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Abstract 
Around 1945, Alfred Tarski proposed several questions concerning the elementary theory of non- 
abelian free groups. These remained open for 60 years until they were proved by O. Kharlampo-
vich and A. Myasnikov and independently by Z. Sela. The proofs, by both sets of authors, were mo-
numental and involved the development of several new areas of infinite group theory. In this pa-
per we explain precisely the Tarski problems and what has been actually proved. We then discuss 
the history of the solution as well as the components of the proof. We then provide the basic 
strategy for the proof. We finish this paper with a brief discussion of elementary free groups. 
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1. Introduction 
Around 1945, Alfred Tarski proposed several questions concerning the elementary theory of non-abelian free 
groups. These questions then became well-known conjectures but remained open for 60 years. They were proved 
in the period 1996-2006 independently by O. Kharlampovich and A. Myasnikov [1]-[5], and by Z. Sela [6]-[10]. 
The proofs, by both sets of authors, were monumental, and involved the development of several new areas of 
infinite group theory. Because of the tremendous amount of material developed and used in the two different 
proofs, the details of the solution are largely unknown, even to the general group theory population. The book 
[11] presents an introductory guide through the material. In this paper we provide, for a general mathematical 
audience, who know some infinite group theory, an introduction to both the Tarksi conjectures and the vast new 
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ideas that go into the proof. These ideas straddle the line between algebra and mathematical logic and hence 
most group theorists don’t know enough logic to fully understand the details while in the other direction most 
logicians don’t understand enough infinite group theory. 

In the next section we define and explain both elementary and universal theory. With these in hand we can 
explain precisely the Tarski problems and what has been actually proved. We then in Section 4 discuss the history 
of the solution as well as the components of the proof. This involves the development of several new areas of 
infinite group theory. 

There are five essential parts of the overall proof: the structure theory of fully residually free groups, called 
limit groups in the Sela approach; the Makhanin-Razborov techniques for handling solutions of equations in free 
groups; the extension of classical algebraic geometry to algebraic geometry over groups, especially over free 
groups. Sela calls this diophantine geometry over groups, an elimination process that reduces the solution of 
systems of equations over free groups to solutions of certain special systems of quadratic equations, and an 
implicit function theorem that allows for quantifer elimination and then an induction on the number of quantifiers. 

We then provide the basic strategy for the proof which utilizes all the components mentioned. In section 6 we 
give a very brief outline of the proof. 

As part of the proof both sets of authors provide a complete characterization of finitely generated groups that 
have the same elementary theory as the class of non-abelian free groups. These are called elementary free or 
elementarily free groups. In the approach of Kharlampovich-Myasnikov these are called special NTQ-groups 
while Sela calls them ω-residually free towers. The most prominent set of examples of non-free elementary 
free groups are the orientable surface groups gS  of genus 2g ≥  and the non-orientable surface groups gT  of 
genus 4g ≥ . In the final section, we finish this paper with a discussion of elementary free groups and what we 
call something for nothing results. 

2. Elementary and Universal Theory 
The original Tarski Problems or Tarski Conjectures asked, among other things, whether all non-abelian free 
groups satisfy the same first-order or elementary theory. Here we explain and review universal and elementary 
theory. 

A first-order sentence in group theory has logical symbols , , , ,∀ ∃ ∨ ∧   but no quantification over sets. A 
first-order theorem in a free group is a theorem that says a first-order sentence is true in all non-abelian free 
groups. We make this a bit more precise: 

We start with a first-order language appropriate for group theory. This language, which we denote by 0L , is 
the first-order language with equality containing a binary operation symbol. a unary operation symbol−1 and a  
constant symbol 1. A universal sentence of 0L  is one of the form ( ){ }x xφ∀  where x  is a tuple of distinct  

variables, ( )xφ  is a formula of 0L  containing no quantifiers and containing at most the variables of x .  
Similarly an existential sentence is one of the form ( ){ }x xφ∃  where x  and ( )xφ  are as above. A  

universal-existential sentence is one of the form ( ){ },x y x yφ∀ ∃ . Similarly defined is an ( )
11 nx n xQ Q xφ  

existential-universal sentence. It is known that every sentence of 0L  is logically equivalent to one of the form  
where ( )1, , nx x x=   is a tuple of distinct variables, each iQ  for 1, ,i n=   is a quantifier, either ∀  or ∃ ,  
and ( )xφ  is a formula of 0L  containing no quantifiers and containing free at most the variables 1, , nx x . 
Further vacuous quantifications are permitted. Finally a positive sentence is one logically equivalent to a sentence 
constructed using (at most) the connectives , , ,∨ ∧ ∀ ∃ . 

If G is a group, then the universal theory of G consists of the set of all universal sentences of 0L  true in G. 
We denote the universal theory of a group G by ( )Th G∀ . Since any universal sentence is equivalent to the 
negation of an existential sentence it follows that two groups have the same universal theory if and only if they 
have the same existential theory. We say that two group G, H are universally equivalent if  

( ) ( )Th G Th H∀ ∀= . 
The set of all sentences of 0L  true in G is called the first-order theory or the elementary theory of G. We 

denote this by ( )Th G . We note that being first-order or elementary means that in the intended interpretation of 
any formula or sentence all of the variables (free or bound) are assumed to take on as values only individual 
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group elements—never, for example, subsets of nor functions, on the group in which they are interpreted. 
We say that two groups G and H are elementarily equivalent (symbolically G H≡ ) if they have the  

same first-order theory, that is ( ) ( )Th G Th H= . 
Group monomorphisms which preserve the truth of first-order formulas are called elementary embeddings. 

Specifically, if H and G are groups and  
:f H G→  

is a monomorphism then f  is an elementary embedding provided whenever ( )0 , , nx xφ   is a formula of  

0L  containing free at most the distinct variables 0 , , nx x  and ( ) 1
0 , , n

nh h H +∈  then ( )0 , , nh hφ   is true  
In H if and only if  

( ) ( )( )0 , , nf h f hφ   

is true in G. If H is a subgroup of G and the inclusion map :i H G→  is an elementary embedding then we say 
that G is an elementary extension of H. 

Two very important concepts in the elementary theory of groups, are completeness and decidability. Given a 
non-empty class of groups   closed under isomorphism then we say its first-order theory is complete if given 
a sentence φ  of 0L  then either φ  is true in every group in   or φ  is false in every group in  . The 
first-order theory of   is decidable if there exists a recursive algorithm which, given a sentence φ  of 0L  
decides whether or not φ  is true in every group in  . 

For more information on elementary theory in general see [11]-[13]. 

3. The Tarski Problems 
Tarski first asked the general question whether all non-abelian free groups share the same elementary theory. At 
the end of this section, we will present some motivation for this idea. Vaught, a student of Tarksi’s, proved almost 
immediately that all free groups of infinite rank do have the same elementary theory, and thus reduced the 
question to the class of non-abelian free groups of finite rank. After this, Tarski’s question was formalized into 
the following conjectures. 

Tarski Conjecture 1 Any two non-abelian free groups are elementarily equivalent. That is any two non- 
abelian free groups satisfy exactly the same first-order theory. 

Tarski Conjecture 2 If the non-abelian free group H is a free factor in the free group G then the inclusion 
map H G→  is an elementary embedding. 

The second conjecture is stronger than the first and in fact implies the first. If true, then the theory of the 
non-abelian free groups would be complete, that is given a sentence φ  of 0L  then either φ  is true in every 
non-abelian free group or φ  is false in every non-abelian free group. 

After a long series of partial results, that we will describe in subsequent sections, the positive solution to the 
Tarksi conjectures was given by O. Kharlampovich and A. Myasnikov [1]-[5] and independently by Z. Sela [6]- 
[10]. The proofs by both sets of authors involved the development of whole new areas of mathematics, in 
particular an algebraic geometry (Sela calls this diophantimne geometry) over free groups. The basic theorems 
eventually proved were: 

Theorem 1 (Tarski 1) Any two non-abelian free groups are elementarily equivalent. That is any two non- 
abelian free groups satisfy exactly the same first-order theory.  

Theorem 2 (Tarski 2) If the non-abelian free group H is a free factor in the free group G then the inclusion 
map H G→  is an elementary embedding.  

In addition to the completeness of the theory of the non-abelian free groups, the question of its decidability 
also arises. The decidability of the theory of non-abelian free groups means the question of whether there exists 
a recursive algorithm which, given a sentence φ  of 0L , decides whether or not φ  is true in every non- 
abelian free group. Kharlampovich and Myasnikov in addittion to the proofs of the main Tarksi conjectures also 
proved that the theory is decidable (see [5]) 

Theorem 3 (Tarski 3) The elementary theory of the non-abelian free groups is decidable.  
Although Tarksi was never explicit on the origin of the basic question, it is motivated by several basic results, 

and concepts, in the theory of free groups (see [11] [14] [15] for complete discussions of free groups). First is 



B. Fine et al. 
 

 
215 

the observation that most free group properties, involving elements, are rank independent, that is, true for all free 
groups independent of rank. For example all non-abelian free groups are torsion-free and all abelian subgroups 
of non-abelian free groups are cyclic. 

A second possible motivation, which also shows that all non-abelian free groups have the same universal 
theory, is the following. Let 2F  be a free group of rank 2. It is a straightforward consequence of the Reide- 
meister-Schreier process (see [14]) that the commutator subgroup of 2F  is free of infinite rank. This implies 
that if we let Fω  denote a free group of countably infinite rank, then 2F Fω ⊂ . It follows that for any , 2m n ≥  
with m n<  we have  

2 m nF F F F Fω ω⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂    

This shows that n mF F⊂  and m nF F⊂ . Its like a snake eating its tail. 
If G H⊂  then any universal sentence in H must also be true in G, that is ( ) ( )Th H Th G∀ ∀⊂ . This obser-  

vation combined with the observations above prove that all non-abelian free groups have the same universal 
theory and hence are universally equivalent. 

Theorem 4 All non-abelian free groups are universally equivalent. 
A group with the same universal theory as a non-abelian free group is called a universally free group. The 

above theorem then opens the question as to whether the class of universally free groups extends beyond the 
class of free groups. One of the initial steps toward the proof of the Tarksi problems was a group theoretical 
characterization of universally free groups. In the finitely generated case these turn out to be the non-abelian 
fully residually free groups. We will introduce this class of groups in the next section. 

4. The History of the Solution 
The final proof of the Tarski theorems was a monumental collection of work by both sets of authors. In addition 
to dealing with already existing ideas in group theory and logic, the solution involved the development of several 
new areas of group theory. In particular three areas of group theory had to be fully developed before the proof 
could be completed. These were: 

1) The theory of fully residually free groups. In Sela’s approach these were called limit groups; 
2) The Makhanin-Razborov technique for solving equations within free groups; 
3) The development of algebraic geometry over groups. Sela calls this diophantine geometry. 
We will discuss each of these in turn. First we look at the initial partial results that were done between the 

statement of the problem by Tarksi (in 1945) and the final proofs (1998-2006). 
The first progress was due to Vaught, a student of Tarski, who showed that the Tarski Conjectures 1, 2 are 

true if G and H are both free groups of infinite rank. This reduced the problem to free groups of finite rank, that 
is, in showing that all non-abelian free groups of finite rank share the same elementary theory or even stronger 
that the embedding of a free group of rank m into a free group of rank n, with m n< , is an elementary 
embedding. 

The basic idea in Vaught’s proof is to use the following criteria for elementary embeddings; if 0H  is a  
subgroup of H and that to every finite subset { }1, , na a  of 0H  and every element b H∈  there exists an  
automorphism σ  of H fixing 1, , na a  and mapping b into 0H , then the inclusion map from 0H  into H is 
an elementary embedding. Applying this criterion to free groups of infinite rank, suppose that F is free on an 
infinite subset S and that G is free on an infinite subset 0S  of S. Then permutations of S will induce enough 
automorphisms to guarantee that the inclusion map of G into F is an elementary embedding. 

The next significant progress was due to Merzljakov [16]. A positive sentence is a first-order sentence which 
is logically equivalent to a sentence constructed using (at most) the connectives , , ,∨ ∧ ∀ ∃ . The positive theory 
of a group G consists of all the positive sentences true in G. 

Merzljakov showed that the non-abelian free groups have the same positive theory. 
Theorem 5 (Merzljakov) [16] All non-abelian free groups have the same positive theory.  
Merzljakov’s proof used what are now called generalized equations and a quantifier elimination process. This 

was a precursor to the methods used in the eventual solution of the overall Tarksi problems. 
As we pointed out in the previous section, two non-abelian free groups satisfy the same universal theory. 

Sacerdote [17] proved that this could be extended to universal-existential sentences. The set of universal- 
existential sentences true in a group G is called the 2Π -theory of G. Hence Sacredote’s result is then: 
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Theorem 6 (Sacerdote) [17] All non-abelian free groups have the same 2Π -theory. 
That all non-abelian free groups have the same universal theory coupled with the fact that universally free is 

equivalent to existentially free says that Tarski Conjecture 1 is true if there is only one quantifier. Sacerdote’s 
extension to 2Π -theory shows that the Tarski Conjecture 1 is true if there are two quantifers. Sacerdote’s theorem 
becomes the initial step in the final proof which employs an induction based on the number of quantifiers. 

A first step to the initial proofs was to completely characterize those groups that are universally free. This was 
accomplished within the study of fully residually free groups. A group G is residually free if for each non- 
trivial g G∈  there is a homomorphism : G Fφ →  where F is a free group and ( ) 1gφ ≠ . 

A group G is fully residually free if for each finite subset of non-trivial elements 1, , ng g  in G there  
is a homomorphism : G Fφ →  where F is a free group and ( ) 1igφ ≠  for all 1, ,i n=  . 

Fully residually free groups arise in Sela’s approach as limiting groups of homomorphisms from a group G 
into a free groups. Sela shows that such groups in the finitely generated case are equivalent to fully residually 
free groups. Hence. a finitely generated fully residually free group is also called a limit group. This has become 
the more common designation. 

Two concepts are crucial in the study of limit groups. A group G is commutative transitive or CT if 
commutativity is transitive on the set of non-trivial elements of G. That is if [ ], 1x y =  and [ ], 1y z =  for 
non-trivial elements , ,x y z G∈  then [ ], 1x z = . A group G is CSA or conjugately separated abelian if  
maximal abelian subgroups are malnormal. A subgroup H G⊂  is malnormal if { }1 1g Hg H− ≠  implies  
that g H∈ . CSA groups are always CT but there exist CT groups that are not CSA. As we will see, in the 
presence of residual freeness they are equivalent. A classification of CT non-CSA groups was given by Fine, 
Gaglione, Rosenberger and Spellman (see [11]) 

In 1967 Benjamin Baumslag [18] proved the following result who’s innocuous beginnings belied its much 
greater later importance. It was in this paper that the concept of full residual freeness was first explored. 

Theorem 7 (Baumslag [18]) Suppose G is residually free. Then the following are equivalent: 
1) G is fully residually free; 
2) G is commutative transitive. 
Gaglione and Spellman [19] and independently Remeslennikov [20] extended B. Baumslag’s Theorem and 

this extension became one of the cornerstones of the proof of the Tarksi problems 
Theorem 8 [19] [20] Suppose G is residually free. Then the following are equivalent: 
1) G is fully residually free; 
2) G is commutative transitive; 
3) G is universally free if non-abelian.  
Further the result can be extended to include the equivalence with CSA. In addition Remeslennikov and 

independently Chiswell (see [21]) showed that if a group G is finitely generated then being fully residually free 
is equivalent to being universally free. Therefore the finitely generated universally free groups are precisely the 
finitely generated fully residually free groups which are non-abelian 

Theorem 9 Let G be finitely generated and non-abelian. Then G is a limit group if and only if G is uni- 
versally free. 

Ciobanu, Fine and Rosenberger [22] recently greatly extended the class of groups satisfying both B. Baumslag’s 
original theorem and the theorem of Gaglione, Spellman and Remeslennikov. 

The solution of the Tarski Conjectures involved analyzing groups which have the same elementary theory as a 
free group. Clearly this includes the universally free groups and therefore the theory of limit groups became 
essential to the proof and to analyzing those groups which have the same elementary theory as a free group 

It was clear from the beginning that to deal with the Tarski problems it was necessary to give a precise 
definition of solution sets of equations and inequations over free groups. In this direction Lyndon [23] introduced 
the concept of an exponential group, that is a group which allows parametric exponents in an associative unitary 
ring A. In particular he studied the free exponential group [ ]tF   where exponents are allowed from the 
polynomial ring [ ]t  over the integers  . Lyndon established that the free exponential group [ ]tF   and 
hence any finitely generated subgroup of it, is fully residually free and hence, if it is non-abelian, universally 
free. Kharlampovich and Myasnikov [1] [2] established the converse; therefore a finitely generated group is 
fully residually free if and only if it is embeddable in [ ]tF  . 

Lyndon’s original motivation for introducing exponential groups was from the solution sets of equations over 
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free groups. In [23] he found that the solution set of any equation with one variable over a free group F can be 
obtained from finitely many parametric words by specializing their parameters in the integers. A parametric  
word with parameters in [ ]1, , nt t  is a formal expression obtained from a basis for F by finitely many  

concatenations and exponentiations from [ ]1, , nt t . If one specializes the parameters 1, , nt t  in   one  
obtains an element of F. Lyndon proved that for any equation with one variable over a free group F  one can  
effectively find a finite set of parametric words with parameters from the ring [ ]1, , nt t  such that any  
solution of this equation can be obtained from some specialization of these words. Appel [34] refined Lyndon’s 
result and showed that the solution set of a one variable equation over a free group can be  
parametrized by a finite set of words of the form tfg h  where , ,f g h F∈  and [ ]t t∈ . 

A further detailed study of the structure of exponential groups was carried out by A. Myasnikov and V. 
Remeslennikov (see [11]). They proved that the group [ ]tF   can be obtained starting from F by an infinite 
chain of a special type of HNN extensions called extensions of centralizers. If G is a group and G is the 
centralizer of a non-trivial element in G then  

( ) 1, , ; ;G C s G s s cs c c C−= = ∈  

is a free extension of the centralizer C by s. From the work of Myasnikov and Remeslennikov, to construct 
[ ]tF  , one needs to extend each centralizer sufficiently many times so that every proper centralizer is isomorphic 

to a free abelian group of infinite rank—the additive group of [ ]t . This further implies that any finitely 
generated subgroup of [ ]tF   and hence any fully residually free group, is actually a subgroup of a group that 
can be obtained from F by finitely many extensions of centralizers. For such groups, Bass-Serre theory (see [11]) 
can be used to determine the structure. Kharlampovich and Myasnikov proved a finitely generated group is fully 
residually free if and only if it is embeddable in the free exponential group [ ]tF   introduced by Lyndon. 

Advances in a different direction were given by Makanin and Razborov (see [24]-[26]). Makanin proved that 
there exists an algorithm to determine, given a finite system of equations over a free group, whether the system 
possesses at least one solution. Razborov working with the Makanin algorithm determined an algorithm to 
effectively describe the solution sets of a finite system of equations over a free group. 

Kharlampovich and Myasnikov further refined the Makanin-Razborov method. Their technique allows one to 
transform arbitrary finite systems of equations in free groups to some canonical forms and describe precisely the 
irreducible components of algebraic sets in free groups. 

These canonical forms consist of finitely many quadratic equations in a triangular form. The following result 
is a corollary of the decidability of the Diophantine problem 

Theorem 10 (Makanin) [24] [25]  
1) The existential (and hence the universal) theory of a free group is decidable; 
2) The positive theory of a free group is decidable.  
The final ingredient that was needed for the proof was the development of an algebraic geometry over 

groups. In analogy with the classical theory of equations over number fields, algebraic geometry over groups 
was developed by Baumslag, Myasnikov and Remeslennikov [27] [28]. The theory of algebraic geometry over 
groups translated the basic notions of the classical algebraic geometry: algebraic sets, the Zariski topology, 
Noetherian domains, irreducible varieties, radicals and coordinate groups to the setting of equations over groups. 

This provided the necessary machinery to transcribe important geometric ideas into pure group theory. The 
proof of the Tarski Conjectures depends on the algebraic geometry of free groups. In particular it depends on the 
description of a fully residually free group as the coordinate group of an irreducible algebraic variety. We 
review some of the basic definitions from the algebraic geometry over groups. These mirror for the most part the 
standard definitions in classicial algebraic geometry. 

Let G be a group generated by a finite set A , ( )F X  be a free group with basis },,{= 21 nxxxX … , and let 
)(=][ XFGXG ∗  be the free product of G and ( )F X . A system of equations over G  is an expression 

1S =  where [ ]S G X⊂ . As an element of the free product, the left side of every equation in 1S =   
can be written as a product of some elements from the basis { }1, , nX x x=   and their inverses and some  
elements from A . The elements from X  are called variables while the elements from A  are called constants. 
To emphasize this we sometimes write 1S =  as ( ), 1S X A =  or just ( ) 1S X = . 
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A solution of the system ( ) 1S X =  over a group G is a tuple of elements 1, , ng g G∈  such that after 
replacing each ix  by ig  the left hand side of every equation in 1S =  becomes the trivial element of G. 
Equivalently, a solution of the system 1S =  over G can be described as a G-homomorphism [ ]: G X GΦ →   
such that ( ) 1SΦ = . Denote by ( )N S  the normal closure of S in [ ]G X , and by GS the quotient group  
[ ] ( )G X N S . Then every solution of ( ) 1S X =  in G gives rise to a G-homomorphism SG G→  and vice  

versa. By ( )GV S  we denote the set of all solutions in G of the system 1S = , it is called the algebraic set 
defined by S. This algebraic set ( )GV S  uniquely corresponds to the normal subgroup  

( ) ( ) [ ] ( ) ( ){ }: 1 1R S T X G X S X T X= ∈ = → =  

of the group [ ]G X . Notice that if ( )GV S = ∅ , then ( ) [ ]R S G X= . The subgroup ( )R S  contains S, and it  

is called the radical of S, denoted by ( ) ( )Rad S R S= . The quotient group  

( ) [ ] ( )R SG G X R S=  

is the coordinate group of the algebraic set ( )V S . Again, every solution of ( ) 1S X =  in G can be  
described as a G-homomorphism ( )R SG G→ . 

To study the coordinate groups of equations in a given fixed group G it is convenient to consider the category 
of G-groups, that is groups which contain the group G as a distinguished subgroup. If H and K are 
G-groups then a homomorphism : H Kφ →  is a G-homomorphism if ( )g gφ =  for every g G∈ . In the 
category of G-groups morphisms are G-homomorphisms; subgroups are G-subgroups, etc. For most of our 
applications we consider the group G to be a CSA-group. 

By ( ),GHom H K  we denote the set of all G-homomorphisms from H into K. It is not hard to see that  
[ ] ( )G X G F X= ∗  is a free object in the category of G-groups. This group is called a free G-group with basis X. 

A G-group H is a finitely generated G-group if there exists a finite subset B H⊂  such that the set G B  
generates H. 

A Zariski topology is defined on nG  by taking algebraic sets in nG  as a sub-basis for the closed sets of this 
topology. If G is a non-abelian CSA group, in particular, a non-abelian fully residually free group, then the 
union of two algebraic sets is again algebraic. Therefore the closed sets in the Zariski topology over G are 
precisely the algebraic sets. 

What did not translate immediately was the Noetherian property which is crucial in classicial algebraic geomerty. 
For the group based algebraic geometry, what had to be introduced was equationally Noetherian groups which 
is the group theoretic counterpart of the Noetherian condition. The Noetherian condition in rings is defined in 
terms of the ascending chain condition (see [29]) and implies that every ideal is finitely generated. What is 
important about this condition in algebraic geometry is the Hilbert Basis theorem that asserts that every  
algebraic set is finitely based. That is if S be a set of polynomials in [ ]1, , nk x x  then ( ) ( )1V S V S=  for  
some finite set of polynomials. This is what is recast in terms of group theory. First a G-group H is a group 
whcih has a distinguished subgroup isomorophic to G. If S is a set of equations over a group G then ( )V S  is 
its set of solutions in G. 

Definition 1 A G-group H is said to be G-equationally Noetherian if for every 0n >  and every  
subset S of [ ]1, , nG x x  there exists a finite subset S0 of S such that  

( ) ( )0 .V S V S=  

The first major examples of equationally Noetherian groups are linear groups over commutative Noetherian 
rings. This was proved originally by Bryant [30] in the one variable case and then extended by Guba [31] to the 
case of free groups. The general result is the following. 

Theorem 11 Let H be a linear group over a commutative, Noetherian ring with unity and in particular a field. 
Then H is equationally Noetherian.  

In particular, it follows that a finitely generated non-abelian free group is equationally noetherian. 
Extremely important in the application of the algebraic geometry of groups to the proof of the Tarski 
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problems is the description of the coordinate groups of systems of equations. Radicals of a system of equations 
and coordinate group are defined as in classical algebraic geometry. Examining the relationship between the 
coordinate groups and groups embeddable by a sequence of extensions of centralizers in the free exponential 
group [ ]tF  , shows that the coordinate groups of irreducible algebraic varieties are precisely the finitely generated 
fully residually free groups (limit groups). 

In addition to the Tarski problems themselves, the quest for a solution has inspired many other results in 
group theory. This is especially true concerning the theory of solutions of equations within groups. In 1959, 
Vaught asked the question whether the sentence  

( )2 2 2 1x y z x y z xy yx xz xz yz zy∀ ∀ ∀ = → = ∧ = ∧ =  

holds in all free groups. Lyndon [32] then proved that for each solution of 2 2 2 1x y z =  in a free group the 
elements commute pairwise. This result launched the theory of equations over free groups. The first general 
results in this were due to Lyndon [32], Lorenc [33] and Appel [34] where they described the solution set of an 
arbitrary one variable equation over a free group. In 1966 Malcev described the solution set of the equation 
[ ] [ ], ,x y a b=  over the free group ( ),F a b , a problem considered earlier by Nielsen (see [35]). A version of this 
was also solved by Csorgo, Fine and Rosenberger [35]. Malcev’s solution has the following non-trivial 
implication for the elementary theory of a free group of rank 2; the set of all free bases of ( ),F a b  can be 
defined by a first order formula in the language of group theory. That is the elements ( ), ,u v F a b∈  are a free 
basis if and only if they satisfy the following formula with constants ,a b ; 

[ ] [ ] [ ] [ ]( )1 1, , , , .z u v z a b z u v z b a z− −∃ = ∨ =  

The focus of study eventually turned to strictly quadratic equations over free groups, that is equations in which 
every variable x occurs exactly twice as either x or 1x− . Group relators that are quadratic have always been 
essential in combinatorial group theory due to their close connection with surface group relators. Comerford and 
Edmonds [36] and Grigorchuk and Kurchanov [37] [38] described the solution sets of quadratic equations over 
arbitrary free groups. Further work of Hoare, Karrass and Solitar shows that every quadratic equation over a free 
group is automorphically equiavlent to a standard one. 

Makanin in 1982 [24] proved that if a given equation over a free group F has a solution in F then this 
equation has a solution of bounded length and this bound can be effectively computed from the equation itself. 
Makanin’s work allowed Razborov [26] to describe the solution set of a system of equations over F. Makanin 
further extended his results [25], proving that that the universal theory of a non-abelian free group F is 
algorithmically decidable. 

5. Strategy for the Proof 
All these components had to be combined and integrated to provide the final proofs. Here we outline the strategy 
that was followed. Recall that Vaught proved Tarski Conjecture 2 for all free groups of infinite rank and hence 
reduced the problem to non-abelian free groups of finite rank. Vaught’s main result was that if the infinite rank 
free group 1F  is a free factor of the infinite rank free group 2F  then 1F  is an elementary subgroup of 2F , 
that is the identity map embedding 1F  into 2F  is an elementary embedding. Sacerdote went on to prove that  
all free groups of finite rank have the same 2Π -theory, that is they satisfy exactly the same ∀∃  (and  
equivalently ∃∀ ) sentences. It is Sacerdote’s result that pinpoints the main strategy in solving the whole problem 
and provides the first step in an induction. 

The main technique Vaught used in proving the Tarksi conjecture for infinite rank and Sacerdote used for the 
2Π -theory is the following, that is known as the Tarski-Vaught Test. 
Tarski-Vaught Test If H is a subgroup of G then H is an elementary subgroup of G if and only if for any  

formula ( ),x zφ  and for any tuple ( )h  of elements from H there exists a c G∈  such that ( ),c hφ  is 

satisfied in G implies that there exists c H∈  such that ( ),c hφ  is satisfied in H. 

Roughly the Tarski-Vaught Test says that a subgroup H of G is an elementary subgroup if and only if H is 
algebraically closed in G. In analogy with commutative algebra if we consider first order sentences with 
variables as our equations then any equation with constants from H which has a solution in G already has a 
solution within H. 
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If we wish to apply the Tarksi-Vaught Test to the case of a free factor in a free group of finite rank we must 
then understand the nature of solving equations in free groups and over free groups. The work of Makanin and 
Razborov became crucial. Their work provided first a method to determine if an equation over a free group was 
solvable and hence provided a technique for Kharlampovich and Myasnikov to show that the elementary theory 
of non-abelian free groups was decidable. 

Here is where, however, it was the introduction of algebraic geometry over free groups that led to the 
necessary understanding of groups that have the same elementary theory as a non-abelian free group of finite 
rank. 

The proofs of Kharlampovich-Myasnikov and Sela show that a general system of equations, with a few 
special cases that must be handled separately, can be shown to be equivalent to what is called a quasi- 
trianglular system of quadratic equations. 

The coordinate groups of such systems are called QT-groups and are limit groups. A special subclass of them, 
called special NTQ-groups, are precisely the groups that can be shown to have the same elementary theory as 
the non-abelian free groups. 

The structure of the algebraic variety of a system of equations can be broken down by the Makanin-Razborov 
method and is tied to the group theoretic breakdown of the coordinate groups. 

Since the coordinate groups are limit groups this breakdown is well-understood as the JSJ decomposition of 
limit groups. The JSJ decompositon of a finitely generated group was developed originally by Rips and Sela 
[39]. It is graph of groups decomposition with abelian edge groups that encodes all other amalgam decompositions 
of a group. 

It is the JSJ decomposition of the coordinbate groups combined with a type of implicit function theorem that 
provides for a quantifier elimination process that permits an induction starting with Sacerdote’s 2Π -result. 

After all these massive preliminaries the proof itself is then an induction on the number of quantifiers, based 
on a quantifer elimination process. In the Kharlampovich-Myasnikov approach the quantifier elimination is 
handled by an implicit function theorem for quadratic systems. 

We now describe in a bit more detail how to use the Tarski-Vaught Test to prove Tarski Conjecture 2. 
Let Fω  be a free group with basis { }1 2, ,A a aω =  , a countably infinite set. For each positive integer r, let  

rF  be the free factor 1, , ra a  of Fω . Let 0L  be as before the usual first order language with equality  

appropriate for group theory and for each 2r ≥  let [ ]0 rL F  be the extension of 0L  formed by adjoining the  
non-trivial elements of rF  as new constant symbols. 

Without assuming the Tarski Conjectures for each integer 2r ≥  let  

[ ] ( )
0 rr nL F

r n
T Th F

≤ <∞

=


 

be the set of those sentences of [ ]0 rL F  true in every free group containing rF  as a free factor. Sacerdote’s 
Theorem is that if 2 r s≤ < < ∞  then rF  and sF  satisfy precisely the same existential-universal and  
universal-existential sentences of [ ]0 rL F . Sacerdote’s result is then the starting point although both Kharlam- 
povich-Myasnikov reprove it. The basic idea is then to use quantifier elimination to reduce everything back to 
Sacerdote’s result. 

To this end let ( )rT ∀∃ ∃∀   be the set of all universal-existential or existential-universal sentences of 
[ ]0 rL F  true in rF  and hence true in every free group containing rF  as a free factor. Let rB  be the set of all  

Boolean combinations of ( )rT ∀∃ ∃∀  . That is rB  consists of all those sentences of [ ]0 rL F  which are  
obtained from ( )rT ∀∃ ∃∀   by conjunctions, disjunctions and negations. Suppose that we have a sentence 
Φ  of [ ]0 rL F  which is more complicated than a universal-existential or existential-universal sentence. What is 
done is to use quantifier elimination to show that there is a sentence rBΦ ∈  such that Φ  holds in sF  for all 
r s ω≤ ≤  if and only if Φ  does. This reduces the whole theorem to Sacerdote’s case and proves that the  
embeddings r sF F→  are elementary. 

The quantifier elimination is handled by an implicit function theorem. Basically consider a universal- 
existential sentence of [ ]0 rL F , 
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( )1 1 1 1, , , , , , , , , .m n m nx x y y x x y yφ∀ ∃                             (1) 

We wish to show that for r s ω< <  the sentence (1) holds in sF  if and only if it holds in rF . One  
direction is relatively simple. Suppose that (1) holds in sF . Then for an arbitrary element ( )1, , m

m ru u u F= ∈   
the sentence  

( )1 1 1, , , , , , ,m m ny y u u y yφ∃     

is an existential sentence of [ ]0 rL F  true in sF . A group G  is discriminated by a group H  if for any finite  

subset 1, , ng g  of non-trivial elements in G  there exists a homomorphism : G Hφ →  with ( ) 1igφ ≠ .  
Since sF  is discriminated by retractions s rF F→  it follows that  

( )1 1 1, , , , , , ,m m ny y u u y yφ∃     

must hold in rF . Since m
ru F∈  was arbitrary the original sentence (1) must hold in rF . 

The other way, that (1) holding in rF  implies that it holds in sF  is the real work. Let ( ) 1, , ;mF X x x=  .  
From the implicit function theorem it is the case that whenever (1) holds in rF  there is an ordered n-tuple  
( )1, , nY Y  from rF X  such that  

( ) ( )( )1 1 1 1 1, , , , , , , , , , ,m m m n mx x x x Y x x Y x xφ∀       

also holds in rF . However  

( ) ( )( )1 1 1 1 1, , , , , , , , , , ,m m m n mx x x x Y x x Y x xφ∀       

is a universal sentence of [ ]0 rL F . Again from the fact that sF  is discriminated by retractions s rF F→  it  

follows that rF  and sF  satisfy the same universal sentences of [ ]0 rL F . 
Therefore if (1) holds in rF  then  

( ) ( )( )1 1 1 1 1, , , , , , , , , , ,m m m n mx x x x Y x x Y x xφ∀       

holds in sF  and so (1) must hold in sF . The cases where the hypotheses of the implicit function theorem are 
violated must be treated separately. 

The key idea is that systems of equations can be reduced to certain quadratic systems and further the coordinate 
groups of such systems are limit groups. Hence limit groups are fundamental. We next summarize all the important 
properties of fully residually free groups including their relation to the coordinate groups of algebraic varieties. 

Theorem 12 Let G be a fully residually free group. Then G satisfies the following properties: 
1) G is torsion-free and each subgroup is also fully resiudally free; 
2) G is CSA and hence CT. Further if G is finitley generated each abelian subgroup of G is finitely generated 

and contained in a unique maximal abelian subgroup; 
3) If G is finitely generated then G is finitely presented and has only finitely many conjugacy classes of 

maximal abelian subgroups; 
4) G is linear and has a solvable word problem; 
5) Every 2-generator subgroup of G is either free or abelian; 
6) If ( )rank 3G =  then either G is free of rank 3, or free abelian of rank 3, or a free rank one extension of 

centralizers of a free group of rank 2.  
The next result summarizes the important equivalences for finitely generated fully residually free groups. 

These characterize this class of groups in several different ways and then play a crucial role in the proof of the 
Tarski problems. Number (9) in the theorem is especially important since it ties the class of limit groups to 
solutions of equations over free groups. We note that fully residually free groups in general need not be finitely 
generated. For example an infinitely generated free group is certainly fully residually free. However for our 
applications and for many of the important properties finite generation is crucial. 

Theorem 13 Let G be a finitely generated group. Then the following are equivalent: 
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1) G is fully residually free; 
2) G is universally free if G is non-abelian; 
3) G is a limit group; 
4) G is a constructible limit group; 
5) G is a limit of free groups in the Gromov-Hausdorf Topology; 
7) G embeds into a non-standard free group, that is an ultrapower of a free group; 
8) G embeds into the free Lyndon completion [ ]tF  ; 
9) G is the coordinate group of an irreducible variety over a free group. 
We note that this theorem is a general result and can be considered as without constants or coefficients from 

any particular free group. Each statement has a correspsonding result if we allow coefficients. If F is a particular 
non-abelian free group then for example in (1) we can say that a finitely generated F-group G is F-discri- 
minated by F is equivalent to G being universally equivalent to F in the language [ ]0L F  where this language 
allows constants from F. 

The applications to equations over free groups and hence the solution to the Tarski problems especially uses 
(8) and (9) in the theorem and we look at these a bit more deeply. Kharlampovich and Myasnikov prove the 
following result that they call the embedding theorem. This result combined with the fact that the finitely generated 
subgroups of [ ]tF   are precisely the finitely generated fully residually free groups shows that the finitely 
generated fully residually free groups are exactly the coordinate groups of irreducible algebraic varieties. 

Theorem 14 (The Embedding Theorem) Given an irreducible system of equations 1S =  over a free group F 
one can effectively embed the coordinate group ( )R SF  into [ ]tF  .  

Corollary 1 The coordinate groups of irreducible algebraic varieties over a free group F are precisely the 
finitely generated fully residually free groups. 

The finitely generated subgroups of [ ]tF   are precisely subgroups of groups built from finitely generated 
free groups by iterated extensions of centralizers. From Bass-Serre theory then we get that each finitely 
generated fully residually free group has graph of groups decomposition with cyclic edges. From this we get that 
each finitely generated fully residually free group has a JSJ decomposition. This breakup of the coordinate group 
will lead to a breakup of the algebraic variety. 

6. Quasi-Triangular Systems 
The big breakthrough in doing applications of the algebraic geometry and particularly in the solution of the 
Tarski problem came with the discovery that to study the solution sets and hence the varieties of general equations 
over free groups it was only necessary to study quadratic equations. That is it was proved that not only are the 
fully residually free groups the coordinate groups of irreducible algebraic varieties but were embedded into the 
coordinate groups of special systems called NTQ-systems of quadratic equations. The solutions of quadratic 
equations over free groups were already extensively studied. Further implicit function theorems were developed 
for such NTQ-systems. Here we introduce the necessary material about quadratic equations and quadratic 
systems. 

Definition 2 An equation 1S =  in variables from { }1, , nX x x=   is quadratic if every variable x from X 
occurs in S no more than twice each time as x or 1x− . 

A quadratic equation ( ) 1S X =  need not contain all the variables from X, it can be empty in some variable, 
linear in some variables or strictly quadratic on some subset of X.  

We now write X instead of x  for a finite system { }1, , mx x . The reason is that we consider X also as a 
generating system of a group ( )F X  and sometimes split X into pieces 1 2, ,X X  . 

We extend this to G-groups. 
Let [ ]S G X⊂ . Denote by ( )var S  the set of variables that occur in S. 
Definition 3 A set [ ]S G X⊂  is called  quadratic if every variable from ( )var S  occurs in each element 

S not more than twice as either x or 1−x . The set S is strictly quadratic if every variable x from ( )var S  
occurs in each element of S exactly twice each time as either x or 1x− . 

A system 1S =  over G is quadratic (strictly quadratic), if the corresponding set S is quadratic (strictly 
quadratic). An element of a quadratic (strictly quadratic) set S is called a quadratic or strictly quadratic word 
respectively. If S is a singelton we just write S for the set. 
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Quadratic equations can be placed into several standard forms. 
Definition 4 A standard quadratic equation over the group G is an equation of one of the following forms 

(below , id c  are non-trivial elements from G):  

[ ]
1

, 1, 0;
n

i i
i

x y n
=

= >∏                                  (st1) 

[ ] ( )1

1 1
, 1, , 0, 1;

n m

i i i i i
i i

x y z c z d n m m n−

= =

= ≥ + ≥∏ ∏                        (st2) 

2

1
1, 0;

n

i
i

x n
=

= >∏                                    (st3) 

( )2 1

1 1
1, , 0, 1.

n m

i i i i
i i

x z c z d n m n m−

= =

= ≥ + ≥∏ ∏                          (st4) 

Lemma 1 Let S be a strictly quadratic word over G. Then there is a G-automorphism [ ]( )Gf Aut G X∈  
such that ( )f S  is a standard quadratic word over G. 

The proof of this is in [36]. 
Definition 5 A standard quadratic equation 1S =  over F is called regular if either it is an equation of  

the type [ ] ( ), 1x y d d= ≠ , or the equation [ ][ ]1 1 2 2, , 1x y x y = , or it has a non-commutative solution and it is  

not an equation of the type 2
1 1 2 1 2

zc z c c c= , 2 2zx c a c= , 2 2 2 2
1 2 1 2x x a a= . 

In what follows we usually write just ( ) 1S X =  or ( ), 1T X Y = . The implicit function theorem over free 
groups in its simplest form is the following result. 

Theorem 15 (Implicit function theorem) Let ( ) 1S X =  be a regular standard quadratic equation over a  
non-abelian free group F and let ( ), 1T X Y =  be an equation over F, , .X m Y n= =  Suppose that for  

any solution ( )FU V S∈  there exists a tuple of elements nW F∈  such that ( ), 1.T U W =  Then there exists a  

tuple of words ( ) ( )( )1 , , nP p X p X=  , with constants from F, such that ( )( ), 1T U P U =  for any  

( )FU V S∈ . 
The implicit function theorem hence allows for a type of quantifier elimination. 
What is next of importance are special types of systems of quadratic equations. First we define quasi- 

triangular systems. 
Definition 6 Let 1, , mX X  be disjoint tuples of variables. A system of equations ( )1, , 1mU X X =  with  

coefficients from a free group F of the following form  

( )
( )

( )

1 1

2 1

, , 1

, , 1

1

m

m

m m

S X X

S X X

S X

=

=

=







 

is said to be triangular quasi-quadratic if for every i the equation  

( ), , 1i i mS X X =  

is quadratic in the variables from iX .  
Denote by iG  the coordinate group of the subsystem 1, , 1i mS S= =  of the system 1U = . The system  

1U =  is said to be non-degenerate (NTQ) if for each i the equation ( ), , 1i i mS X X =  has a solution in  

1iG + . 
The coordinate group of an NTQ-system is called an NTQ-group. In Sela’s terminology this is called an ω - 

residually free tower. Further if the only abelian subgroups of an NTQ-group G are cyclic then G is hyperbolic 
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and called a special NTQ-group. Sela calls these hyperbolic-ω -residually free towers. The proofs of 
Kharlampovich and Myasnikov and Sela of the elementary embedding of one free group into another have the 
byproduct that the special NTQ-groups are precisely the finitely generated groups that have the same elementary 
theory as the class of non-abelian free groups. Further from the JSJ structure of these groups it follows that an 
orientable surface group of genus 2g ≥  and a non-orientable surface group of genus 4g ≥  are special 
NTQ-groups and hence have precisely the same first-order theory as the class of non-abelian free groups. We 
call such groups elementary free groups and will discuss them in Section 8. 

Kharlampovich and Myasnikov [1] use these ideas of algebraic geometry to prove that every finitely generated 
fully residually free group embeds into Lyndon’s group [ ]tF  . As remarked earlier it follows from this that 
finitely generated fully residually free groups must be finitely presented. The proof of the embedding result 
follows from a sequence of theorems. We mention two of these from the tail end of the sequence (see [1]). 

Theorem 16 For every finite system ( ) 1S X =  of equations over a free group F one can find effectively a 
finite family of non-degenerate triangular quasi-quadratic systems 1, , kU U  and word mappings  

( ) ( ): , 1, ,i F i FV U V S i kρ → = �  

such that for every ( )Fb V S∈  there exists an i and ( )F ic V U∈  for which ( )b cρ= , that is  

( ) ( )( ) ( )( )1 1F F k F kV S V U V Uρ ρ= ∪�∪  

and all sets ( )( )i F iV Uρ  are irreducible. Moreover every irreducible component of ( )FV S  can be obtained as  

the closure of ( )( )i F iV Uρ  in the Zariski topology.  

Theorem 17 For a system 1S =  over a free group the set ( )V S  is irreducible if and only if ( ) ( )1R S R SF F⊂   

for a non-degenerate triangular quasi-quadratic system 1S . 
From the previous two theorems it follows that to consider the coordinate group of a general equation over a 

free group it can be reduced to looking at the coordinate group of an NTQ-system. 
The final necessary component of the proof of the Tarski problems is the elimination process, abbreviated 

EP by Kharlampovich and Myasnikov. This is the most technical and difficult portion of the program and is 
based on initial work of Makanin and then improved upon by Razborov. 

In general a quantifier elimination is a concept of simplification used in mathematical logic and model theory. 
First order formulas with fewer quantifiers are considered simpler with quantifier-free formulas as the simplest. A 
theory has quantifier elimination if for every formula in the theory there is another formula with fewer quantifiers 
logically equivalent to it relative to the theory. 

Quantifier elimination permits an induction on the number of quantifiers. A first order theory L has quantifier 
elimination if and only if for any two models B and C of the theory with a common substructure A, B and C are 
elementarily equivalent in the language of L augmented with constants from A. To prove the elementary 
equivalence of B and C under quantifier elimination it suffices to prove the equivalence of the existential theory. 

The proofs of the Tarksi theorems by Kharlampovich and Myasnikov use an elimination process originally 
introduced by Makanin. This elimination process, that is abbreviated EP, is a symbolic rewriting process that 
transforms formal systems of equations in groups. Makanin in 1982 introduced the initial version of the EP. His 
method provides a decision algorithm to verify consistency of a given system of equations, that is he handles the 
decidability of the Diophantine problem over free groups. To accomplish this, Makanin estimates the length of 
the minimal solution (if it exists). As part of this EP, Makanin introduced the fundamental notions of generalized 
equations and elementary and entire transformations. In 1987, Razborov [26] extended the EP much further. 
Razborov?s version of the EP produces all solutions of a given system in a free group F. He used special groups 
of automorphisms, and fundamental sequences to encode solutions. 

In 1996 Kharlampovich and Myasnikov, building on the above, found an effective description of solutions of 
equations over free and fully residually free groups in terms of NTQ systems . In particular they represented a 
solution set of a system of equations canonically as a union of solutions of a finite family of NTQ groups. 

Theorem 18 (see [5]) One can effectively construct the EP that starts with an arbitrary system ( ), 1S X A =  
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and results in finitely many NTQ systems  

( ) ( )1 1, , 1mU Y U Y= =  

such that  

( ) ( )( ) ( )( )1 1F m mV S P V U P V U=   

for some word mappings 1, , mP P . 
The word mapping iP  maps a tuple iY  to a tuple ( )X V S∈ . iP  may be pictured as an A-automorphism 

from ( )R SF  into ( )iR UF , then any solution ( ):
iR UF Fψ →  precomposed with iP  provides a solution 

( ): R SF Fφ → .  
The elimination process in this case can be viewed as a non-commutative analog of the classical elimination 

process in algebraic geometry. Hence, going from the bottom to the top, every solution of the subsystem 
1, , 1n iS S= =  then can be extended to a solution of the next equation 1 1iS − = . The effectiveness of the EP 

allows for the determination of the decidability of the first order theory of free groups. 
The crux of the elimination process as applied to systems of equations over a free group F is the following 

chain of ideas. The precise details can be found in [5].  
Given a system ( ) 1S X =  of equations in a free group ( )F A  one can effectively construct a finite set of 

generalized equations 

1, , kΩ Ω  

such that: 
1) Given a solution of ( ) 1S X =  in ( )F A  one can effectively construct a reduced solution of one of iΩ   

in the free semigroup with basis 1A A−
 ; 

2) Given a solution of some iΩ  in the free semigroup with basis 1A A−
  one can effectively construct a 

solution of ( ) 1S X =  in ( )F A ; 
3) Given a generalized equation Ω  there are finitely many elementary transformations that can be applied to 

get a new generalized equation ′Ω  such that if σ  is a solution of Ω  then σ ′  is a solution of ′Ω ; 
4) The elimination process is a sequence of elementary transformations, applied according to some precise 

rules to an initial pair 0 0,σΩ : 

0 0 1 1, , , .k kσ σ σΩ →Ω → →Ω  

5) The EP is a branching process such that on each step one of the finite number of elementary transfor- 
mations is applied according to some precise set of rules to form the sequence above; 

6) From a group theoretic point of view the elimination process provides information about the coordinate 
groups of the systems involved. This allows the transformation of the pure combinatorial and algorithmic results 
obtained in the elimination process into statements about the coordinate groups. 

7. The Proof Itself 
In [5] in the Kharlampovich-Myasnikov proof, these various ingredients, the reduction to NTQ systems, the 
description of the breakup of the coordinate groups of equations in terms of the JSJ decomposition of the groups 
and the corresponding breakup of the algebraic varieties and finally the implicit funciton theorem and quantifier 
elimination given by the elimination process, was put together to give the final proof that if a free group rF  is a 
free factor of the free group sF  then it is an elementary subgroup. The techniques of this proof also prove the 
decidability. Sela’s proof proceeds in much the same way but with different terminology. 

As pointed out, the basic strategy is an induction on the number of quantifiers. The starting off point for the 
induction is Sacerdote’s theorem which says that if rF  is a free factor of sF  then they satisfy exactly the same 

2Π -theories, that is exactly the same ∀∃  sentences. Sacerdote’s proof is complicated and not entirely clear so 
both Kharlampovich-Myasnikov and Sela reprove it using their own machinery. However in the case of 
Kharlampovich-Myasnikov this also provides a technique for the induction step. 

Recall that Merzlyakov proved that all non-abelian free groups satisfy exactly the positive sentences. 
Sacerdote, in his proof for the 2Π -theory, used Merzlyakov’s ideas and the small cancellation technique in 
Van-Kampen diagrams for group presentations (see [15]). Sacerdote shows that an arbitrary 2Π -sentence is 
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either positive, in which case Merzlyakov’s result can be used, or by using the topology of the Van-Kampen 
diagrams can be written as a boolean combination of positive sentences and sentences with only one quantifier. 
It follows from Sacerdote’s theorem that free non-abelian groups of finite rank satisfy the same boolean 
combinations of ∀∃ -sentences. In Myasnikov-Kharlampovich’s handling of Sacerdote’s result they follow the 
same idea as Sacerdote to reduce to either positive sentences and apply Merzlyakov’s result or to a boolean 
combination of positive sentences and sentences with only one quantifier. To get the quantifier elimination they 
rely on their implicit funcion theorem coupled with their extension of the Makanin-Razborov diagrams. This 
replaces Sacerdote’s use of van-Kampen diagrams. There are several special cases where the implicit function 
theorem does not apply directly and these are handled separately. The details are intricate and can be found in 
[5]. 

Thus Sacerdote’s theorem on 2π -sentences is the first step in an induction. For the inductive step they 
consider a general sentence 

( ) ( )( )1 1 1 1 1 1, , , , 1 , , , , 1k k k k k kX Y X Y U X Y X Y V X Y X YΦ = ∃ ∀ ∃ ∀ = → =    

where U and V are non-trivial elements in the free grup ( )1 1, , , ,k kF X Y X Y� . To prove the Tarski Elementary 
Embedding Theorem it is shown that this sentence is true if and only if some boolean combination of sentences 
with less alternations of quantifiers is true and further the reduction does not depend on the free group F nor 
even on the coordinate group ( )R SF . Ultimately this reduction leads to Boolean combinations of 2π -sentences 
and hence Sacerdote’s theorem can be used completing the induction. As for Sacerdote’s result the details are 
complicated and can be found in [5]. 

In order to arrive at this reduction, the following ideas, that we have introduced in the previous sections, must 
be interwoven. 

1) The solution set of a systems of equations 1S =  over a free group depends on its coordinate group ( )R SF  
where ( )R S  is the radical of the system. Further general varieties break up into irreducible algebraic varieties 
and further the finitely generated fully residually free groups, that is the limit groups, are precisely the coordinate 
groups of irreducible algebraic varieties; 

2) Finitely generated fully residually free groups can be embedded into the coordinate groups of NTQ- 
systems. This allows us in trying to solve our general system to concentrate on NTQ-systems. As we have seen 
these systems are constructed inductively from quadratic equations and we can then apply the techniques 
developed for quadratic equations to the study of these systems; 

3) The implicit function theorem for algebraic varieties corresponding to regular quadratic and NTQ-systems 
over free groups. As a by-product of placing these ideas together in the proof it will follow that the coordinate 
groups or special NTQ-systems turn out to form the class of finitely generated elementary free groups, that is the 
class of finitely generated groups elementarily equivalent to a non-abelian free group. We note that any non- 
standard free group, that is a proper ultrapower F  of a non-abelian free group, is elementary free but not 
finitely generated; 

4) The variation and extension of the Makanin-Razborov process for solving equations over free groups. This 
extension provides a description of the solution set of a system of equations in a free group as a diagram of 
homomorphisms tied together with a decomposition of the coordinate group. This leads to what are called 
generalized equations and an elimination process. 

Now consider the general sentence above, and we assume that there are more than two alternations of 
quantifiers so that it is not a 2π -sentence:  

( ) ( )( )1 1 1 1 1 1, , , , 1 , , , , 1 .k k k k k kX Y X Y U X Y X Y X Y X YΦ = ∃ ∀ ∃ ∀ = → =    

If this sentence is positive then it is true or false in every non-abelian free group independent of rank by 
Merzljakov’s result. If not consider the algebraic variety of this equation and the corresponding system given by 
the irreducible algebraic components. Call this resulting system S  and the corresponding coordinate group  

( )R SF . This is a fully residually free group and from the embdedding of these into coordinate groups of  

NTQ-systems we can look at the equivalent NTQ-system. Now using the extended Makanin-Razborov elimination 
process combined with the implicit function theorem we can reduce the NTQ-system to a system with a fewer 
number of quantifiers. The elimination process is a branching process and hence grows in size. A difficult 
portion of the analysis is to show that this process is finite, that is, it will terminate in a finite number of steps 
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(see [5]). 
Ultimately we get that our original system is equivalent to a system that can be written as a boolean 

combination of sentences with less alternations of quantifiers. Further this reduction does not depend on the 
particular coordinate group ( )R SF  only the general properties (1) through (4) above. 

This argument proves the Tarski Conjecture in the strong second form and hence also proves the first Tarski 
Conjecture. The argument also proves the following three results. The first was originally formulated and proved 
by Sela [9]. 

Theorem 19 Every formula in the language of a free group is equivalent to a boolean combination of ∀∃ - 
formulas.  

Theorem 20 A coordinate group of a special regular NTQ-system has the same elementary theory as a 
non-abelian free group.  

In [4] it was proved that any finitely generated group which is 2π -equivalent to a non-abelian free group is 
isomorphic to the coordinate group of a regular NTQ-system. Combining this with Theorem 7.2 gives the 
complete characterization of finitely generated groups with exactly the same first order theory as the non-abelian 
free groups. Such groups are called elementary free groups or elementarily free groups. 

Theorem 21 A finitely generated group G is an elementary free group if and only G is isomorphic to the 
coordinate group of a regular NTQ-system. We call such groups NTQ-groups.  

We note that Sela of course comes up with the same characterization. In his language the NTQ-groups are 
called ω-residually free towers. Therefore from Sela the finitely generated elementary free groups are the 
hyperbolic-ω-residually free towers. 

In the final section we will look in more detail at elementary free groups. 
Above we have outlined the proof of the first two Tarski Conjectures in the strongest possible form. That is,  

the free group ( )1, , nF a a  freely generated by 1, , na a  is an elementary subgroup of ( )1, , , ,n n pF a a a +   

for every 2n ≥  and 0p ≥ . This leaves us the third Tarski Conjecture, that the elementary theory Th(F) of a 
non-abelian free group is decidable. This was proved by Kharlampovich and Myasnikov along the same lines 
using induction as the proof in the last section by showing that each reduction is in fact effective. By effective 
we mean algorithmic in a finite number of steps. 

Recall that a theory of a group G, Th(G), is decidable if there exists a recursive algorithm which, given a 
sentence φ  of 0L , decides whether or not φ  is true. For the class of non-abelian free groups the decidability 
means that there exists a recursive algorithm which, given a sentence φ  of 0L , decides whether or not φ  is 
true in every non-abelian free group. The proof of Kharlampovich and Myasnikov is even a bit stronger. There  
exists a recursive algorithm which, given a sentence φ  of [ ]0L F , decides whether or not φ  is true, where  

[ ]0L F  allows constants from the free group F. 
The starting off point for the proof of the decidability of the theory of non-abelian free groups was the work 

of Makanin. Makanin [24] proved the algorithmic decidability of the Diophantine problem over free groups. He 
combined this with Merzjlakov’s proof that all non-abelian free groups share the same positive theory to prove 
the algorithmic decidability of the positive theory of non-abelian free groups. He further proved the algorithmic 
decidability of the universal theory. This then implies, although it was not relevant at the time, the algorithmic 
decidability of the universal theory of limit groups. Makanin developed a powerful machinery, which is now 
called the Makanin elimination process, to deal with equations over free groups. Razborov extended Makanin’s 
method and described the solution set of an arbitary system of equations over a free group in terms of 
Makanin-Razborov diagrams. As we have seen the Makanin-Razborov process for describing the solution sets 
of arbitrary systems of equations can be reduced to examining the solution sets of NTQ systems and hence the 
solution of quadratic equations. 

Kharlampovich and Myasnikov combined the same type of induction process outlined in section 6, together 
with Makanin’s technique to obtain the decidability of the elementary theory of a non-abelian free group. 

What is done, although as in the previous section the details are complicated, is to show the decidability of the 
2π -sentences. Then in the elimination process, based on generalized equations and the extended Makanin- 

Razborov process, each reduction is algorithmically effective, that is can be done algorithmically. It follows that 
the decidability question also fits into the induction scheme and carries through. Some of the proofs involving  
effectiveness have been simplified by using the description of limit groups in terms of infinite words in [ ]tF  .  
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Further some of the reductions are handled by an extended implicit function theorem. 

8. Elementary Free Groups 
As a by-product of the proof of the Tarski theorems it is possible to give complete characterizations of those 
finitely generated groups that have exactly the same first order theory as the non-abelian free groups. Such groups 
are called elementary free groups (or elementarily free groups) and extend beyond the class of purely non- 
abelian free groups. In the Kharlampovich-Myasnikov approach these are the special NTQ-groups and in the 
Sela approach the hyperbolic ω -residually free towers. The primary examples of non-free elementary free 
groups are the orientable surface groups gS  of genus 2g ≥  and the non-orientable surface groups gN  of 
genus 4g ≥ . That these groups are elementary free provides a powerful tool to prove some results concerning 
surface groups that are otherwise quite difficult. For example Howie [40] and independently Bogopolski and 
Bogopolski and Svirodov [41] [42] proved that a theorem of Magnus about the normal closures of elements in 
free groups held also in surface groups of appropriate genus. Their proofs were non-trivial. However it was 
proved (see [43] [44] and [45]) that this result was first order and hence automatically true in any elementary 
free group. In [43] a large collection of such results was given. Such results were called something for nothing 
results. Of course any such first order result true in a non-abelian free group must hold in any elementary free 
group. However elementary free groups satisfy many other properties beyond first order results. This second 
idea was explored in the paper [44]. In this final section we survey briefly these two ideas. 

Magnus proved the following theorem about the normal closures of elements in non-abelian free groups: 
Theorem 22 (Magnus) Let F be a non-abelian free group and ,R S F∈ . Then if ( ) ( )N R N S= , it follows  

that R is conjugate to either S or 1S − . Here ( )N g  denotes the normal closure in F of the element g. 
Howie [40] and independently Bogopolski [41] and Bogopolski and Sviridov [42] gave a proof of this for 

surface groups. Howie’s proof was for orientable surface groups while Bogopolski and Sviridov also handled the 
non-orientable case. Their proofs were non-trivial and Howie’s proof used the topological properties of surface 
groups. Howie further developed, as part of his proof of Magnus’ theorem for surface groups, a theory of one- 
relator surface groups. These are surface groups modulo a single additional relator. Bogopolski and Sviridov 
proved in addition that Magnus’s Theorem held in even a wider class of groups. In [43] (see also [44] and [45]) 
Magnus’ result is actually a first-order theorem on non-abelian free groups and hence from the theorems con- 
cerning the solution of the Tarski problems it holds automatically in all elementary free groups. In particular, 
Magnus’ theorem will hold in surface groups, both orientable and non-orientable of appropriate genus. If G is a 
group and g G∈ , then ( )N g , as in the statement of Magnus’s Theorem above, will denote the normal closure 
in G of the element g. 

Theorem 23 Let G be an elementary free group and ,R S G∈ . Then if ( ) ( )N R N S=  it follows that R is 
conjugate to either S or 1S − . 

As corollaries we recover the results of Howie [40], Bogopolski [41] and Bogopolski-Sviridov [42] which 
extend Magnus’s Theorem to surface groups 

Corollary 2 ([40] [41]) Let gS  be an orientable surface group of genus 2g ≥ . Then gS  satisfies Magnus’s 
theorem, that is if , gu v S∈  and ( ) ( )N u N v=  it follows that u is conjugate to either v  or 1v− . 

Corollary 3 ([42]) Let gN  be a non-orientable surface group of genus 4g ≥ . Then gN  satisfies Magnus’s 
theorem, that is if , gu v N∈  and ( ) ( )N u N v=  it follows that u is conjugate to either v  or 1v− . The genus 

4g ≥  is essential here. 
In [43] a collection of results about elementary free groups and surface groups was presented, their proofs 

being consequences of the Tarski theorem. We mention one such result that is not obvious in a surface group. 
The following theorem can be easily proved in free groups. 

Theorem 24 Let F be a free group and n, k non-zero integers. For all ,x y F∈  if , ,n kx y x y   =     then  

either 1n k= =  or ,x y  commute and both are powers of a single element. 
The first part of the result that either n k=  or [ ], 1x y =  is first-order given by a sequence of elementary  

sentences, one for each ( ) ( ){ }2, \ 1,1n k ∈  with neither n nor k zero;  

( ) [ ], , , , 1n kx y F x y x y x y   ∀ ∈ = ⇒ =     
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Therefore this part of the result must hold in any elementary free group. Further if the elementary free group 
is finitely generated the second part must also hold. 

Corollary 4 Let G be an elementary free group. If ,x y G∈  and if , ,n kx y x y   =     then either  
1n k= =  or x, y commute. If G is finitely generated then both x and y are powers of a single element w G∈ .  

Since surface groups are finitely generated we have the following. 
Corollary 5 Let G be either an orientable surface group of genus 2g ≥  or a non-orientable surface  

group of genus 4g ≥ . If ,x y G∈  and if , ,n kx y x y   =     then either 1n k= =  or x, y commute and then  

both x and y are powers of a single element w G∈ . 
In another direction in [44] properties of all elementary free groups, which may not be first order were 

explored. A finitely generated elementary free group G must be a limit group and many of its properties follow 
from from the structure theory of limit groups. Hence such a group must be CSA and any 2-generator subgroup 
is either free or abelian. 

In [44] it was proved that a finitely generated elementary free group has cyclic centralizers. This is not a first 
order statement, however from this we get that if two elements commute in a finitely generated elementary free 
group then they are both powers of a single element. This is not true in a general elementary free group. An 
example where it does not hold in the infinitely generated case is given in [44]. From the cyclic centralizer 
property we can obtain that a finitely generated elementary free group must be hyperbolic, stably hyperbolic and 
a Turner group, that is the test elements, if there are any, in any finitely generated elementary free group are 
precisely those elements that do not lie in any proper retract. It was also proved in [44] that any finitely 
generated elementary free group is conjugacy separable and hence has a solvable conjugacy problem. In [46] 
(see also [47]) is was shown the automorphism group of a finitely generated elementary free group is tame. 

The next theorem summarizes many of these results. The proofs can be found [44]. 
Theorem 25 Let G  be a finitely generated elementary free group. Then: 
1) (Magnus’s Theorem) if ( ) ( )N R N S=  if ,R S G∈  it follows that R  is conjugate to either S  or 
1S − ; 
2) G has cyclic centralizers of non-trivial elements. It follows that if ,x y G∈  and x, y commute then both x 

and y are powers of a single element w G∈ ; 
3) if , , ,x y u v G∈  with [ ], 1x y ≠  and ,u v  in the subgroup generated by ,u v  it follows that if [ ],x y  is  

conjugate to a power of [ ],u v  within ,x y  that is there exists a k  with [ ] [ ]( ) 1, , kx y g u v g −=  for some  

,g x y∈  and , ,m nx y u v   =     it follows that m n= . Further if 2m n= ≥  then y  is conjugate within  

,x y  to v  or 1v− ; 
4) G is conjugacy separable; 
5) G is hyperbolic and stably hyperbolic; 
6) G is a Turner group, that is the test elements in G are precisely those elements that do not fall in a proper 

retract; 
7) if G is freely indecomposable then the automorphism group of G is tame; 
8) G has a faithful representation in ( )2,PSL  . 
For more information on elementary theory in general, see [11]-[13]. For further information on the structure 

of limit groups and hyperbolic groups see [21] [48]-[51] [52] [53]. 
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