
r t

εµ ε
γ γ γ

∞

=

    ∂  ′=      ′∂      
∑∫

bE                      (23) 

where T  is the oscillation period, 0 cTγ = , ( )( )z r ct ct ε′= − + − nf , and 

( ) ( ) 31 e d .
2

ip rµ µ−= ∫ pr r  

If ( )2 2
0~ expµ σ σ− , then, at 0

0 2
σ

γ ≅ , we have 16

0

~ 10e
rγ

−×E  and the radiation virtually vanishes. Let  

us also point out that Equations (21)-(23) (in fact, as well as all the above results) are also applicable for neutral 
objects, for which ( )2 0q e= =  (of course, if the structure of the “charge” contains charged elements). 

6. The Time Spread 
In contrast to the classical extent of the charge, the notion of the “time spread” is less transparent and requires 
identification of its physical meaning within the classical theory. We set this problem aside and, in the present 
paper, consider what will change if one takes into account the time spread. 

Let us assume the following generalization of (8) to take place in (3), 
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( ) ( ) ( ) ( ) ( ) ( )
0

,    d 1,    ,    0,
ct

D V V V V V
τ

τ µ σ τ τ τ τ τ= = = − →∫


               (24) 

where 0t  describes the time spread. In the 0 0ct β  regime, we arrive at small corrections to the results fol-
lowing from (11). But, in the 0 0ct β>  regime, the situation does change. The acceleration might be small 
compared with the “charge radius” (i.e., the condition (11) might hold), nevertheless, it is no more legal to ex-
pand the field into a series in the derivatives of the velocity. At the same time, the case in question does strongly 
differ physically from the cases in which (11) does not hold. 

The spatial structure of the charge is determined by internal forces that are unknown to us. And, in principle, 
it may happen, for instance, that the real size of the electron is comparable with its classical radius. Then the 
realization of the 0 0σ β>  case would require practically unattainable accelerations. On the other hand, the 
time spread may be essentially controlled by the external conditions. In particular, for stationary processes (uni-
form motion, steady-state oscillations or rotation, etc.), we may expect large values of the quantity 0t . 

All the above tells us that it is worth considering the field in those cases in which the “time spread” is much 
greater than the spatial one, 

0 0.ct σ                                        (25) 

In these cases, it is quite straightforward to derive from Equations (6), (7) the expansion for the field and the 
analogues of the other above results. From Equation (7), one obtains for r →∞  

( ) ( ) ( ) ( )2

d,    ,    2
d

e e VA G Q G G Vσ τ σ τ σ τ τ τ
σ τσ

= − = − − = + .                (26) 

This leads to the radiation field 

( ) [ ]d ,    ,
G ze s

r ε
= =∫E b H nE                               (27) 

which differs from Equation (21) only by a replacement of ( )2B z′  by ( )eG z− . Moreover, now, in the ap-
proximate expression (22), 

( ) ( )2
4 3 dq e Gτ τ τ= ∫ ,                                  (28) 

and the representation (23) contains the spectrum of the function ( )G τ , 

( ) ( ) ( ) ( )cos dp G p e p Gµ τ τ τ→ = ∫ .                           (29) 

In the case under consideration, the “moment” ( )4q  in Equation (22) appears to be much greater than before 
and the contribution of the second term takes effect at smaller accelerations. Quite similarly, in the case of a pe-
riodic motion, the radiation field (23) almost vanishes at much smaller oscillation frequencies. 

7. Structure Deformation by Acceleration 
The representation (3) of the current vector was based on the assumption that the deformation of the charge 
structure is caused only by the velocity (the Lorentz contraction). In the case (11), such an assumption is indeed 
justified. However, we cannot discard the possibility for the acceleration to affect the deformation as well. We 
can account for this effect by introducing the dependence of the charge distribution on ( )k

ky u= ∆ . Then, the 
choice of possible forms of the current vector becomes significantly richer (especially because one has to intro-
duce a parameter describing the “elasticity” of the structure). We will dwell here on the two simplest cases. 

In the first case, let ( ),k kJ q D gyτ σ= − , with g being a scalar function of s (possibly a constant). This leads 
to the “deformation” of time. Assuming a linear dependence of kq  on u , we obtain 

( ) ( )1 , dk k kJ c y gy gy g u u D gy sλτ τ τ σ= − + + − + −  ∫    .                  (30) 

We have already mentioned above that the time spread requires an analysis of its physical meaning. The same 
is required for the time “shift” featuring in Equation (30), and thus we leave the case which leads to Equation 
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(30) beyond our further consideration. 
More transparent is the acceleration-induced deformation of the spatial structure of the charge. Let us account 

for this deformation by adopting the representation 

( ) 2 2
1 1 0 0, ,    ,    const.k kJ q D w y wτ σ σ σ= = + =                        (31) 

The vector kq  is determined by the continuity equation, yielding 

( ) ( ) ( ) ( )0
1 01 , d ,    1 ,    k

k k k k

w y
J c y u u D s w u u

τ
γ τ σ γ λ λ

γ
 +

= − + = + = 
 
∫



  .            (32) 

A specific role in Equation (32) is played by the constant 0w  (having the dimension of length squared) 
which describes the “elasticity” property of the structure (for an “absolutely rigid” structure, 0 0w =  and (32) 
reduces to (3)). Depending on the sign of this “elasticity constant”, the structures can be classified as stable and 
unstable. 

If 0 0w < , then, for such accelerations that 0 1wλ ≅ − , Equation (32) loses its physical meaning (for instance, 
in the case of motion along a straight line, the structure transforms into an infinite “string”). This means that 
such structure is destroyed by high accelerations. If 0 0w > , no such singularities arise and the structure shrinks 
along the direction of the acceleration (of course, only to a degree “permitted” by the internal forces). Obviously, 
the representation (32) also has its applicability domain. Indeed, while 2

0 0w σ≤ , we can consider large accele-
rations, at which the condition (11) is violated. But if 2

0 0w σ , it is quite possible that the applicability do-
main is itself determined by the condition (11). 

The technique for the analysis of the field created by the current (32) is quite analogous to that discussed 
above. If 2

0 0w σ≤ , then, provided the condition (11) is met, the “elasticity” property enters the terms that are 
proportional to the third- and higher-order derivatives of the velocity. We will not quote these results here (they 
are quite lengthy) and confine ourselves to the expression for the radiation field. 

In the limit r →∞ , within the representation ( ) ( )1D δ τ µ σ= , we obtain 

[ ] ( ) [ ]0 1
2 3

,2 d d , d
d d

ik
ik ik

n u w yBF B z n m s
r N s z Nε εγ

  ′  ′= − +         
∫ ,                 (33) 

where 

( )π d
z

B σµ σ σ
∞

′ = − ∫ , 

( ) ( )0z ct r f s N = − − + fn , 

( )2 2 2
0

1N wγ ε ε
γ

= −  , 

0
1 22

w
y λε λε ε

γ
= + −   , 

k k km u uε ε= −  , 

[ ] ( ), ,    1, ,    k
i k k iika b a b a b n r= − = =n n r . 

It is quite obvious that Equation (33) provides more freedom for searching the situations in which the radia-
tion vanishes, than the freedom offered by Equation (21) (Equation (33) reduces to Equation (21) at 0 0w = ). 

Within the analysis presented above, we have considered but a few options for the current vector. In particular, 
we have left beyond the cases involving not only the motion of the charge as a whole but also some internal dy-
namics, such as the rotation of the structure around the centre of the charge (i.e., the spin). Moreover, ultrarelati-
vistic cases require a specific treatment (since our results converge slower for velocities close to the speed of 
light). This all indicates the existence of a wide edge for further development of the theory. This way could, 
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perhaps, open up the possibility to “reconcile” the classical physics with some quantum phenomena. One might 
also expect that certain role in this reconciliation might be played by the “time spread”, which is puzzling within 
the classical theory. 

In the present paper, we did not raise a question of the nature of the external forces that make the particle 
move with acceleration, assuming that large acceleration may result not only from the action of classical elec-
tromagnetic forces, but also due to fluctuations that are typical for microscopic processes (some fluctuations 
may lead to short but large accelerations). 

In conclusion, let us list the meanings of some of the physical constants we used in the order-of-magnitude 
inequalities, 

0σ  (dimension of length)—the assumed spatial extent of the particle; 
0t  (dimension of time)—the degree of the time spread; 

0β  (dimension of length)—the space-time interval over which a considerable change of the velocity occurs 
(the degree of the stationarity of the velocity); 

0w  (dimension of length squared)—a parameter which describes the “elasticity” properties of the particle’s 
internal structure. 
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