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Abstract 
Fractional quantum Hall effect (FQHE) is investigated by employing normal electrons and the 
fundamental Hamiltonian without any quasi particle. There are various kinds of electron configu-
rations in the Landau orbitals. Therein only one configuration has the minimum energy for the 
sum of the Landau energy, classical Coulomb energy and Zeeman energy at any fractional filling 
factor. When the strong magnetic field is applied to be upward, the Zeeman energy of down-spin is 
lower than that of up-spin for electrons. So, all the Landau orbitals in the lowest level are occupied 
by the electrons with down-spin in a strong magnetic field at 1 2< <ν . On the other hand, the 
Landau orbitals are partially occupied by up-spins. Two electrons with up-spin placed in the 
nearest orbitals can transfer to all the empty orbitals of up-spin at the specific filling factors 

( ) ( )j j0 3 1 2 1= − −ν , ( ) ( )j j4 1 2 1+ +  and so on. When the filling factor ν  deviates from 0ν , the 
number of allowed transitions decreases abruptly in comparison with that at 0ν . This mechanism 
creates the energy gaps at 0ν . These energy gaps yield the fractional quantum Hall effect. We 
compare the present theory with the composite fermion theory in the region of 2 3 2< <ν . 

 
Keywords 
Fractional Quantum Hall Effect, 2D Electron System, Quantum Theory 

 
 

1. Introduction 
The composite fermion theory introduces a quasi-particle named composite fermion which is an electron bound 
by even number 2 p  of flux quanta. The theory explains the fractional quantum Hall effect (FQHE) to be the 
integer quantum Hall effect (IQHE) of the composite fermions with an integer filling factor n. Then the filling 
factor of electrons becomes ( )2 1n pnν = ±  [1]-[12]. The case of n = 1 and 1p =  yields 1 3ν =  and 1ν = . 
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The other cases give the electron filling-factors 2 3ν ≤ . Thus the original composite fermion theory cannot ex-
plain the fractional quantum Hall states with 2 3ν > . In order to remove this difficulty, an extended theory has 
been considered as follows: 

1) At the filling factor 1ν > , the IQHE of composite fermions are combined with the IQHE of electrons. 
Even number of the flux quanta attach to some electrons and the other electrons are not bound by flux quanta. 
The former electrons are affected by the effective magnetic field and the latter by the applied magnetic field. 

2) In the region of 2 3 1ν< <  even number of flux quanta attach to a hole. Therein the electrons are not 
bound by flux quanta. 

3) The effective magnetic field is anti-parallel to the applied magnetic field at ( )2 1n pnν = − . So the po-
larization of electron at ( )2 1n pnν = −  is opposite to that at ( )2 1n pnν = + . 

Thus the direction of the effective field, the kind of particle (hole or electron) and the number of attached flux 
quanta are assumed to change with variation of the filling factor. This changing is very artificial. There is an-
other investigation considered by Tao and Thouless [13] [14]. They investigated the FQH states where the Lan-
dau orbitals in the lowest level are partially filled with electrons. 

We have improved the Tao-Thouless theory on the basis of the fundamental method. There are many con-
figurations of electrons in the Landau orbitals. The sum of the Landau energy, classical Coulomb energy and 
Zeeman energy takes the minimum value at only one configuration of electrons for any fractional filling factor. 
In the configuration the nearest electron pairs can transfer to all the empty orbitals for the specific filling factors. 

We consider the 2D electron system under a low temperature and a strong magnetic field throughout the pre-
sent article. When the direction of the magnetic field is upward, the Zeeman energy of down-spin is lower than 
that of up-spin for electrons. So, in the region 1 2ν< <  all the Landau orbitals in the lowest level are occupied 
by the electrons with down-spin. On the other hand the Landau orbitals are partially occupied by up-spins. (Note: 
In the previous papers [15]-[19] we have already examined the case of a weak magnetic field. In the case both 
down- and up-spin-electrons partially occupy the lowest Landau orbitals. This special case appears in a weak 
magnetic field by adjusting the gate voltage. In this paper we investigate only the case of a strong magnetic 
field.) The up-spin electron pair placed in the nearest orbitals can transfer to all the empty orbitals of up-spin at 

( ) ( )0 4 1 2 1j jν = + + , ( ) ( )0 3 1 2 1j jν = − −  and so on. When the filling factor ν  deviates from 0ν , the 
number of allowed transitions decrease abruptly in comparison with that at 0ν . This mechanism creates the en-
ergy gaps at ( ) ( )0 3 1 2 1j jν = + + , ( ) ( )3 1 2 1j j− − , ( ) ( )4 1 2 1j j+ + , ( ) ( )2 2 2 1j j+ +  and so on. These 
energy gaps can explain the fractional quantum Hall effect in the region 1 2ν< <  as clarified in the following 
sections. (We have already succeeded to obtain the energy gaps for the specific filling factors in the regions 

1ν <  and 2ν >  in the previous articles [20]-[30].) 

2. The Fundamental Properties of a Quasi-2D Electron System 
Figure 1 shows a quantum Hall device where the electric current flows along the x-axis and the Hall voltage 
appears along the y-axis. Therein the magnetic field is applied in the z-direction. 

The narrow potential ( )W z  along the z-direction is expressed in Figure 2. Also Figure 3 shows the poten-
tial ( )U y  of the y-direction. Therein the voltage 2 1V V−  is not zero because the confinement of Hall resis-
tance is realized under a nonzero value of 2 1V V− . The value of the Hall voltage is extremely larger than the 
potential voltage in the FQHE. So we cannot employ the x - y symmetry. Also we should take the potential 
( )U y  into consideration. 
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Figure 1. Quantum Hall device. 
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Figure 2. Potential ( )W z  in the z-direction. 
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Figure 3. Potential ( )U y  in the y-direction. 

 
The vector potential, A , has the components, 

( ), 0, 0yB= −A                                     (1) 

where B  is the strength of the magnetic field. (Here we cannot use the symmetric vector potential because of 
the potential ( )U y .) We express the single electron Hamiltonian, 0H , in the absence of the Coulomb interac-
tion between electrons as, 

( ) ( ) ( )
2

0

e
2 B zH U y W z g s B

m
µ ∗

∗

+
= + + +

p A
                          (2) 

where ( )U y  and ( )W z  indicate the potentials confining electrons to an ultra-thin conducting layer. Therein 
m∗  is an effective mass of electron and ( ), ,x y zp p p=p  is the electron momentum. The last term of Equation 
(2) indicates the Zeeman energy where g∗  is the effective g-factor, Bµ  is the Bohr magneton ( )( )e 2B mµ =   
and zs  is the z-component of electron spin operator as, 

1 2 0
0 1 2zs  

=  − 
                                   (3) 

The potential along the x-axis doesn’t exist in the Hamiltonian 0H . (The impurity effect is ignored.) There-
fore the eigen-states along the direction x  is the plain wave. Then the Landau wave function of the single- 
electron is given by 

( ) ( ) ( ) ( ) ( ) ( )2
,

1, , , exp exp
2L J z L L J J z

m mx y z s ipx u H y y z sω ωψ α α φ χ
∗ ∗   

= − − −       


  

   (4a) 

eB mω ∗=                                     (4b) 

[ ]2πp J= ×                                     (4c) 

( ) ( )e 2π eJ p B B Jα = =    

                             (4d) 

where ( )zφ  is the wave function of the ground state along the z-direction, LH  is the Hermite polynomial of 
L -th degree, Lu  is the normalization constant and   is the length of a quasi-2D electron system as shown in 
Figure 1. The integer L  is called Landau level number hereafter. The momentum p  of the x-direction satis-
fies the periodic boundary condition, and is related to the value Jα  as in Equation (4d). The eigen-energy is 
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given by 

( ) ( ) ( ), ,
1e ,    0,1,2,3,
2zL J s J B zE U B m L g s B Lλ α µ∗ ∗ = + + + + = 

 
                  (5) 

where λ  is the ground state energy along the z-direction and ( )JU α  is the potential energy in the y-direction. 
The energy difference between two Zeeman levels is equal to ( )( )e 2g B m∗



. Here the effective g-factor for 
GaAs is about 0.22 times the g-factor of electron in vacuum, namely, 0.44g∗ ≈ . The effective mass m∗  for 
GaAs is 0.067 times the electron mass m in vacuum. Therefore the energy difference between L  and 1L +  
Landau levels is about 67 times the Zeeman split energy for GaAs. 

Many investigations of the FQHE have used the symmetric property between the x  and y  directions. 
However all the actual experiments have carried out in a nonzero voltage 2 1V V− . Accordingly the potential 
( )U y  cannot be ignored. 
If we take the other types of the vector potential as 

( )1 1, , 0 ,    0, , 0
2 2

yB xB xB ′ ′′= − = 
 

A A                            (6) 

the eigen-function in the y-direction is not a plain wave because of the y-dependence of ( )U y . Consequently 
the actual quantum Hall system has no x y−  symmetry. 

Our treatment takes the potential ( )U y  into consideration which is the appropriate treatment in an actual 
system. In a many-electron system the total Hamiltonian is given by the following equation as 

( ) ( ) ( )

21

0, 2 2 21 1

e

4π

N N N

T i
i i j i

i j i j i j

H H
x x y y z zε

−

= = >

= +
− + − + −

∑ ∑∑                 (7) 

where N  is the total number of electrons, ε  is the permittivity and 0, iH  is the single particle Hamiltonian 
of the i-th electron without the Coulomb interaction as, 

( ) ( ) ( )
2

0, 

e
2

i z
i i i B iH U y W z g s B

m
µ ∗

∗

+
= + + +

p A
                      (8) 

where z
is  indicates the z-component of the spin for the i-th electron. 

The many-electron state is characterized by a set of Landau level numbers 1 2, , , NL L L , a set of momenta 
1 2, , , Np p p  and spins 1 2, , ,z z z

Ns s s . The complete set is composed of the Slater determinant as 

( )
( ) ( )

( ) ( )

1 1 1 1 1 1
1 1 1, , , ,

1 1 1

1 1 1, , , ,

, , , ,
1, , ; , , ; , ,

! , , , ,

z z

z z
N N N N N N

N N NL p s L p s
z z

N N N

N N NL p s L p s

x y z x y z

L L p p s s
N x y z x y z

ψ ψ

ψ ψ
Ψ =



    



     (9) 

These states are the eigen-state of 0, 
1

N

i
i

H
=
∑ . The expectation value of the total Hamiltonian is expressed by  

( )1 1 1, , ; , , ; , ,z z
N N NW L L p p s s  

 which is given as: 

( ) ( ) ( )1 1 1 1 1
1

, , ; , , ; , , , , , ; , ,
i

N
z z z

N N N L i i N N
i

W L L p p s s E p s C L L p p
=

= +∑              (10) 

where C  is the expectation value of the Coulomb interaction as follows: 

( ) ( )
( ) ( ) ( )

( )

21

1 1 1 1 2 2 21

1 1 1 1 1

e, , ; , ,  , , ; , ,
4π

                                            , , ; , ,  d d d d d d

N N

N N N N
i j i

i j i j i j

N N N N N

C L L p p L L p p
x x y y z z

L L p p x y z x y z

ε

−∗

= >

= Ψ ×
− + − + −

×Ψ

∑∑∫ ∫    

  

 (11) 
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Hereafter we call ( )1 1, , ; , ,N NC L L p p   “classical Coulomb energy”. Using the expectation value W, we 
can divide the total Hamiltonian TH  into the two parts DH  and IH  as follows: 

( ) ( ) ( )
1 1

1 1 1 1 1 1
, , , ,

; , , ; , , ; , ,
N N

D N N N N N N
L L p p

H L L p p W L L p p L L p p= Ψ Ψ∑ ∑
 

            (12a) 

I T DH H H= −                                     (12b) 

where IH  is composed of the off-diagonal elements only. Accordingly the total Hamiltonian TH  of the 
quasi-2D electron system is a sum of DH  and IH  as 

T D IH H H= +                                      (13) 

Because the Coulomb interaction depends only upon the relative coordinate of electrons, the total momentum 
along the x-direction conserves in the quasi-2D electron system. That is to say the sum of the initial momenta 

ip  and jp  is equal to that of the final momenta ip′  and jp′ : 

i j i jp p p p′ ′+ = +                                     (14) 

We study the configuration of electrons in the Landau orbitals. The most uniform configuration of electrons is 
uniquely determined for any filling factor except at the both boundaries. The boundary effects can be neglected 
in a macroscopic system. 

As seen in Equation (8), the 1 2zs = −  state has an energy lower than the 1 2zs =  state for 0B > . There-
fore at 1 2ν< <  all the Landau orbitals with 0L =  are occupied by electrons with down-spin and the orbitals 
are partially occupied by electrons with up-spin in a strong magnetic field and a low temperature. We introduce 
the total number M  of the 0L =  orbitals and also express the number of electrons with down-spin and 
up-spin by N↓  and N↑  respectively. Then we get the following relations in 1 2ν< <  as 

N M↓ =                                          (15a) 

N M↑ <                                          (15b) 

N N N↓ ↑= +                                       (15c) 

( )N N Mν ↓ ↑= +                                   (15d) 

The most uniform configurations will be examined for the case of 3 2 2ν< <  in Section 3 and for 
1 3 2ν< <  in Section 4. 

3. Electron Configurations and Energy Gaps for 2 3 2< <ν  
As an example we examine the FQH state with 5 3ν = . Equation (15d) becomes 

1 5 3N Mν ↑= + =  

This relation gives 

2 3N M↑ =                                     (16) 

Then the most uniform configuration of up-spin electrons is the repeat of (filled, empty, filled) for 5 3ν = . 
Figure 4 shows the electron configuration in a 3D view where the x , y , z  axes are drawn in the upper-left 
of the figure. Therein the tilted lines with the x-direction express the Landau orbitals of the lowest level sche-
matically. All the orbitals are filled with down-spin electrons for a strong magnetic field because of the Zeeman 
energy. The up-spin electrons occupy the red-coloured orbitals. The empty orbitals for up-spin are drawn by 
dashed blue lines in Figure 4. This electron configuration of up-spin has the minimum value for the classical 
Coulomb energy. 

We examine the quantum transitions via the Coulomb interaction IH . All the Coulomb transitions satisfy the 
momentum conservation along the x-axis. Figure 4 shows the quantum transitions from the electron pair AB 
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with up-spin. The momenta at A and B are expressed by Ap  and Bp  respectively. The momenta Ap  and 
Bp  change to Ap′  and Bp′  after the transition. The momentum conservation gives the following relations as 

A Ap p p′ = − ∆                                     (17a) 

B Bp p p′ = + ∆                                     (17b) 

where p∆  is the momentum transfer. All the allowed transitions are illustrated by the blue allow-pairs in Figure 4. 
Accordingly the transfer momentum takes the following value: 

( ) ( )2π 3 1 ,    0, 1, 2, 3, 4,p n n∆ = × + = ± ± ± ±                         (18) 

We introduce the following summation Z . 

( )0, 2π excite

0, , 0, , 0, , 0, ,
,

A B I A B A B I A B

p G A A B B

L p p H L p p L p p H L p p
Z

W W p p p p∆ ≠ −

′ ′ ′ ′= = = =
= −

′ ′− → →∑
 

       (19a) 

2πA Bp p= +                                     (19b) 

,    A A B Bp p p p p p′ ′= − ∆ = + ∆                              (19c) 

Therein the summation is carried out for all the values ( )2π integerp∆ = ×   except 0p∆ =  and 2π−   . 
The elimination comes from disappearance of the diagonal matrix element of IH . The summation Z  is posi-
tive, because the denominator in Equation (19a) is negative. 

As shown in Figure 4, the transfer-momenta from AB (up-spin electron-pair) satisfies Equation (18). Then 
the number of the transfer-momenta is 1/3 of the total orbitals. Accordingly the perturbation energy ABς  of the 
pair AB is expressed by using Z  as follows; 

( )AB 1 3    at   5 3Zς ν= − =                                (20) 

because the momentum-interval, 2π  , is extremely small in a macroscopic size of a quantum Hall device. 
The total number of the nearest electron pairs with up-spin is 1/2 of N↑ . Therefore we obtain the nearest pair 
energy per up-spin-electron ε↑  as 

( )AB
1 1 6    at   5 3
2

N N Zε ς ν↑ ↑ ↑
 = × = − = 
 

                       (21) 

When the filling factor deviates from 5 3ν = , the electron configuration at 5 3ν ≠  changes from the regular 
repeating of (filled, empty, filled). Accordingly the number of the Coulomb transitions decreases abruptly be-
cause the changing disturbs the Coulomb transitions. As an example, the 42 25ν =  state is illustrated in Figure 5 
where the nearest orbitals with up-spin are indicated by red and brown colours. 
 

X

Z
Y

A B

 
Figure 4. Electron configuration at 5 3ν = . 
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Figure 5. Electron configuration at 42 25ν = . 
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There are 9 nearest electron pairs, namely, AB, CD, EF, GH, IJ, KL, MN, OP and PQ in every unit sequence. 
The pair CD can transfer to two orbital pairs per unit length as shown by black arrow pairs. Accordingly the 
perturbation energy CDς  is equal to 

( )CD 2 25    at   42 25Zς ν= − =                              (22) 

The pair AB can transfer to all the empty orbitals of up-spin and then the number of allowed transitions is 
eight per unit length. Therefore the perturbation energy ABς  is 

( )AB 8 25    at   42 25Zς ν= − =                              (23) 

The other pairs have the perturbation energies as 

( ) ( ) ( )EF KL GH IJ MN OP PQ4 25 ,    6 25 ,    2 25 ,    0   at   42 25Z Z Zς ς ς ς ς ς ς ν= = − = = − = − = = =     (24) 

The sum of the nearest electron pairs with up-spin is 

( )AB CD EF GH IJ KL MN OP PQ 32 25F Zς ς ς ς ς ς ς ς ς= + + + + + + + + = −               (25) 

The number of electrons with up-spin is seventeen in a unit sequence. Therefore the nearest pair energy per 
up-spin electron is 

( )( )32 25 17    at   42 26Zε ν↑ = − × =                           (26) 

When the filling factor ν  is ( ) ( )10 2 6 1s s+ +  (s is a positive integer), the sum of the nearest-pair-energies 
inside the unit sequence is 

( ) ( )( ) ( ) ( )( )22 2 2 2 2 2 2 6 1 2 6 1F Z s s s s s s Z= − + + − + + − + + + = − + 

           (27) 

The filling factor ( ) ( )10 2 6 1s s+ +  is larger than 5/3. The number of up-spin-electrons inside a unit length 
is equal to ( )4 1s +  and therefore the pair energy per up-spin-electron is given by 

( )( )( ) ( ) ( )22 6 1 4 1    at   10 2 6 1s s s Z s sε ν↑ = − + + = + +                  (28) 

When s becomes infinitely large, ε↑  approaches 

( )
( )

5 3 0
lim 1 12 Z

ν
ε↑→ +

= −                                  (29) 

Next we consider the filing factor 38/23 which is smaller than 5/3. The most uniform configuration is illus-
trated in Figure 6. 

In this case, the sum of the nearest-pair-energies inside the unit sequence is 

( )AB CD EF GH IJ KL MN 32 23F Zς ς ς ς ς ς ς= + + + + + + = −                     (30) 

At ( ) ( )10 2 6 1s sν = − − , the sum of the nearest-pair-energies inside the unit sequence is 

( ) ( )( ) ( ) ( )( )22 2 2 2 2 2 2 6 1 2 6 1F s s s s Z s s Z = − + + − + + − + + − = − −  

          (31) 

Accordingly 
 

ABA’B’ CD E F GH
C’D’

C”D”
A”B”

MNKLI J O
Unit length

 
Figure 6. Electron configuration at 38 23ν = . 
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( )( )( ) ( ) ( )22 6 1 4 1    at   10 2 6 1s s s Z s sε ν↑ = − − − = − −                    (32) 

( )
( )

5 3 0
lim 1 12 Z

ν
ε↑→ −

= −                                (33) 

Thus the energy gap appears between the energy value at 5 3ν =  and the limiting value from the left and 
right sides: 

( )
( )

( ) ( ) ( )
5 3 0

5 3 lim 1 6 1 12 1 12Z Z Z
ν

ε ν ε↑ ↑→ ±
= − = − + = −                 (34) 

At the filling factor ( ) ( )4 1 2 1j jν = + + , the energy gaps are listed in the fourth column of Table 1. 
We consider the other cases. Figure 7 shows the most uniform configuration of electrons at the filling factor 

8 5ν = . The x-, y-, z-directions are indicated at the upper-left of Figure 7. 
The unit configuration is composed of five Landau orbitals and three electrons with up-spin. The number of 

the allowed transitions is two per unit length. Accordingly the perturbation energy ABς  of the pair AB is ex-
pressed by Z  as 

( )AB 2 5    at   8 5Zς ν= − =                               (35) 

The total number of the nearest electron pairs with up-spin is 1/3 times N↑ . Therefore the nearest pair energy 
per up-spin-electron is 

( )AB
1 2 15    at   8 5
3

N N Zε ς ν↑ ↑ ↑
 = × = − = 
 

                     (36) 

When the filling factor deviates from 8 5ν = , the number of the Coulomb transitions decreases abruptly be-
cause the electron configuration at 8 5ν ≠  disturbs the Coulomb transitions. As an example, the 43 27ν =  
state is illustrated in Figure 8. 
 
Table 1. Energy gaps for ( ) ( )4 1 2 1j jν = + + . 

0ν  ( )0ε ν
↑  ( )

0 0limν ν ε ν→ ± ↑
 ( ) ( )

00 0limν νε ν ε ν→ ±↑ ↑
−  

5/3 −(1/6) Z −(1/12) Z −(1/12) Z 

9/5 −(1/20) Z −(1/40) Z −(1/40) Z 

13/7 −(1/42) Z −(1/84) Z −(1/84) Z 

17/9 −(1/72) Z −(1/144) Z −(1/144) Z 

 

A B
X

Z
Y

 
Figure 7. Electron configuration at 8 5ν = . 
 

ABA’B’ CD E F GH
C’D’

C”D”
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I J
Unit length

E’F’ E”F”

 
Figure 8. Electron configuration at 43 27ν = . 
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There are five up-spin-electron pairs placed in the nearest orbitals inside a unit length as in Figure 8. The 
number of allowed transitions is eleven for the pair AB, nine for EF and seven for CD in a unit length. Therefore 
the perturbation energies are obtained as follows: 

( ) ( ) ( )AB EF GH CD IJ11 27 ,    9 27 ,    7 27Z Z Zς ς ς ς ς= − = = − = = −                (37) 

The sum of these pair energies is 

( )AB CD EF GH IJ 43 27F Zς ς ς ς ς= + + + + = −                          (38) 

The number of electrons with up-spin is sixteen in a unit length and then the nearest pair energy per up-spin- 
electron is 

( )( )16 43 27 16    at   43 27F Zε ν↑ = = − × =                         (39) 

We examine more general cases of ( ) ( )16 5 10 3s sν = − − . In the filling factor, the sum of the nearest-pair- 
energies inside a unit length is 

( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( )( )2

2 1 2 3 4 1 4 3 2 1 10 3

   6 4 1 10 3

F Z s s s s s s

s s s Z

= − + + + + + − + − + + + −

= − − + −

 

              (40) 

Accordingly 

( ) ( )( )( ) ( ) ( )26 4 1 10 3 6 2    at   16 5 10 3s s s s Z s sε ν↑
 = − − + − − = − −               (41) 

( )
( )

8 5 0
lim 1 10 Z

ν
ε↑→ −

= −                                 (42) 

Next we study the FQH state with 11 7ν = . The most uniform configuration is illustrated in Figure 9. 
The perturbation energy of the pair AB is 

( )AB 3 7    at   11 7Zς ν= − =                              (43) 

The number of the nearest electron pairs with up-spin is 1/4 of N↑ . Therefore the nearest pair energy per 
up-spin-electron is 

( )AB
1 3 28    at   11 7
4

N N Zε ς ν↑ ↑ ↑
 = × = − = 
 

                     (44) 

At ( ) ( )3 1 2 1j jν = − −  the perturbation energy ABς  for the nearest pair AB is obtained as 

( ) ( ) ( ) ( )AB 1 2 1    at   3 1 2 1j j Z j jς ν= − − − = − −                      (45) 

The total number of the nearest electron pairs with up-spin is 1 j  times N↑ . Therefore the nearest pair en-
ergy per up-spin-electron is 

( ) ( )( ) ( ) ( )AB
1 1 2 1    at   3 1 2 1N N j j j Z j j
j

ε ς ν↑ ↑ ↑

   = × = − − − = − −    
           (46) 

 
A B

 
Figure 9. Electron configuration at 11 7ν = . 
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The energies are listed in the second column of Table 2. Next we calculate the number of the allowed transi-
tions in the neighbourhood of ( ) ( )3 1 2 1j jν = − − . Then the energy gaps are shown in the fourth column of 
Table 2. 

Thus the present theory yields the energy gaps at the specific filling factors as in Table 1 and Table 2. 

4. Electron Configurations and Energy Gaps for 1 3 2< <ν  
We examine the FQH states with 1 3 2ν< <  in this section. Four examples are shown in Figures 10-13 where 
the filling factors are 4 3ν = , 6/5, 7/5 and 10/7, respectively. The electron configurations are illustrated in a 3D 
view where the down-spin electrons occupy all the Landau orbitals with the lowest level. 

The most uniform electron configuration with up-spin is the repeat of the sequence (empty, filled, empty) at 
4 3ν =  as in Figure 10. The empty orbitals for up-spin are shown by red dashed lines and the filled orbitals 

 
Table 2. Energy gaps for ( ) ( )3 1 2 1j jν = − − . 

0ν  ( )0ε ν
↑  ( )

0 0limν ν ε ν→ ± ↑
 ( ) ( )

00 0limν νε ν ε ν→ ±↑ ↑
−  

5/3 −(1/6) Z −(1/12) Z −(1/12) Z 

8/5 −(2/15) Z −(1/10) Z −(1/30) Z 

11/7 −(3/28) Z −(5/56) Z −(1/56) Z 

14/9 −(4/45) Z −(7/90) Z −(1/90) Z 

 

X

Z
Y

A B unit length

 
Figure 10. Electron configuration at 4 3ν = . 

 

A B
unit length

 
Figure 11. Electron configuration at 6 5ν = . 

 

A B
unit length

 
Figure 12. Electron configuration at 7 5ν = . 
 

A B
unit length

 
Figure 13. Electron configuration at 10 7ν = . 
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with up-spin by blue lines. The blue arrows express the quantum transitions to the empty pairs AB. The symbol 
AB
Hς  means the perturbation energy via all the quantum transitions shown by blue arrow pairs. The nearest 

vacant-orbital-pair (nearest hole pair) AB is specified by the momenta ,  A Bp p . The electron pair A'B' is also 
specified by the momenta ,  A Bp p′ ′ . The electron pair A'B' transfers to the vacant orbitals at A and B. Therein the 
total momentum of the pair conserves in the Coulomb transition as 

,    A A B Bp p p p p p′ ′= − ∆ = + ∆                             (47) 

where the momentum transfer p∆  takes the following values as 

( )3 1 2π    for  0, 1, 2, 3,p j j∆ = + = ± ± ±                         (48) 

at 4 3ν = . Then the second order perturbation energy of the hole pair AB is given by 

( )( )
AB

3 1 2π   for 0, 1, 2, excite

, , , ,
,

A B I A B A B I A BH

p j j G A A B B

p p H p p p p H p p
W W p p p p

ς
∆ = + = ± ±

′ ′ ′ ′
=

′ ′− → →∑
  

            (49) 

In order to evaluate the energy AB
Hς  we introduce the summation HZ  as 

( )0, 2π excite

, , , ,
,

A B I A B A B I A B
H

p G A A B B

p p H p p p p H p p
Z

W W p p p p∆ ≠ −

′ ′ ′ ′
= −

′ ′− → →∑
 

                 (50) 

where the momentum transfer p∆  takes all the values ( )2π integer×   except 0p∆ =  and 2πp∆ = −   . 
The transferred state for 0p∆ =  or 2πp∆ = −    is eliminated in the summation (50) because the diagonal 
element of IH  is absent. The denominator in Equation (50) is negative and so HZ  is positive. (The value of 

HZ  is nearly equal to Z  for the same magnetic field strength.) The interval of momentum transfer is very 
small for a macroscopic size of a device and therefore the perturbation energy, AB

Hς , can be expressed by HZ  
as 

AB
1    for   4 3
3

H
HZς ν= − =                               (51) 

The electron configurations at 6 5ν = , 7/5 and 10/7 are illustrated in Figures 11-13, respectively. 
The perturbation energies, AB

Hς , are also obtained by making use of HZ  as follows: 

AB
1    for   6 5
5

H
HZς ν= − =                              (52a) 

AB
2    for   7 5
5

H
HZς ν= − =                              (52b) 

AB
3    for   10 7
7

H
HZς ν= − =                             (52c) 

In the unit length there are 1, 2, or 3 electrons for the filling factor 6 5ν = , 7/5, or 10/7, respectively. 
Therefore the energy per electron becomes ( )1 5 HZ− , ( )1 5 HZ−  and ( )1 7 HZ− . We express the perturba-
tion energy per electron by the symbol ( )0ε ν↑  at 0ν ν=  which is listed in the second column of Table 3. 

The limiting values from both sides are calculated and written in the third column of Table 3. Subtractions of 
the limiting value from ( )0ε ν↑  give the energy gaps which are listed in the fourth column of Table 3. Tables 
1-3 show the energy gaps at many filling factors. Thus the present theory can explain the confinement of the 
Hall resistance in the region of 1 2ν< < . 

5. Filling Factors with Even Integer for the Denominator 
We examine the 7 4ν =  state as an example with even integer for the denominator of the filling factor. Figure 
14 shows the most uniform configuration at 7 4ν = . 

There are many electron pairs in Figure 14. The pair AB is an example of the nearest electron pair. The  
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quantum transition via the Coulomb interaction conserves the total momentum. Accordingly the electron B 
should transfer to one orbital to the right when the electron A transfers to one orbital to the left. However the 
transformation to the right-direction is forbidden because the Landau orbital is already occupied by up-spin 
electron as shown by the blue arrows on Figure 14. When the electron A transfers to the fifth orbital to the left, 
the electron B cannot transfer to the fifth orbital to the right because of the Pauli exclusion principle. Thus all the 
transitions from the nearest electron pairs are forbidden via the Coulomb interaction. Therefore the electron pair 
AB has no binding energy. Also all the quantum transition from the electron pair BC are forbidden. Accordingly 
all the nearest electron pairs have no binding energy. 

Similarly all the nearest electron pairs have no binding energy at the filling factor ( ) ( )0 4 1 2j jν = − . 

( ) ( ) ( )0 00   at   4 1 2j jε ν ν↑ = = −                            (53) 

The energies are listed in the second column of Table 4. 
We examine the energies of the nearest electron pairs in the neighbourhood of ( ) ( )4 1 2j jν = − . As an ex-

ample for the neighbourhood of 2j = , we have calculated the number of allowed transitions by using a com-
puter, then we obtain 

( ) 5101 302   at   1
121706 403

Zε ν ν↑ = − = +                          (54a) 

 
Table 3. Energy gaps for ( ) ( )2 2 2 1j jν = + +  and ( ) ( )3 1 2 1j j+ + . 

0ν  ( )0ε ν
↑  ( )

0 0limν ν ε ν→ ± ↑
 ( ) ( )

00 0limν νε ν ε ν→ ±↑ ↑
−  

4/3 −(1/3) ZH −(1/6) ZH −(1/6) ZH 

6/5 −(1/5) ZH −(1/10) ZH −(1/10) ZH 

7/5 −(1/5) ZH −(3/20) ZH −(1/20) ZH 

8/7 −(1/7) ZH −(1/14) ZH −(1/14) ZH 

10/7 −(1/7) ZH −(5/42) ZH −(1/42) ZH 

10/9 −(1/9) ZH −(1/18) ZH −(1/18) ZH 

13/9 −(1/9) ZH −(7/72) ZH −(1/72) ZH 

 

X

Z
Y ABC

 
Figure 14. Electron configuration at 7 4ν = . 

 
Table 4. Comparison of nearest electron pair energies at ( ) ( )0 4 1 2j jν = −  
and in its neighbourhood. 

0ν  ( )0ε ν
↑  ( )

0 0limν ν ε ν→ ± ↑
 ( ) ( )

00 0limν νε ν ε ν→ ±↑ ↑
−  

3/2 0 0
 

0
 

7/4 0 1
24

Z−
 

1
24

Z
 

11/6 0 1
60

Z−  1
60

Z  

15/8 0 Negative Positive 
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( ) 501001 3002   at   1
12017006 4003

Zε ν ν↑ = − = +                       (54b) 

( ) 5101 304   at   1
123120 405

Zε ν ν↑ = − = +                          (54c) 

( ) 501001 3004   at   1
12031020 4005

Zε ν ν↑ = − = +                       (54d) 

The limiting value of the pair energy for ( )3 4 0ν → ±  is obtained as follows: 

( )
3 4 0

1lim
24

Z
ν

ε ν↑→ ±
= −                               (55) 

Next we examine the case of 0 5 6ν = . 

( ) 5101 504   at   1
304920 605

Zε ν ν↑ = − = +                         (56a) 

( ) 501001 5004   at   1
30049020 6005

Zε ν ν↑ = − = +                      (56b) 

( ) 5101 506   at   1
307142 607

Zε ν ν↑ = − = +                         (56c) 

( ) 501001 5006   at   1
30071042 6007

Zε ν ν↑ = − = +                      (56d) 

For the limiting of ( )5 6 0ν → ±  the nearest pair energy approaches 

( )
5 6 0

1lim
60

Z
ν

ε ν↑→ ±
= −                             (57) 

On the other hand the nearest pair energy at ( ) ( )0 4 1 2j jν = −  is zero as obtained in Equation (53). There-
fore the pair energy at ( ) ( )0 4 1 2j jν = −  is higher than the energy in the neighbourhood of 0ν . Then the peak 
values are listed in the fourth column of Table 4. 

Similarly we calculate the quantum transition energy to the nearest empty orbitals at the filling factor 
( ) ( )2 1 2j jν = + . The values are listed in Table 5. 

Thus the FQH state is not stable at ( ) ( )0 4 1 2j jν = −  and ( ) ( )0 2 1 2j jν = + , because the energy is higher 
than that of the neighbourhood. That is to say, the Hall resistance confinement doesn’t appear at 

( ) ( )0 4 1 2j jν = −  and ( ) ( )0 2 1 2j jν = + . This theoretical result is in agreement with the experimental data. 

6. Discussions 
We have investigated the FQH states on the bases of the electromagnetic theory and the quantum theory without 
 
Table 5. Comparison of nearest electron pair energies at ( ) ( )2 1 2j jν = +  and in its neighbourhood. 

0ν  ( )0ε ν
↑  ( )

0 0limν ν ε ν→ ± ↑
 ( ) ( )

00 0limν νε ν ε ν→ ±↑ ↑
−  

3/2 0 0
 

0
 

5/4 0 1
8 HZ−

 
1
8 HZ

 

7/6 0 1
12 HZ−  1

12 HZ  

9/8 0 Negative Positive 
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any quasi-particle. There are the other famous theories explaining the FQHE which are the Haldane-Halperin 
hierarchy theory and the composite fermion theory. Recently J.K. Jain has examined the distinct difference be-
tween them [31]. Also he summarized the composite fermion theory. The composite fermion theory deals with 
FQH states by dividing into several types as follows: We study the composite fermion theory for the electron 
filling-factors with the denominator smaller than 6 namely 1 3ν = , 2/3, 4/3, 5/3, 1/5, 2/5, 3/5, 4/5, 6/5, 7/5, 8/5 
and 9/5. These FQH states have the following structures as mentioned in the reference [31]. 
(1) ( )2 1 1 3,2 5,n nν ν= + → =   
IQH state of composite fermion (which is an electron bound by two flux quanta) 
(2) ( )2 1 2 3,3 5,n nν ν= − → =   
IQH state of composite fermion (which is an electron bound by two flux quanta) 
The effective magnetic field direction is opposite against the applied field. 
(3) ( )4 1 1 5,n nν ν= + → =   
IQH state of composite fermion (which is an electron bound by four flux quanta) 
(4) ( )1 4 1 4 5,n nν ν= − + → =   
Combination state of the 1ν =  electron IQH state and the IQH state of composite fermion (which is a hole 
bound by four flux quanta) 
(5) ( )1 4 1 6 5,n nν ν= + + → =   
Combination state of the 1ν =  electron IQH state and the IQH state of composite fermion (which is an elec-
tron bound by four flux quanta) 
(6) ( )2 2 1 5 3,8 5,n nν ν= − + → =   
Combination state of the 2ν =  electron IQH state and the IQH state of composite fermion (which is a hole 
bound by two flux quanta) 
(7) ( )2 2 1 4 3,7 5,n nν ν= − − → =   
Combination state of the 2ν =  electron IQH state and the IQH state of composite fermion (which is a hole 
bound by two flux quanta) 
The effective magnetic field direction is opposite against the applied field. 
(8) ( )2 4 1 9 5,n nν ν= − + → =   
Combination state of the 2ν =  electron IQH state and the IQH state of composite fermion (which is a hole 
bound by four flux quanta) 

We examine the composite fermion states for the five examples with 4 3ν = , 5 3ν = , 6 5ν = , 9 5ν =  
and 4 5ν = . 

1) FQH state at 4 3ν =  
In the article [31] the 4 3ν =  FQH state is constructed by combining the 2ν =  IQH state with the com-

posite fermion state of hole for 2 3ν = −  as in Figure 15. Therein the black dots on the green sheet indicate 
the electrons in the 2ν =  IQH state. The composite fermions of hole are expressed by the white circles on the 
yellow sheet, each of which is bound with two flux quanta as in Figure 15. 

The effective magnetic field is expressed by the red arrows, the direction of which is opposite against the ap-
plied magnetic field. The total filling factor is the sum of 2ν =  and 2 3ν = − . Accordingly the filling factor 
of electrons becomes 4 3ν = . 

2) FQH state at 5 3ν =  
The 5 3ν =  FQH state is explained by the combination of the 2ν =  IQH state and the composite fermion 

 
Effective magnetic fieldApplied magnetic field

+
 

Figure 15. Composite fermion theory for 4 3ν = . 
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state of hole with 1 3ν = − . Each hole is bound with two flux quanta and the effective magnetic field is parallel 
to the applied magnetic field as shown in Figure 16. 

3) FQH state at 6 5ν =  
The 6 5ν =  FQH state is produced by combining the 1ν =  IQH state with the composite fermion state 

with 1 5ν = . Therein the electron of the 1ν =  IQH state is expressed by the black circles on the sky-blue 
sheet in Figure 17. The residual electrons are expressed by the blue dots on the pink sheet, each of which is 
bound by the four flux quanta as seen in Figure 17 schematically. That is to say, some electrons are unbound 
with magnetic flux quanta and the other electrons are bound with flux quanta. However all the electrons exist in 
the same conducting thin layer and their wave functions are overlapping with each other. Furthermore in the 
many-body problem all the wave functions of electrons should satisfy the anti-symmetric relation. Also all the 
electrons should be affected by the same magnetic field. Accordingly the combination of the 1ν =  IQH state 
and the 1 5ν =  composite fermion state has some difficulty. 

4) FQH state at 9 5ν =  
The 9 5ν =  FQH state is created by combining the 2ν =  IQH state with the composite fermion state of 

hole for 1 5ν = −  as illustrated in Figure 18. 
Therein the black dots on the green sheet indicate the electrons in the 2ν =  IQH state. The composite fer-

mions of hole are expressed by the white circles on the yellow sheet, each of which is bound with four flux 
quanta as seen in Figure 18. 
 

Effective magnetic fieldApplied magnetic field

+
 

Figure 16. Composite fermion theory for 5 3ν = . 
 

+

Applied magnetic field Effective magnetic field

 
Figure 17. Composite fermion theory for 6 5ν = . 

 
Applied magnetic field Effective magnetic field

+
 

Figure 18. Composite fermion theory for 9 5ν = . 
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+

Applied magnetic field Effective magnetic field

 
Figure 19. Composite fermion theory for 4 5ν = . 

 
5) FQH state at 4 5ν =  
The 4 5ν =  FQH state is produced by combining the 1ν =  IQH state with the composite fermion state of 

hole with 1 5ν = − . Therein the electron of the 1ν =  IQH state is expressed by the black circles on the sky- 
blue sheet in Figure 19. The composite fermions of hole are expressed by the white circles on the yellow sheet, 
each of which is bound by the four flux quanta. 

Thus the composite fermion theory uses many different kinds of quasi-particles and different directions of the 
effective magnetic field. When the filling factor varies by adjusting the gate voltage (or the applied magnetic 
field strength), the quasi-particle changes from hole to electron, the number of the bound flux-quanta changes, 
and the direction of the effective magnetic field changes from parallel to anti-parallel. These complicated as-
sumptions are too artificial. 

The quantum Hall system is originally described by the same Hamiltonian for all the filling factors. Therefore 
it is necessary that the FQHE is derived only from the original Hamiltonian by using the normal electrons and 
the usual quantum physics without any quasi-particle. This article succeeds to explain the FQHE which is pro-
duced by the abrupt change of the quantum-transition number. The abrupt change is caused by the momentum 
conservation, the most uniform configuration of electrons and the Fermi statistics. 

7. Summary 
The Hall resistance confinement is observed in the measurement of the current and the Hall voltage. In the real 
experiment, the Hall voltage is extremely large in comparison with the potential voltage. The ratio of (Hal volt-
age)/(potential voltage) is larger than 109 for the IQHE. Also the ratio is very large for the FQHE. That is to say, 
we cannot ignore the electric potential gradient in the direction of Hall voltage. Almost all the theories of FQHE 
neglect this electric potential gradient and use the symmetric property for the x- and y-directions on the 
2D-electron plain. We have examined the eigen-states of single electron under the electric potential with the 
gradient. Then we have obtained the most uniform configuration of electrons in the Landau orbitals, the states of 
which satisfy the eigen-equation of the Hamiltonian (8). The Coulomb interaction produces the quantum transi-
tions of electron pair (not single electron), because the interaction acts between two electrons. Therefore the to-
tal momentum along the current direction conserves between before and after transitions. Fermi statistics of 
electrons create abrupt change in the number of the allowed transitions for varying of the filling factor. This 
abrupt change produces an energy gap which yields the confinement of the Hall resistance at the specific frac-
tional filling factors. This article and the previous works have clarified these mechanisms. The results are in a 
good agreement with the experimental data. 
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