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Abstract

We study the asymptotic behavior of solutions to the stochastic strongly damped wave equation
with additive noise defined on unbounded domains. We first prove the uniform estimates of solu-
tions, and then establish the existence of a random attractor.
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1. Introduction
Let (Q,F,PP) be aprobability space, where

Q={o=(o,0,,)cC(RR"):0(0)=0]

the Borel o -algebra F on Q is generated by the compact open topology (see [1]), and P is the corres-

ponding Wiener measure on F . Define (6t)t€]R on Q via

Go()=o(-+t)-o(t), teR

Thus, (Q,F,P,(6,),, ) isanergodic metric dynamical system.
Consider the following stochastic strongly damped wave equation with additive noise defined in the entire
space R" (n<3):

no o dw.
Uy — AU, +at, —Au+Au+ f (x,u) =g (x)+ 20 (x)—= ®
j=1
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with the initial value conditions
u(x,0)=u,(x), u(x,0)=u(x), xeR" )

where A is the Laplacian with respect to the variable xeR", u=u(xt) is a real function of xeR" and
t>0; a, A are positive constants, ge Lz(R“) and h; e Hl(R“) (1<j<m) are given; f is a nonlinear

function satisfying certain dissipative and growth conditions, and {Wj}jm:l are independent two-sided real-
valued Wiener processes on (Q,F,P). We identify w(t) with (Wl(t),Wz(t),---,Wm(t)),i.e.,
(t) = (W, (t). W, (1), W, (1)), teR

Many works have been done regarding the dynamics of a variety of systems related to Equation (1). For ex-
ample, the asymptotical behavior of solutions for deterministic strongly damped wave equation has been studied
by many authors (see [2]-[11], etc.). For stochastic wave equation, the asymptotical behavior of solutions have
been studied by several authors (see [12]-[25], etc.). However, no results have been presented on random attrac-
tors for stochastic strongly damped wave equation (1) with additive noise on unbounded domains to date.

In general, the existence of global random attractor depends on some kind compactness (see, €.g., [26]-[30]).
For Cauchy problem, the main question is how to overcome the difficulty of lacking the compactness of Sobolev
embedding in unbounded domains. For some deterministic equations, the difficulty caused by the unbounded-
ness of domains can be overcome by the energy equation approach. The energy equation method was developed
by Ball in [31] [32] and used by many authors (see, e.g., [33]-[39]). Under certain circumstances, the tail-esti-
mates method can be used to deal with the problem caused by the unboundedness of domains (see [40]). In this
paper, we will combine the splitting technique in [20] with the idea of uniform estimates on the tails of solutions
to investigate the existence of global attractor of the stochastic strongly damped wave Equation (1) defined on
unbounded domains. The rest of this paper is organized as follows. In the next section, we recall some basic
concepts related to random attractor for general random dynamical systems. In Section 3, we provide some basic
settings about Equation (1) and show that it generates a random dynamical system, and then we prove the uni-
form estimates of solutions and obtain the existence of a random attractor for Equation (1).

Throughout this paper, we use |-| and (--) to denote the norm and the inner product of L? (R”), respec-
tively. The norm of a Banach space X is generally written as |||, . The symbol € is a positive constant which
may change its value from line to line.

2. Preliminaries

In this section, we collect some basic knowledge about general random dynamical systems (see [1] [41] for de-
tails). Let (X,[],) be a separable Hilbert space with Borel o -algebra B(X). Let (,7,P,(6,),_,) be the
metric dynamical system on the probability space (Q,F,P).

In the following, a property holds for P-a.e. weQ means that there is Q;eQ with P(Q,)=1 and
60Q,=Q, for teR.

Definition 1 A continuous random dynamical system on X over (Q,]—‘,IP’,(Gt )tE]R) isa
(B(R*)x FxB(X),B(X )) -measurable mapping

P:R"xQxX > X, (t,o,u)- o(tou)

such that the following properties hold
e ¢(0,m,) istheidentityon X;
. ¢(t+s,a),')zgo(t,é?sa),(p(s,a),o)) forall s,t>0;
e ¢(t,w,-): X - X iscontinuous forall t>0.
Definition 2 (See [41])
A set-valued mapping {D(a))}:Q—>2X \&, w— D(w), is said to be a random set if the mapping
a)Hd(u,D(a)) is measurable for any ue X . If D(w) is also closed (compact) for each weQ,
{D(w)} is called a random closed (compact) set. A random set {D(w)} is said to be bounded if there
exist u, € X and arandom variable R()>0 such that

D(co)c{UeX:||u—u0||X<R(a))} for all weQ
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o Arandomset {D(w)} is called tempered provided for P-ae. weQ,

lime™”d(D(6,0))=0 forall £>0
where d (D) =sup{|b], :be D}.
Let < be the set of all random tempered setsin X .
e A random set {B(a)) is said to be a random absorbing set if for any tempered random set {D(a))} and
P-ae. weQ,thereexists t,(w) such that

o(t.0,0,D(0.0))cB(w) foral t>t,(v)

 Arandom set {B, ()} is said to be a random attracting set if for any tempered random set {D()}, and
P-ae. weQ,wehave

limd,, (¢(t.0.0,D(0,0)),B,(w))=0

where d,, is the Hausdorff semi-distance given by d,, (E,F)=sup,. inf, . u—v|, forany E, FcX.
e ¢ issaid to be asymptotically compact in X if for P-ae. weQ, (o(t,,0, @ xn) has a conver-
gent subsequence in X whenever t — o0, and x, € B(6, ») with &B(a))}e”/. "
e A random compact set {A(w)} is said to be a random attractor if it is a random attracting set and
o(t,o,A(0))=A(6w) for P-ae. weQ andall t>0.
Theorem 1 (See [41]) Let ¢ be a continuous random dynamical system with state space X over
(Q,]—',E”,(Ht)teR). If there is a closed random absorbing set {B(a))} of @ and ¢ is asymptotically com-
pactin X, then {A(@)} isa random attractor of ¢, where

Aw)= ﬂU¢J(T,QIw, B(Qra))), weQ

t>07>t

Moreover, {A(@)} is the unique random attractor of ¢ .

3. Existence of Random Attractor
3.1. Basic Settings

In this subsection, we outline some basic settings about (1)-(2) and show that it generates a random dynamical
system.

Let £=u,+ou where o is a small positive constant whose value will be determined later, then (1)-(2)
can be rewritten as the equivalent system

du
P
de " dw. 3)
o (c-a)é+Aé+(o(a—o)-A)u+(1-c)Au—f(xu)+g(x)+Dh, (X)d_tJ
j=1
with the initial value conditions
u(x,0)=uy(x), &£(x0)=¢&(x) 4)

where & (x)=u, (X)+ouUy(x), xeR".
Let F(xu) =j;f (x,s)ds for xeR" and ueR. The function f will be assumed to satisfy the following
conditions,

(F1) |f(x,u)|<cl|u|k +1,(X)
(F2) f(xu)u—c,F(x,u)=n,(x)
(F3) F(x,u)203|u|k+1—773(x)
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(F4) [, (xu)f<e, |u* + . (x)

where 1<k <o for n=12 and 1<k <3 for n=3, 7,(x)e*(R), n,(x)eL'(R), n7;(x)eL(R) and
n,(x)e H'(R), ¢ (i=1,23,4) are positive constant. Note that (F1) and (F2) imply
K+
F(x,u)gc(|u|z+|u| 1+7712+772) (5)
For our purpose, it is convenient to convert the problem (3)-(4) (or (1)-(2)) into a deterministic system with a
random parameter, and then show that it generates a random dynamical system.
Let (Q,J—',P,(ﬁt)teR) be the ergodic metric dynamical system in Section 1. For je {1,2,--~,m}, consider

the one-dimensional Ornstein-Uhlenbeck equation
dz; +z,dt =dw; (t)
Its unique stationary solution is given by
0
2;(60;)=-[ € (6o;)(s)ds, teR

Note that the random variable |z, (a)j )‘ is tempered, and there is a 6, -invariant Q; cQ with P(Q,)=1

such that t— Z;(Go; is continuous for weQ, and j=12,---,m. Therefore, it follows from Proposition
4.3.3in[1] that forany e >0, there exists a tempered function y(w)>0 such that

m 2 k+1
]Z:;(‘Z](wj)‘ +‘Zj(a)j) )gy(w) (6)
where y(w) satisfies, for P-ae. weQ,
y(é’ta))gef‘t‘y(a)), teR @)
Then it follows from the above, for P-a.e. weQ,

m 2 k+1
3|z (40 ) +[zs (60, e o), tem ®
j=

Put z(6w)=>" h;z;(6,0;), which solves dz+zdt=3"" hdw;.
Now, let v(x,t)=¢&(x,t)—z(6,), we obtain the equivalent system of (3)-(4),

d—uzv—o—u+z(6’ta)),
by ©
d—\t/:((f—oz)v+Av—(ﬂwra2 —aa)u +(1-o)Au—f(xu)+g(x)+Az(w)+(1+o-a)z(bw),
with the initial value conditions
u(x,0)=uy(x), Vv(x0)=v,(x) (10)

where v, (x)=&,(x)-z(w), xeR". We will consider (9)-(10) for weQ and writt Q as Q from now
on.
Let E= Hl(R")x L’ (R”) , endowed with the usual norm

I

Hix?

1
=WWW+WWHM35 for Y=(uv) eE (11)

where ||| denotes the usual normin L*(R") and T stands for the transposition.
By a standard method as in [2] [3] [42], one may show tha$ under conditions (F1)-(F4), for (uo,v0 )T ek,
problem (9)-(10) has a unique solution (u(t,w,uo),v(t,a),vo)) which is continuous with respect to (u,,V, )T
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in E forall t>0.Hence, the solution mapping
S, (to):g = o(tog)=(u(tov,)v(toy)), E>E (12)

generates a continuous randomT dynamical system, where ¢, :(uo,vo)T. Introducing the homeomorphism
R(Q0)(u.&) =(u.é+z(fo)) . (u.&)" €E whose inverse homeomorphism

R (60) (&) =(u é-2(o))
Then, the transformation
S, (tw)=R(6)S, (t,0)R*(G) (13)

also generates a random dynamical system associated with (3)-(4). Note that the two random dynamical systems
are equivalent. By (13), it is easy to check that S_(t,®) has a random attractor {R(ﬁta))A(a))R’l(@w)}
provided S, (ta)_) possesses a random attractor {A(a))} Then, we only need to consider the random dy-
namical system S_(t,®).

3.2. Uniform Estimates of Solutions

In this subsection, we derive uniform estimates on the solutions of the stochastic strongly damped wave Equa-
tions (3)-(4) defined on R" when t — oo . These estimates are necessary for proving the existence of bounded
absorbing sets and the asymptotic compactness of the random dynamical system associated with the equations.
In particular, we will show that the tails of the solutions for large space variables are uniformly small when time
is sufficiently large.

We assume that < is the collection of all tempered random subsets of E from now on. Let o ¢ (0,1) be
small enough such that

A+ —ac>0, a-c>0

Set
. c,o
o =min a—G,O',T (14)

where ¢, is the positive constant in (F2).
We define a new norm ||| by

1
Il = (I +(2+ 0 ~ao)luf’ +(@-0)|vu* ) (15)
for Y = (u,v)T e E . Itiseasy to check that |{_ is equivalent to the usual norm |
The next lemma shows that S (t,w) hasan absorbing setin - .
Lemma 1 Assume that (F1)-(F4), geL*(R") and h; e H!(R") (1<j<m) hold. Then there exists a ran-

dom ball {A,(w)} e centered at O with random radius p(a)>0 such that {A(w)} is a random ab-

in (11).

HixL?

sorbing setfor S_(t,w) in < ,thatis, forany {B(w)}e” and P-ae. weQ,thereis T,(w)>0 such
that

o(t.0,0,B(0,0))c A (o) forall t>T, (o) (16)
Proof. Taking the inner product of the second equation of (9) with vV in L? (]R”), we find that
1d
S M =(e =)V =9V (2 +0° —ac)(uv)+(1-o)(8u.v)=(f (xu),v) +(g(x).V)

2 dt
+(AZ(QC()),V)+(1+O'—(Z)(Z(@ta)),v).

(17)
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By the first equation of (9), we have
d
v:d—ltj+au—z((9tw) (18)
Then substituting the above v into the second and third terms on the left-hand side of (17), we find that
d
(u,v) :(u,d—$+au —z(@tw)j
Sl ol ~(v.2(00) 19
1 2
> 2 S+ Zlf (g
(Au,v) I—[VU,V((Z—[:-F ou —Z(Hta))D
———IIVUII ~ o[ +(vu,v2(ge)) (20)
<2 Sfvf vl +—IIVZ bo)f
From conditions (F1)-(F3) we get
—(f (x,u),v):—( f (x,u),i—ltj+au —Z(Hta))j
d
:_EJ.R" F(xu)dx—o(f(xu),u)+(f(xu),z(6e))
d
<[ F(xu)dx—c,o [ F(xu)dx—of m,(x)dx+], ( [+ (x ))|Z(9150)|dx 1)

k
<——f F(xu)dx—c,of F(xu)dx—c] ,m(x dx+cl(J |uk+1dx)k+1

2(6,0)

<——I (x,u dx——j (xu)dx—c| 7, (x dx+—j 75 (x)dx+c|z(6,0)

kT "771 (X)” ) "Z (Htw)”

k+1

N+l G-z (@)

Using the Cauchy-Schwartz inequality and the Young inequality, we have

g - 2
(s <lacof-p< 2L =eyy @

(42(60).v) =~(V2(G0) W)<|V2(G0)|- 7] < V2 (o) + [ (23)

(1+0'—a)( (6w), ) (a o-2+

By (19)-(24), it follows from (17) that

) 0 e Vi @)

d
(VP +(2+0* ~ao)|uf +(1-o)[Vuff +2[, F (xu)x)

g(a—a)"v" —0(/1+0' —aa)"u" —G 1—0' ||Vu|| —Czd.fRnF(X,u)dX (25)

k+1 2
) H! )+a—5

+o[Lefz(0)] +|V2(g0) +[z(60
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Recalling the new norm ||| in (15), by (14) we obtain from (25) that

(||(p|| +2[ F xu)dx)< 5(||go|| +2[ F(xu dx)

+c(1+||z 60 || +||Vz 6o || +||z 6’ta)

Using the Gronwall lemma, we have
"(p(t,a), ?y (a)))||2E +2| . F (X,u(t,a),uO (a))))dx
<e™ (||<00 ® ||2 +2[  F(xU (o)) dx)+ 2 J'te‘y(s") lolf ds

el (1 |2(Go)f + V2 ()] +[z(@o);)os.

Substituting @ by 6, then we have from (27) that
lo(t.6.0.0,(0.0))[ +2],.F (xu(t.6.@,u,(6.,0)))dx
<™ (Jon 0.+ F (0 (0,)) ) + 2= [ o s
ref e (1sa(@ @ + V2@ +fe(0@) Jos
<& (Jou (0.0)f; +2], F (xy(00)) )+ —=— [ g cs

) k+l)ds.

Rl

+of'e” (14 e (0.0) +|va(0.0) +|2 (e

By (5), we get
L F (x.U, (Hfta)))dxgc(1+ i (0 + | (6.0)

k+1)

By assumption, {B(w)} e istempered. Then, by (29), if ¢,(6, )< B(6, ), we have

lim e (g, (0. +2[,. F (X, (6.,))dx) =0

t—>+0

Note that z(6,0)= Z, _h, J(Ha)) and h, eHl(R”) (1<j<m). By (8) with ezg,we obtain

cﬁe‘sS (1+||z(9 o) +|vz(6.0) +]z(6.)

<cJ' bS{lJreﬁsy( )st
:c[é(l—e5t)+g(1—e_gtJy(a))J.

=2[  F(xu(t.0,0,u,(0.,0)))dx<2[ 75 (X)dx<2]_, |75 (x)|dx

k+1)ds

Hl

By (F3), we have that

Combining (28), (30), (31) and (32), thereisa Ty (@) >0 such that forall t>T, (),

"go(t, 0.,.0,9, (94‘0))"2 <o’ (o)

k+1
HY )

(26)

(@7)

(28)

(29)

(30)

(1)

(32)

(33)
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where o (@) =c5(1+y(w)) Since y(w) is tempered, then {A,(»)} e, and {A (w)} is a random ab-
sorbing set for S_(t,w) in < . So, the proof is completed.

To prove asymptotic compactness of the random dynamical system S, - (t,@), we first prove that the solu-
tions were uniformly small outside a bounded domain and then decomposed the solutions in a bounded domain
in terms of eigenfunctions of negative Laplacian as in [20].

Given r>1, denote by H, ={xeR":[x|<r} and R"\H, the complementof H
Choose a smooth function p, such that 0<p(s)<l for seR,and

0, og]s|<t,
p(S)—{L Is|<2. (34)

and there exist constants ¢, ¢, , such that |p'(s)|<cs, |p"(s)|<c, for seR.
Lemma 2 Assume that (F1)-(F4), ge LZ(R”) and h, e Hl(R") (1<j<m) hold. Let {B(w)}e~ and

¢, (@) € B(@). Then, for every €>0, there exist T =T (B,&,@)>0 and R=R(&)>1, such that the so-
lution ¢ of (9)-(10) satisfies for P-a.e. weQ, V=T, r>R,

"(p t 0. a)(po 6 R0) " (35)

]R"\]HI,.
Proof. We first consider the random Equations (9)-(10). Then taking the inner product of the second equation

N 1 W :
of (@) with p| —-|v in L*(R"), we obtain
r

1d X’
EEJ‘Rnp [|r—|2}|V|2 dx

2 2 2
=(o _“)IRnp(t(_LJW dx —fRnp[|rX—|2]|Vv|2 dx—(4+0° —aa)fRnp[%J uvdx

(36)
L X' B
+(1—0)IRH(Au)p T vdx—jRnf(x,u)p T vdx + Rng(x)p - |vdx
X L
+[..(A2(60)) p o vix+(1+o-a)[ o ra 2(6,0)vdx.
Substituting V in (18) into the third, fourth and fifth terms on the left-hand side of (36), we get that
'[R"pp i Juvdx jRnp[|X| ] (ZijJrau—z(a[a))jdx
x|2
_ R"p(r_z (Eau +ou’-z(fw)u jdx
@37)

1d
Ed_.[R”’D

|
gdiywp{@}w oo, [ | ]|u| - pr{'j—'f} (600l
|

LR N ) e L al (o) d
r—2|u| x+—J'np?|u| X_ZR”pr_| a)| X,
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<J.r<x<fr r2

2
22 o Rnp[—]w 53], {—'] vurdx%JRnp{'?—'z]iwaw)rdx

SJ.R”
fcs (||Vu|| ||v|| ) S jRn {' | ]|Vu| dx——j [|r_J|VU|Z dx+iIRnp[r—2]|Vz(0ta))|z dx,

By using conditions (F1), (F2) and (F3), we find

:tj.m"ppr_J (x,u)dx aj np[:—LJf(x u udx+j' np[' |2]f( )z(60)d
<- %JRHP[%J (x,u)dx— czaj' np[%JF(X u)dx a.[ [4}72( )dx
+.[Rnp(:f—|2](c1|u| +1 ))| ) |dx

<- %IRHP{:_EJ (x,u)dx— CZJI nppr—]F (x,u)dx— af ['r—J (x)dx

By the Cauchy-Schwartz inequality and the Young inequality, we obtain

(38)

(39)
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foo00s B e 2o P oo oo 52 o B o @
.[ (Az(G0))p [r—|] x——f (Vz Hw))[r [' i ]v+p[¥] v]dx
2C.X

<Ir<x<fr " v-vz(60 |dx+j (' [ J|Vv Vz(6)|dx

(41)

2

<I 2\/705|v Vz Ha)|dx+j [': ]|VV| dxas L J- { ]|Vz 9w| N
2

\/—CS ("VZ " +||V|| Rnp[|: ]|VV| dx+=— J.np( ]|Vz(0lw)|2 dX,

(l+o-«a f [' | J Qa))vdx<(a oc-2+ —Gj‘,-]R [' | ]|Z Ha)| dx+a46.[]R p['ri}Mzdx (42)

Then it follows from (37)-(42) that

dtf /{' [ ](|V| +(2+0" —ac)uf +(1-0)|Vu[" +2F (x.u))dx

S_[Rnp[%}((a—aﬂvr —0'(/1+0'2 —aO')|u|2 —0'(1—0')|Vu|2 -c,0F (X,u))dx
(43)

2

+0Rp(:_|2] (G ) s () +a ()

|X|2
+cf .o —2 |Vz 9a)| +|z(6.0)

N e g {19l o +[ve@ef )

Letting
X (t., Xy (@) =M (Lo, (@) +(2+0° ~ao)|u(t.o.u, (o)) +(1-0)|vu(tou, (o)) (44)

then, by (14) we have from (43) that

(;jt_[ p[|x|2 J(X(t,a),Xo(a)))+2F(x,u(t,a),uo(a)))))dx
<—5IRnp :'2 (X(t,a),Xo(a)))+2F(X,u(t,a),uo(a)))))dx
[
X'

rZ

(45)

wef o] S (1 OO + e ()] (0] +] (x)]

+Cf .0 (|z(9tw)|2 +|Vz(91a>)|2 +|z(6’la>) k+l)dx+%(||Vu||2 +||v||2 +||Vz(¢2w)||2).

By using the Gronwall lemma, we get that
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r

o e

<o o] B o2 oo

= Je‘““)IRnp[' 'ZJ(Im I+ 0 0] o o @9
R O R T

2 (u(s. ot (@) +[v(s.0v (@) +[72(0.0)[ s

By replacing @ by 6., it then follows from (46) that

o EEJ 1 (00,000,002 (00 0.

<], {' i ]( (0.0)+2F (x1,(0,0)
+c$e5<5“>JRnp[' 'ZJ(Im I 0 0+ () s @
+cI‘ief“IRnp['i—'z](lz(esw>|z+|w<esw>|2+|z<esw>|k“)dxds

+%_[;e‘s(5") ("Vu (s.0.0,u, (6[@))”2 + "v(s, 0..o,V, (6[@))”2 +|vz (Hsfta))nz)ds.

By using (F3), there exists F?l = F?i (ga)) >0, such that for all r;ﬁi,

_JRnp(t(—L] 2F (x, u(t, 0,0, (H_ta))))dx<2J'Rnp(|)r(—|2] |773 (x)| dx<e (48)

In what follows, we estimate the terms on the right-hand side of (47). By (5), ¢, (6 ,@w)eB(6 @) and the
fact that {B (o)} istempered, we have that, there exists T,=T,(B,&,») >0, such that for all t>T,,

e[ p[| i J( (0.@)+2F (x,u, (6. w)))dxge—sr("%(Qtw)"i+2F(x,u0(9,lw)))

(49)
<& (loy (@) +1+u, (0,0) +[us (6,0)] " )<e:
Since ge LZ(]R”), m(x)e *(R), n,(x)el'(R) and ny(x)eLl’(R), then, there is R, =R,(&,)>1,
such that for r>R,, the second term on the right-hand side of (47) satisfies
2
e[’ ], ,,[%J(ph(x)r (0 1 ()] +[9 () s
(50)

_J.mp{ J(|771 |+|772(x)|+|773(x)|+|g(x)|2)dx<g.
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Note that ‘z ( ‘ is tempered, z(6)= Z, _h ,(9w) and h; eHl(R”) (1<j<m). By (8) with

€ :g ,thereis R; =R (g,a)) >1, such that for all r;R3 , the third term on the right-hand side of (47) satisfies
o] 21000

<[’ bszf ('r_J((M +[vnf )‘ (00, ) [ [z (00 )
<ol 00 <o) e 2o

<ofe?'s( (@3], { J(|h ™

hj k+1 ) dx

+|Vz 9w| +|

)dxds

)dxds

k+1)dx (51)

| +|th|2+|

®) ,i_lfw ( h,

<é.

Next, we estimate the forth term on the right-hand side of (47). Using (F3), replacing t by s and then @ by
0 .o in(27), we have

"(p(s, 00,9, (tha)))"i <2J'Rn |5 (x)| dx +€7*° ("% (‘94“’)”25 + ZIM F(x,Ug (Qla)))dx)

+CL}50-”(1+"Z(Q;¢Dm2+”VZ(Q;gvm2+ﬂz(Q;gv):T)dr, 2
it then follows that
% j;eﬁ(*”("w 5,6.,0,U (0.,0))| +[v( s,a,tw,vo(atw))"z+||Vz(95,ta>)||2)ds
<t o000 @.0)f |va(@0)f Jos
f‘ (], n|n3<x>|dx+eff’s( (0.0)] + 2, F (x.00(0.)) )
o (L fe(0, ) + V200, ) 420, o) )aeos+ £ [ (o, o) o
<L (o @ + o (@) +]us (0,0) s
_jjsﬁs‘ mz (6_0) +[vz(6,_0)[ +[2(6. a;k”)drds+ (1+7 (o))
<L (o @) + o (@) +]us (0,0)] s
e (||h [ ofomf+ ) (@)deds (147 (0)
<2 [ (o 0 0. 0.0 (0.0
- Z(Hh [ loml I (@)+ S (o), (53)
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Since y(@) and {B(w)} are tempered and h; e H(R") (1<j<m), then for any ¢,(0,0)<B(0.0),

there exist T~2:T~2(B’g’a’)>0 and R, =R, (s, a))>1 such that for all t>T, and r>R,, we obtain
21 ([vu(so.ou @) <(s0.0m @0 +|v2(6, o) Jas<e (54)

Letting T =max{T,,T,} and R=max{R,R,,R,,R,}, then, combining (48), (49), (50), (51) and (54), we
have forall t>T and r>R,

2
IRnp[|)r(| J (t 0., X (Hftw))dxg&s (55)
which implies

"(o t 0 0.9, (0@ " - <5¢ (56)

Then we complete the proof.

2
“ A |X .
Let p=1-p with p givenby (35) and denote by p =p[@]. Fix r>1 and set
r r

0(t, .Uy (@) = pu(t,o,u, (@)),
V(to,v, (o)) = (t o,V (o)), (57)
i1(60)=p2(60).

Multiplying (9) by p, and using (57) we find that

%:o—amz(ew)
3—‘t’ — (6 -a)U+AT-VAp, —2VWj, +(1-o)(Al—uAp, —2VuVp,) (58)

—(/1+0'2—a0')ﬁ—f(x, ) 2. +9(X) p, + AL (Qw)+(1+0-a)i(6w).

Considering the eigenvalue problem
—AG =10 in H,,, with =0 on oH,, (59)

The problem has a family of eigenfunctions {e;}, . with the eigenvalues {4},

ieN

A< <AL, 4 o> +oo(i > +0)

suchthat {e,} . isan orthonormal basis of L*(H,, ).Givenn, let X, =span{e,---e,} and
P,:L*(H, )— X, be the projection operator.
Lemma 3 Assume that (F1)-(F4), geL’(R") and hjeH'(R") (1<J<m) hold. Let {B(w)}e~ and

@, (@) e B(w). Then, for every & >0, there exist T= T(B £,0)>0, R=R(s,w)>1 and
N =N (&) >0, such that the solution ¢ of (9)-(10) satisfies for P-a.e. weQ, vtT, r>R and n=N,
"(I —Pn)(Z)(t,G ,0,(0,® ” <¢ (60)

E(Hzr

Proof. Let unl_Pu a,,=(1-PR)04, 9, =PV, ¥,,=(1-P)V, Z,,(6w)=Pi(6),
2,,(60)=(1-P,)i(6w). Applying | —P, to the first equation of (58), we obtain
dd, ,

On,z = dt n2 ,2 (Hta)) (61)




Z.]. Wang, S. F. Zhou

Then applying | —P, to the second equation of (58) and taking the inner product of the resulting equation
with ¥, in L*(H,, ), we have

L8 I = (-l 93 +(1-0)(36.5,.) (20" ~0)(6,5.5,
—((I—P)f(xu)ﬁrﬁ 2)-((1=-R)(vAS, +2VWVp,), ¥, ,) (62)

~(1=0)((1-P,)(uAp, +2Vuvp, ), ¥, , )+ ((1-P) 9 (X) A, V, )
+(AZ,, (bo)+(1+o-a)i,,(6).V,,).

2

Substituting v, , in (61) into the the third, fourth and fifth terms on the left-hand side of (62), we have

A . dd, A
(un,Z’Vn,Z)Z(un‘Z’ dt2 n,Z_Zn,Z (eta))]
(63)
1dy. 2 o~ 12 1. 2
25& Onal| += |0z 5~ znz(é’ta))”
I A di,, . .
(Aun,Z’ Vn,Z) == Vun,zlv dt n2 Zn,Z (6ta))
(64)
1djon 3 -
<=5 gVl =Vl + Ve (o)l
~((1-R) f(xu)5,,9,,)
:_((I -P) f(xu)p,, dt;:2 U 2 —in,z(é’tw)j (65)
=—((1-P) f,(xu)up,,G,,) - ((1-R) f (x,u) A, 0y, )+((1 -PR) F (%) 5. Z,, (60)).
Using conditions (F1) and (F4), we have
~((1=-P) f, (x.u)u,p,.4,,)
<efulls” ol 25 +llmels -lul-6 ]
<CIIUII?-IIu 2l 2 -n2l 2+ lomele -l s -2 2 (66)
t
<eit o IIHl ||u n“lllmllHl u
2 k
<y, (15 A WS A A o |
—o((1 _pn)f(x,u),sr,an,z)ga(cl||uk||. G, |+ 7] |6,
1
<o 36, Jlls + ) 7
o(l-o N~ o2 2 N 2
etio) ~2) g, .+ 22 2% (ol +Il
((I - Pn) f (X,U),br, 2n,2 (Htw))g(cl ||(I - Pn)uk/sr +||(I - Pn)nlﬁr”) z\n,2 (Hta))" (68)
<(C l’jn,Z :1 + |(| _Pn)nlﬁr ) 2\n,2 (gta))|'

()
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it then follows that

o 1— ~ k 3 1
(1R 100 8 <N 2 45 Il <A o |

2 N A
ik (ol +nl) + (e I (00
By using the Cauchy-Schwartz inequality and the Young inequality, we have

~(1-0)((1 =R,)(uAp, +2Vuvp, ), V,,)

4x2 2 4 ar | s
(o 1) i 2o+ v |, |

un,2

(=P )ma,

<(1-a)[806r+$||(| : pn)u||+£fcs||(| . pn)vU||] - (70
4(1-o) [ (8¢, +2¢, ) 32¢? ~o .
<7 [( T e (R 2}—"‘8“ ol
~((1=PR)(vAp, +2VWVp, ), ¥, ,)
2
:_((I_Pn)[4 vp[+ r2 VP, +%Vv-ﬁr’j'\7n,zJ
8c, +2¢ aJ2¢ (71)
<= (=R |+ = - R
8¢, +2 32 —oy. Ty
{2 2 e o5 S
(1-P)9(0) 70,0, )<= [1-R) g () A + “ [0, (72)
(Ain,z (Qta)),ﬁn,z)+(l+a—a)( nz(@w) \7“)
< anz(t ) ( ( " n.2 (73)
2
<Ljve,.(a )2 ) “;" ol 2 g o
From (63)-(73) we can obtain that
%( V.2 : +(/1+0'2 —aO') a,, 2 +(1—0')||V0n‘2 2)
<(o-a)|v,, 2—0‘(1+0'2—a0') a,, 2—(1—0')||Vﬁn2 ’
([t (G0 #1202 (@) V2. (B0) )+c/1n21 U4 Ju|f (74)

1
roa il ot (ol ) + S0 -Puf

+—|| vU|| ( +1)||(| —P,)v

()

2

-P)a(x)o | -
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Since 4, > thereexist N, =N, (¢,0)>0 and R=R(s®)>1,suchthatif r>R and n>N,, then
by (14) and the new norm ||| in (15), we have

dy-
dt Praleq,,
<=olfnft, volfe 00 +|v2n,2(aw>||2)+ce||u||§f'l) el e ol + )
vee|(1=P)uf +ee(1-P) V[ +ce(1-P) -R)g ()4 [ (75)
<51l ([ O Ve (00 )+ce(1+||u||a‘f'” JolF <l s 0 -l
<=8lpnals, C( 2, (G0)[ +[V2, (6460)"2)+ ce (1+||Ut [+ lull + 11 =P o )
Using the Gronwall lemma, we have
daltosn(ol,
<€ Jpnao (@)L, +cj“’“( o Vi, ,(6.0) )ds (76)
e (6" (Lol (.00 (o) b s,a,,%(w» 0P ol o (@) Jos
By substituting @ by 6@, we can get from (76) that,
alt @@ 0, o6 st ot

T

+Cg_[e (s-1) (1+||u $,60.,0,U, (0,0 " +||u $,6.,0,U, (6. a))) |(I —Pn)go(S,Qla),goO(4940)))”2E)ds.

We next estimate each term on the right-hand side of (77). Since ¢, (6. ,@)<eB(6 @) and the fact that
{B(w)} is tempered, there exist T,=T,(B,&,0)>0 and N,=N,(e, a))>0 such that if t>T, and
n>N,, then

ot (i’n,z,o(9-tw)||;Hzr)<€ (78)
Since ‘zj(etwj )‘ is tempered, z(6w)=)"hz (fo;) and h; e H*(R") (1<j<m), then, by (8) with

€ :g thereare N, =N, (£,0)>0 and T,=T, (¢,@)>0,suchthatforall n>N, and t>T,, the second

term on the right-hand side of (77) satisfies

CJ.;ebV(Sit)( z\n2(€ a))"2 +|V2n,2(es—tw)”z)d3<cj.,oe§5( 2n,2( s )2 an,z(esw) z)ds
<[’ f’szj (1=P) 5 (I +[90,[ ey (610, )| e
<c$j_tegsz‘zj(6?sa)j )‘ ds (79)
[l
<2y(0)

()
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Next, we estimate the third term on the right-hand side of (77). By (6), (18) and (33),

+|| P)e (S 0..0,9,(6., a)))" )ds

6

Cg_[;e5(5’t) (1+ "ut (s,6,,u, (9460))"6 + ||u (5.0.,0,uy(6,0))

<05J';e§(“) (1+||u(s,6_ta),uo(9_@))”6+||v(s,9_ta),uo(¢9_ta)))|| +||z(a))|| +||u(s,0_ta),u0(9_tw))

Hl
Ho(s.0.0.00(0.0)] Jos ©0)
<cofl’ sr(1+||¢ 0.0.0,(0.0)) +|2(o ||6+||¢(s,¢9_ta),(po(H_tw))"i)ds
<ce[e" (1+ 0% (@) +0 ( ) 7°(w))ds
<ced (1+0° (@) +0° (0)+7° (),
which implies that there exists T =T. s(B,&,@) >0, such that for t>T,,
cof 1 [t (s 0.0 @ ) +|u(s.0 o l0-R)e(s0.0m @0 Josse @

Let N =max{N;,N,,N,} and T = max{ 'f,f3}.Then, it follows from (78), (79) and (81) that, for all
t>T, r>R and n>=N,

2

Gr (10,00, (0., 0))| . <3 (82)

E(Hzr)

which completes the proof.

3.3. Random Attractor

In this subsection, we prove the existence of a global random attractor for the random dynamical system gener-
ated by (9)-(10).

Theorem 2 Assume that (F1)-(F4), geL*(R") and_h, e H'(R") (1<j<m) hold. Let {B(w)}e  and
¢, (@) e B(w). Then the random dynamical system S (t o) generated by (9)-(10) has a unique global
random attractor in E.

Proof. Notice that the random dynamical system S_(t,®) has a random absorbing set {A(a))} in © by
Lemma 1.

Next, we will prove that the random dynamical system S_ (t,w) isasymptotically compactin E.
Let t, >, {B(w)}e” ,and ¢, (0, »)eB(0, ).UsingLemma 1, we find that

om0 )

isabounded in E;thatis, for P-a.e. weQ,thereexists M, =M, (&,@)>0 such thatforall m>M,,
2
“(o(tm 1 eftm @, ¢O (e—tm a)))HE <Q2 ((0) (83)

By Lemma 2, we have that there are k =k (& @)>0 and I\7I2 = MZ(B,g,a))>O, such that for every
m=M, ,

2

”é)(tm 0 0,0, (th ‘0))

<e (84)

E(R"MEy, )

In addition, it follows from Lemma 3 that there exist N=N(gw)>0, k,=k,(s,0)>k and
M, =M, (B, &,®) >0, such that for every m=M,,

(1-P)6 (1.0, 006, 0))

2

<€ (85)

E(HZkz)
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Then, by (57) and (83), {PN(ﬁ(tm,H_tma),(po(G_tma)))} is a bounded in P, E(H,,, ), which together with (85)
implies that {(ﬁ(tm,e_tma), %(H_tma)))} is precompact in Hé(HZKZ)X LZ(]HIZkz). Recalling (57), we find that

{go(tm,eftm , (po(Hflm a)))} is precompact in E(sz), which along with (84) and (12) shows that the random

dynamical system S_ (t,w) is asymptotically compact in E.
Then, by Theorem 1, the random dynamical system S_(t,@) generated by (9)-(10) has a unique global
random attractor in E .

4. Remarks

In the present article, we have discussed the existence of a random attractor to the stochastic strongly damped
wave equation with additive noise defined on unbounded domains. It is also interesting to consider the the same

problem for stochastic strongly damped wave equation with multiplicative noise eudd—vtv. In this case, the
coefficient ¢ of the noise term needs to be suitable small, which is different from (1) that with additive white

. m dw; - T . dw .
noise Z.fh- (x)— this is because that the multiplicative noise eu—— depends on the state variable U,
FEIV dt dt

m dw
but the additive noise term zjzlhj (X)d—tJ is independent of U . The authors will pursue this line of research

in the future.
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