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Abstract 
We demonstrate two points: 1) the formalism of quantum mechanics can be understood simply as 
a structure for the expression of the physical notion that not all observables can have values si-
multaneously; 2) the specific uncertainty relations can be derived (rigorously) by combination of 
the invariance principle with a general uncertainty relation based only on the existence of unspe-
cified pairs of conjugate observables. For this purpose, we present a formulation of quantum me-
chanics based strictly on the invariance principle and a “weak” statement of the uncertainty prin-
ciple that asserts only the existence of incompatible (conjugate) observables without specifying 
which observables are incompatible. We go on to show that the invariance principle can be used to 
develop the equations of motion of the theory, including the Klein-Gordon and Schrodinger equa-
tions. 
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1. Introduction 
While the famous uncertainty relation 2xx p∆ ∆ ≥ �  first stated by Werner Heisenberg is well known, few 
know that this relation can be derived from the translational symmetry of space on the basis of a much more 
general uncertainty relation. The purpose here is to indicate that the entire structure of the quantum theory and 
its most basic content derive from only two physical principles, which can be referred to as the principle of un-
certainty and the principle of invariance (stated below). A more complete demonstration can be found in [1]. 

Here, by the principle of uncertainty is meant simply the notion that there are sets of incompatible observables 
that cannot have precise values simultaneously. More particularly, the principle expresses the fact that there ex-
ist certain pairs of “conjugate observables”, α and β, the simultaneous values of which have irreducible intrinsic 
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uncertainties ∆α and ∆β that satisfy an inequality of the form  
2α β∆ ∆ ≥ �                                       (1) 

where �  is a fundamental constant of nature (equal to Planck’s constant h over 2π). By the principle of inva-
riance is meant the notion that the laws of physics should have the same form in all physically equivalent coor-
dinate frames. It is remarkable that the entire content of ordinary (single particle) quantum mechanics can be 
reduced to the above two principles with no stronger statement of the principle of uncertainty than is given 
above. In particular, although the principle as stated asserts only the existence of pairs of observables without 
defining which observables are in fact conjugate, specific pairs of conjugate observables can be deduced from 
the general principle in the form above by combining it with the principle of invariance. More precisely, given 
the assumption of the existence of conjugate observables satisfying the “uncertainty relation” written above, 
without specifying the nature of these observables, it can be shown (in the manner indicated here) that the inva-
riance principle requires certain pairs of observables to satisfy such a relation, and that these pairs of observables 
are those found in nature. 

Although the manner in which quantum theory is developed is hallowed by tradition, and readers steeped in a 
view of the subject they have come to terms with may not be open to an alternative interpretation, it is the con-
tention here that the development outlined below simplifies the interpretation of the theory, and therefore de-
serves a place in the literature. Specifically, it addresses the first question that a student of quantum mechanics 
should have, namely, the question why the formalism of the theory must be changed from the formalism of clas-
sical physics in which observables are represented by mathematical variables. The historical approach to quan-
tum mechanics provides a somewhat complicated answer to this question, whereas it is made evident here that 
the simple answer is the existence of pairs of observables that cannot have precise values simultaneously. Al-
though the importance of the principles of uncertainty and invariance in quantum theory is well recognized, we 
are unaware of either a treatise on the subject that develops the theory strictly on the basis of these two prin-
ciples or a place in the literature where the two points in the abstract are stated. Instead, the theory is either pre-
sented following the line of its historical development on the basis of the asserted wave nature of matter [2], or 
developed (in more “rigorous” presentations) as the consequence of postulated axioms (the number and form of 
which can vary in different formulations) [3] [4]. In the more rigorous developments based on postulated axioms, 
because certain axioms represent purely mathematical statements relating to the structure of the formalism while 
other axioms have some limited physical content, it is difficult to separate the physical content from the mathe-
matical formalism, and therefore difficult to determine what the basic physical content of the theory is. Given 
that the extent to which mathematics describes physical phenomena is remarkable, there should nevertheless ex-
ist a distinction between the mathematics that quantitatively expresses the laws governing physical phenomena 
and the physical principles that underlie those laws. 

In the traditional developments of the quantum theory, the uncertainty principle is sometimes derived as a 
consequence of what are made to appear more basic or at least equally basic notions, and the fundamental nature 
of this principle is therefore obscured. In contrast, it is contended here that the uncertainty principle by itself is 
sufficient to both justify the entire mathematical formalism underlying the theory and to allow for a derivation of 
the quantum mechanical equations that result from it. Moreover, it is shown here that the development of the 
theory based on the uncertainty principle makes evident the fact that the quantum mechanical formalism proves 
useful only because it allows for a simple quantitative expression of the notion of incompatible observables. It is 
significant that the few rules and definitions used to define the formalism are no more numerous than those as-
sumed in any formulation of the theory. That the resulting formalism is self consistent and leads to no physical 
content other than that embedded into it by the notions of uncertainty and invariance is demonstrated in detail in 
[1]. 

To make the points above, certain well known equations are restated in Section II and III.A for the purpose of 
showing that the content of these equations is that contained in Equation (1). Since it is understood that content 
is added to the theory through the invariance principle, Section III.B is intended to emphasize exactly how its 
content enters the formalism and to demonstrate that the principle leads to the existence of explicit pairs of con-
jugate observables. Specifically, it is shown to be a consequence of Equation (1) and the definition of the gene-
rator of an infinitesimal displacement, that the observable associated with the generator of the displacement is 
conjugate to a coordinate observable and has all the properties of the linear momentum1. 

 

 

1What is emphasized is not the relationship between the generator of a displacement and the linear momentum, which is well known, but 
that the relationship follows from Equation (1) and the invariance principle. 



R. T. Deck 
 

 
436 

2. Development of Formalism 
To construct a quantitative theory to describe physical phenomena it is necessary to make use of some mathe-
matical formalism in terms of which physical principles can be expressed so as to lead to quantitative relations 
between observables. Because the principle of uncertainty is entirely restrictive in its content, its role is primari-
ly to restrict the mathematical formalism in terms of which the physical theory can be expressed. In principle, 
the nature of the formalism is arbitrary provided it allows for proper expression of the adopted principles and 
provided the axioms underlying it are consistent in a rigorous mathematical sense. The well known elements of 
the quantum formalism are reviewed here only to emphasize that they provide a remarkably simple basis for ex-
pression of the single notion that not all observables have exact values at the same time. In a classical theory, the 
formalism consists of relations between symbols representing the values of observables, and the symbols of the 
formalism therefore have the properties of mathematical variables. On the other hand, in a quantum theory that 
takes account of the principle of uncertainty, the formalism of the classical theory must be altered precisely be-
cause all observables do not have exact values in a given state of a physical system. Specifically, the formalism 
must be altered so as to prevent the assignment of precise values to observables that do not have precise values 
simultaneously. This necessary alteration of the formalism is accomplished most simply by expressing the rela-
tions between observables as operator relations in which observables are represented by operators (denoted O) 
that act on a symbol called a ket (denoted ) which serves to keep track of the accuracy to which values can be 
assigned to particular observables in a given state. From this point of view the ket can be defined as a listing of 
the observables that specify a given state, along with the mean values of, and uncertainties in, those observables. 

Since the uncertainty principle disallows the possibility that all observables can have precise values simulta-
neously, it is necessary to distinguish between states in which certain observables have precise values and states 
in which all observables have only imprecise values. A state in which certain observables have precise values is 
referred to as an eigenstate of those observables, and the ket that represents it is referred to as an “eigenket”.The 
eigenket represents a listing of the observables and the values of those observables that specify the eigenstate. 

In the development of the formalism it is found sufficient to define only one rule of operation for an operator 
acting on a ket, namely. the rule that determines the result of an operator corresponding to an observable acting 
on an eigenket of that observable. Given an observable α, and an associated operator Oα  and eigenket kα , 
this one rule of operation is defined by the equation 

,k k k k kOα α α α α α= =                                 (2) 

where kα  denotes the eigenvalue of α in the eigenstate represented by kα . The sufficiency of this rule fol-
lows from the fact that the formulation of the principle of uncertainty results in a prescription whereby any ket is 
expressible in terms of the eigenkets of any operator relating to the same degrees of freedom; by use of which 
any operator acting on any ket is expressible in terms of that operator acting on its eigenkets, the result of which 
is determined by the above rule. More importantly, the above rule has the effect of reducing the quantum for-
malism to a classical formalism whenever the principle of uncertainty is ignorable. In particular, by use of the 
above rule, the quantum formalism is such that whenever all operators in an operator equation correspond to 
observables that can have precise values simultaneously, each operator in the equation can be replaced by a va-
riable representing its eigenvalue; in which case the kets can be canceled from each term and the operator equa-
tion can be reduced to a “classical equation”. 

To connect the formalism to the results of physical measurements it is necessary to connect the elements of 
the formalism to real numbers. This is done by introducing quantities “conjugate” to kets, known as bras (and 
denoted ), and by defining the “expectation value” of an observable. The resulting equations are well known 
[5]. For every ket Ψ  a conjugate bra Ψ  is defined such that its product with Ψ  from the left is a posi-
tive real number, denoted by Ψ Ψ . Similarly, for every ket Ψ  multiplied (on the left) by an operator O, a  
conjugate quantity written OΨ  is defined such that its product with O Ψ  from the left is a positive real  
number (denoted OOΨ Ψ ).The operator O  thus defined is referred to as the “adjoint” of the operator O. 
Finally, for every observable α, represented by an operator Oα , the expectation value of α  in the state repre- 
sented by the ket Ψ  is defined to equal the quantity 

.Oαα = Ψ Ψ Ψ Ψ                                    (3) 
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The rule in Equation (3) is consistent with the basic rule of operation (2) whereby the expectation value of α 
in an eigenstate of α is reduced to its eigenvalue. To define all potential operations within the formalism it is 
necessary to include the rule of operation of an operator Oα  on an “eigenbra” conjugate to an eigenket of the  
operator. The rule is expressed by the equation k k k k kOαα α α α α= = . It then follows that an operator  
with real eigenvalues must be “self-adjoint” so as to satisfy the equation O O= . By use of the above equation 
and Equation (2), it is easy to demonstrate in addition that eigenkets associated with distinct eigenvalues satisfy 
the familiar “orthogonality relation” 

k j jk j jα α δ α α=                                        (4) 

The definition of the “value” of an observable in Equation (3) makes possible a quantitative definition of the 
uncertainty in the value of an observable. The uncertainty is defined in analogy with the conventional uncer-
tainty in the result of measurements of an observable α, given by the “root-mean-square-deviation” of the meas- 

ured values from the mean, written ( )
1 2

2
α α −  

, where the brackets  denote averages of sepa- 

rate measurements. Because the expectation value plays the role of the average value in the quantum formalism, 
we define the quantum mechanical uncertainty ∆α by the equality 

( )
1 2

2 1 22 2α α α α α   ∆ = − = −    
                             (5) 

where  denotes the expectation value. 

3. Incorporation of Principles 
3.1. Uncertainty Principle 
It remains to express the principle of uncertainty quantitatively in the formalism. This is accomplished by defin-
ing a “superposition relation” for kets, which results in certain commutation relations for operators. Since the 
rules of the formalism given above determine only the operation of an operator on an eigenket of that operator, 
there exists arbitrariness in the formalism relating to the operation of an operator on a ket that is not an eigenket. 
In particular, it remains to prescribe the operation of an operator Oα  on a more general ket of the form  

[ ] [ ], ,k k kα α β βΨ = ∆ ∆  relating to a state in which two conjugate observables, α and β, have uncertainties  

∆αk and ∆βk. The operation of Oα  on such a ket needs to be consistent with the basic rule of the formalism 
which dictates that the operation of Oα  on an eigenket of α result in the value of α in the state that the ket 
represents. But since, by its definition, the state represented by the ket has an uncertain value of α in a range ∆αk 
about a mean value αk, it follows that the operation of Oα  on the ket cannot result in a single value of α, but 
instead must result in a set of possible values of α within the interval in which α is uncertain. 

A prescription for the operation of Oα  on the above ket consistent with the above requirement can be ar-
rived at by defining the ket to equal a linear combination (or superposition) of the eigenkets of α relating to ei-
genvalues in the interval ∆αk. The resultant definition is expressed by the equality  

[ ] [ ] ( ), ,
k

j
k jk jk k C

α

α
α α β β α α

∆

Ψ = ∆ ∆ = ∑                            (6) 

(and its counterpoint with α and β interchanged). Below, for simplicity, all kets are assumed to be normalized to 
unity and the eigenvalues αj are taken to be discrete and to lie in the interval between 2k kα α−∆  and 

2k kα α+ ∆ . For generality, the coefficients, ( )jkC α , of the separate eigenkets in Equation (6) are allowed to 
be complex numbers (with any dependence on β suppressed).It is the superposition relation (6) that assigns kets 
the properties of “rays” in Hilbert space. 

The extent to which superposition relations of the above form provide a proper expression of the principle of 
uncertainty must depend on the extent to which the equations resulting from the relations can be interpreted in a 
manner consistent with the principle. In particular, use of the relation (6) in the defining equation (3) must result 
in an expectation value of α consistent with the uncertainty in α. To compute this expectation value in the state 
represented by the ket kΨ  in Equation (6), a bra conjugate to kΨ  can be constructed in the form  
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( )*k

j j kjCα
α α α∆∑ , where * denotes the complex conjugate. That this bra is conjugate to kΨ  follows from  

the fact that its product with kΨ  is guaranteed to be a positive real number by the orthogonality of the dis-
tinct eigenkets. By use of this bra, combined with Equations (2) and (6) and the orthogonality of the kets kα , 
the expectation value of α in the state represented by kΨ  is evaluated as  

( ) 2
.

j

k k j jkO C
α

α
α

α α α
∆

= Ψ Ψ =∑                               (7) 

Here the normalization of all kets to unity guarantees the equality 

( ) 2
1.

k

j
jkC

α

α
α

∆

=∑                                         (8) 

Equations (7) and (8) show the expectation value of α in the state represented by the ket kΨ  to be a sum 
over the eigenvalues of α in the interval of uncertainty, with the separate eigenvalues weighted by positive real 
numbers that sum to unity. The result is exactly that wanted for an average value (!), and has a straightforward 
interpretation consistent with the uncertainty principle. In particular, because the positive real numbers ( ) 2

jkC α  
sum to unity, they have the characteristic properties that define probabilities, and (in the absence of later incon-
sistencies) can therefore be identified with the probabilities of the particular values of α within the interval of 
uncertainty ( )kα∆  in the state kΨ . In the case of continuum eigenvalues and more general normalizations it 
is necessary only to re-interpret the probabilities as relative probabilities. 

The prescription for representation of the ket kΨ  expressed by Equation (6) can therefore be said to be a 
valid element of the formalism constructed to express the uncertainty principle. Moreover, the appearance of 
probabilities in the equations of a theory restricted by the uncertainty principle is consistent with the expected 
probabilistic nature of the theory. On the other hand, it is a consequence of the structure of the formalism that 
the probabilities enter the formalism as the absolute squares of the coefficients ( )jkC α  rather than more di-
rectly as the coefficients themselves; and from this it follows that the physical content of the theory must be un-
affected by a change in the phase of the coefficients ( )jkC α . The interpretation of the absolute squares of the 
coefficients combined with the fact that the coefficients themselves are expressible as bra-ket products of the 
form ( )jk j kC α α= Ψ  (as follows by multiplication of Equation (6) on the left by jα ), allows the bra-ket 
products to be interpreted as probability amplitudes. 

Given the form and interpretation of the superposition relation (6), inclusion of terms in the superposition re-
lation with zero coefficients (corresponding to zero probabilities) then allows summations over jα  in relations 
of the form (6) to be extended over the complete set of eigenkets of α associated with all possible eigenvalues of 
the observable. This makes possible the derivation of a “completeness relation” whereby any ket can be expanded 
in the eigenkets of any operator that relates to the same degrees of freedom. The existence of a superposition re-
lation with more than one non-zero coefficient then becomes an expression of the uncertainty principle and leads 
to a non-classical result. The conclusion results from the orthogonality of distinct eigenkets and the fact that, in a 
classical theory, every ket is an eigenket of every observable, from which it follows, in a classical theory, that if 
a ket is expanded in eigenkets, all but one of the coefficients must be zero. 

A more quantitative expression of the uncertainty principle in the formalism is obtained through an equation 
for the value of the “commutator” of a pair of operators corresponding to conjugate observables. The equation 
can be developed from the definition of the uncertainty in an observable α in Equation (5) together with the ex-
pression for the expectation value in Equation (3).In particular, by multiplying together the uncertainties in ob-
servables α and β as expressed by Equation (5), and use of the definition of the expectation value in Equation (3), 
an expression for the product α β∆ ∆  can be derived in the form [1] [6]  

,

2

i O Oα β
α β

  
∆ ∆ ≥                                      (9) 

where the bracket ,O Oα β    denotes the commutator, equal to O O O Oα β β α− . Combination of this relation 
with the uncertainty relation in Equation (1) for the case of conjugate observables α and β requires the commu-
tator of the operators Oα  and Oβ  to satisfy the relation 
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,O O iα β  = ±  �                                        (10) 

consistent with the commutability of operators in the limit of zero � . It is important that the relation in Equa-
tion (9) allows relation (10) to be derived from the inequality (1) or alternatively allows the inequality (1) to be 
derived from Equation (10). On the other hand, the commutation relation (10) can be shown to be consistent 
with the required orthogonality of distinct eigenkets only under certain conditions on the spectrum of eigenva-
lues α and β [7]. Specifically, in the case where the eigenvalues of α and β lie in a continuum, it is required that 
the ranges of the eigenvalues extend between plus and minus infinity. In this case, the orthogonality and com-
pleteness relations for the eigenkets of α and β assume the forms [5] 

( ) ( ),α α δ α α β β δ β β′ ′ ′ ′= − = −                          (11a) 

d 1, d 1.α α α β β β= =∫ ∫                                 (11b) 

The relations (11) combined with Equation (2) make possible a re-expression of the operator Equation (10) as 
an ordinary equation connecting functions of α and β. The result is obtained by multiplication of Equation (10) 
on the left and right respectively by eigenbras and eigenkets of α to produce the relation  

,O O iα βα α α α′ ′′ ′ ′′  = ±  �                                 (12a) 

which Equations (2) and (11) (and choice of the “+” sign) reduce to the form  

( ) ( ).O iβα α α α δ α α′ ′′ ′ ′′ ′ ′′− = −�                            (12b) 

The extremely singular character of this last relation (for α α′ ′′= ), in comparison with the delta function re-
lation 

( ) ( )d ,
d

α δ α δ α
α

= −                                          (13) 

then requires the quantity Oβα α′ ′′  to be proportional to the derivative of a delta-function. Specifically, com-
parison between Equations (12) and (13) leads to the equivalence  

( ) .O i iβα α δ α α α α
α α
∂ ∂′ ′′ ′ ′′ ′ ′′= − − = −
′ ′∂ ∂

� �                  (14) 

The equivalence can be reworked into a more general relation (and its adjoint) by expansion of an arbitrary 
ket Ψ  (relating to the degrees of freedom of the observables α and β) in terms of eigenkets of α in the form  

d .α α α′′ ′′ ′′Ψ = Ψ∫                                        (15) 

The expansion makes it possible to rewrite Equation (14) as the more general relation  

O iβα α
α
∂′ ′Ψ = − Ψ
′∂

�                                    (16) 

which (combined with the symmetry between α and β) serves to establish the well known prescriptions that de-
fine the result of an observable operator acting on a continuum eigenket or eigenbra of a conjugate observable 

, ,O i O iβ βα α α α
α α
∂ ∂′ ′ ′′ ′′= − =
′ ′′∂ ∂

� �                     (17a) 

, ,O i O iα αβ β β β
β β
∂ ∂′ ′ ′′ ′′= = −
′ ′′∂ ∂

� �                     (17b) 

with the lack of complete symmetry between α and β a reflection of the particular choice of sign in the commu-
tation relation of Equation (10). 

The prescriptions (17), together with the rule (2), lead immediately to a differential equation for the bra-ket 
product α β′ ′  in the form  

,O iβα β α β β α β
α
∂′ ′ ′ ′ ′ ′ ′= − =
′∂

�                         (18) 
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which has the solution 

* e ,
i

C
α β

α β β α
′ ′

′ ′ ′ ′= = �                                 (19) 

where C is an arbitrary complex constant, independent of both α′  and β ′ . Equation (19) shows the bra-ket 
product α β′ ′  (symmetric in α′  and β ′ ) to be a periodic function of the eigenvalues of the conjugate ob-
servables α and β, with a period in α given by 2π hβ β′ =�  and a period in β given by 2π α′� . The estab-
lishment of the uncertainty relation 2xx p∆ ∆ ≥ �  below, combined with the simple analysis leading to Equa-
tion (19), is then sufficient to establish that the probability amplitude xx p  is a periodic function of x with a 
(de Broglie) wavelength in space given by xh p . More importantly for the point to be made here, Equations 
(18) and (19) show that the content of Equations (17) is only that contained in the uncertainty relation (1). In 
particular, since the bra-ket product determined by Equation (19) is a pure phase factor, the absolute square of 
which is independent of both α′  and β ′ , it is a consequence of the interpretation of 

2
α β′ ′  as the (rela-

tive) probability that the observable α has the specific value α′  in the eigenstate of the conjugate observable β, 
specified by the value β ′ , that in an eigenstate specified by a value of β, all values of the conjugate observable 
α are equally likely (and vice-versa with α and β interchanged). It is therefore the content of Equation (18) that, 
when the value of β is known, the value of α is totally unknown (and vice-versa), consistent with the uncertainty 
relation in Equation (1), which requires that in an eigenstate defined by a zero uncertainty in the eigenvalue of 
one member of a pair of conjugate observables, the uncertainty in the eigenvalue of the other member of the pair 
is infinite. It can be concluded that the four equations (1), (10), (17), and (19) contain only the limited content 
that the product of the uncertainties in two conjugate observables must equal or exceed � , as a consequence of 
which, whenever one of the observables has an exact value, all values of the other observable are equally likely. 
The formalism defined above therefore correctly serves the purpose for which it was designed. It expresses the 
content of Equation (1). 

The physical content of the formalism is increased by the addition of the principle of invariance. As an exam-
ple of this, in the section below, the results obtained from this principle are derived in the simple case of inva-
riance of the equations of the theory with respect to space translations. The results extracted from the invariance 
principle applied to the complete set of transformations in the Lorentz group are detailed in Reference [1]. 

3.2. Invariance Principle 
The recognition of the existence of equivalent space-time frames relative to which the equations of physics should 
have the same form represents the essential notion underlying the “physical principle of invariance”. The con-
tent of the principle is then contained in the assertions that define certain distinct frames to be equivalent. Here, for 
simplicity, we focus only on the asserted physical equivalence of coordinate frames connected to one another by 
either a shift in the coordinate origin or a rotation of the coordinate axes. In either case, the space coordinates of 
a system with respect to the initial frame will be labeled x, y, z, while the coordinates of the same system with 
respect to the “transformed frame” will be labeled , ,x y z′ ′ ′ . The principle of invariance of course represents a 
basic physical principle in a classical theory as well as in quantum theory. But the combination of the principle 
with the uncertainty principle in the quantum theory leads to consequences that have no direct correspondence in 
classical theory. To combine the two principles in the quantum theory it is necessary to formulate the invariance 
principle in the formalism constructed to express the uncertainty principle. This is accomplished by the intro-
duction into the quantum theory formalism of transformation operators defined to determine the effects of coor-
dinate transformations on the kets, bras, and operators of the theory. Specifically, since the observables of a sys-
tem in a given state, in general, have different values when measured with respect to different coordinate frames, 
the expectation values of operators Oα  computed for a given state Ψ must in general be different in different 
frames. This requires that, either the bras and kets change under the coordinate transformation, or the operators 
change under the transformation. The first choice is referred to here as the “ket picture”, and the second as the 
“operator picture”. 

In the ket picture, a transformation between an unprimed and a primed coordinate frame is asserted to leave 
the operators unaltered,  

O O Oα α α′→ =                                          (20) 

but is defined to result in a change in the bras and kets that describe the system by way of the prescriptions 
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,U U′ ′Ψ → Ψ = Ψ Ψ → Ψ = Ψ                            (21) 

with the quantity U  defined as the “transformation operator” and U  defined to be its adjoint. In this picture, 
the expectation values of physical observables transform according to the relation 

.O O UO Uα α αα α′ ′ ′= Ψ Ψ → = Ψ Ψ = Ψ Ψ                (22a) 

where the change in the expectation value α  results from the changes in Ψ  and Ψ . Alternatively, in 
the operator picture, a transformation between primed and unprimed frames is defined to leave the bras and kets 
unaltered so that 

,′ ′Ψ → Ψ = Ψ Ψ → Ψ = Ψ                                (23) 

but to result in a change in the operators according to the relation 
.O Oα α′→                                          (24) 

In this case the expectation values of physical observables transform as  

,O Oα αα α′ ′= Ψ Ψ → = Ψ Ψ                             (22b) 

where the change in α  results from the change in Oα . But because the change in the value of the observable 
needs to be independent of the choice of the “picture”, the two transformation Equations (22a) and (22b) must 
give the same result; and this requires that the operators Oα  and Oα′  be connected by the equation  

.O UO Uα α′ =                                        (25) 

Additional physical content is introduced into the definition of the transformation operators by the require-
ment of conservation of probability below. In the case of a linear transformation, this requirement restricts the 
transformation operator U to be unitary, as defined by the equation (see below),  

1,U U −=                                           (26) 

in which case Equation (25) can be rewritten in the form 1O U O Uα α
−′ = . The definitions serve to connect every 

coordinate transformation between physically equivalent frames to a unitary operator U defined to effect the 
change induced by the transformation in the bras, kets, and operators of the formalism. But, in general, the uni-
tary operator U can in turn be connected to a self-adjoint operator, with real eigenvalues that can be associated 
with an observable; and this connection allows every coordinate transformation to be connected to a dynamical 
quantity that serves to define the state of the system considered. 

It is sufficient here to consider the case of continuous transformations that can be evolved from the identity 
operator I by a continuous sequence of transformations generated by infinitesimal variations in a parameter a. In 
this case, the transformation operator U can in general be represented as 

,U I U I iG aδ δ= + = +                                     (27) 

where aδ  denotes the increment in the transformation parameter, and dU iG aδ≡  denotes the corresponding 
shift in the transformation operator from the identity operator. The operator G defined by the last equation is re-
ferred to as the “generator of the infinitesimal transformation”. As a consequence of the unitarity of U and in-
troduction of the imaginary i into the definition of G, G must be self-adjoint, 

.UU I G G= → =                                         (28) 
We focus here on a transformation between the physically equivalent frames of a closed system resulting 

from an infinitesimal translation of the coordinate origin by an amount kaδ  (in the negative direction) along 
the coordinate axis kx . The transformation is defined by a connection between the coordinates of a space point 
in the primed and unprimed frames expressed by the equation  

,k k kx x aδ′ = +                                            (29) 

where kaδ  can be identified with the increment in the transformation parameter. In this case the transformation 
operator U assumes the form 

( ) .k k kU a I iG aδ δ= +                                       (30) 
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3.2.1. Ket Picture of Translation 
Consider first the ket picture of the coordinate transformation in which the operator ( )kU aδ  is defined by the 
equation 

( ) ,kU aδ′Ψ = Ψ                                        (31) 

where the kets ′Ψ  and Ψ  represent a given state of the given system as observed in the primed and un-
primed coordinate frames respectively. It is useful to focus initially on a simple system whose translational mo-
tion with respect to the k-th coordinate axis is describable in terms of a single space coordinate kx  that can be 
taken to represent the k-th coordinate of the system’s “center of mass”. In this case the complete set of eigenkets 
of the observable kx  forms a basis for a representation of the kets of the system with respect to the translational 
degree of freedom along the k-th axis; and a representation of the kets ′Ψ  and Ψ  with respect to this de-
gree of freedom can be constructed in the primed and unprimed frames from the sets of representatives kx′ ′Ψ  
and kx Ψ  respectively. The content of the invariance principle enters the formalism through the requirement 
that the probability for the system to have a coordinate corresponding to a given physical point have the same 
value as measured in the equivalent frames. The requirement is guaranteed only under the condition that the 
magnitudes of the coordinate representatives of the kets kx Ψ  and kx′ ′Ψ , relating to the given physical 
point as measured in the two frames, be equal. This condition requires that the transformation operator U be un-
itary by way of the equation  

( ) ( ) .k k k k kx x U a U a xδ δ′ ′Ψ = Ψ = Ψ                        (32) 

The result (32) combined with Equations (29), (30), and (31) is sufficient to determine the properties of the 
operator G, and in addition demonstrate that the observable associated with the related operator kG−�  is con-
jugate to the coordinate observable kx . 

The derivation proceeds on the basis of well known steps. By use of Equations (29), (30), and (31) the primed 
frame quantities kx′  and ′Ψ  on the left hand side of Equation (32) can be re-expressed in terms of their un-
primed frame equivalents and Equation (32) can be rewritten in the form  

( ) .k k k k k k k k k k kx x a U a x a i a x a G xδ δ δ δ δ′ ′Ψ = + Ψ = + Ψ + + Ψ = Ψ           (33) 

The functions of kx  evaluated at k kx aδ+  in this last equation can then be re-expressed in terms of func-
tions evaluated at kx  by Taylor series expansions of the functions about kx ; which, since kaδ  represents an 
infinitesimal, can accurately be represented by the first two terms in each series. In particular the quantities 

k kx aδ+ Ψ  and k k kx a Gδ+ Ψ  can be expressed by the forms 

,

.

k k k k k
k

k k k k k k k k
k

x a x a x
x

x a G x G a x G
x

δ δ

δ δ

∂
+ Ψ = Ψ + Ψ

∂

∂
+ Ψ = Ψ + Ψ

∂

                    (34) 

By substitution of Equations (34) into Equation (33) and the neglect of terms proportional to the square of kaδ  
one obtains the equation 

,k k k k k k k
k

x a x i a x G x
x

δ δ∂
Ψ + Ψ + Ψ = Ψ

∂
                   (35) 

which reduces to the result 

.k k k
k

x G i x
x
∂

Ψ = Ψ
∂

                                         (36) 

The result is sufficient to establish that the observable kG−�  has the defining property of an observable conju-
gate to the coordinate observable kx . Specifically, with the operator kG−�  denoted by PkO , 

,Pk kO G≡ −�                                       (37) 

the form of Equation (36), in terms of the operator PkO , is identical to the form of the general Equation (16) which 
prescribes the result of an operator Oβ  corresponding to an observable β acting on an eigenbra of a conjugate 
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observable α. That is 

.k Pk k
k

x O i x
x
∂

Ψ = − Ψ
∂
�                                 (36)' 

But, since Equation (16) derives from the commutation relation (10) that represents an expression of the un-
certainty relation 2α β∆ ∆ ≥ � , it can be expected to follow from Equation (36)' that the operator PkO  satis-
fies the commutation relation 

, ,
k kx PO O i  =  �                                             (38) 

which in turn implies that the observable kP , associated with the self-adjoint operator PkO , satisfies the uncer-
tainty relation  

.
2k kx P∆ ∆ ≥
�                                               (39) 

That the operator PkO  does satisfy the commutation relation (38) can be shown to follow from the definition 
of the two operators PkO  and ( )kU aδ  in the operator picture of the coordinate transformation. It is possible 
to first generalize the result obtained above to the case of a system that can be resolved into an arbitrary number 
of subsystems labeled n, each of which can be localized in space by the specification of a single coordinate vec-
tor ( )nx  [1]. The generalization results in equations that demonstrate that the operator PkO  can be interpreted 
as the k-th component of a vector operator OP , decomposable into a set of operators that separately relate to the 
independent coordinate vectors required to describe the translational degrees of freedom of the total system. The 
vector observable P associated with the operator OP  can be shown to have the properties corresponding to the 
total linear momentum observable of classical mechanics [1]. 

3.2.2. Operator Picture of Translation 
Consider now the operator picture of the infinitesimal translation in which an operator Oα′  associated with an 
observable α in the primed frame is connected via the transformation operator ( )kU aδ  to the corresponding 
operator in the unprimed frame by the equation  

( ) ( ).k kO U a O U aα αδ δ′ =                                    (40) 

By use of Equations (30) and (37) and the self-adjointness of the operator PkO , this equation can be re-ex- 
pressed to terms of order kaδ  in the form 

[ ], .k Pk k Pk k Pk
i i iO I a O O I a O O a O Oα α α αδ δ δ   ′ = + − = +   

   � � �
                 (41) 

The interest is in the connection between the operators corresponding to coordinate observables ( )nx  in the 
primed and unprimed frames. In the general case of a system that can be resolved into an arbitrary number of 
sub-systems (1), ⋅⋅⋅, (n), ⋅⋅⋅, which can each be localized in space by the specification of a single coordinate vec-
tor, the k-th components of the complete set of coordinate vectors ( )nx  in the primed and unprimed frames can 
be used to describe the translational motion of the total system with respect to the k-th axis; and the complete set 
of eigenkets of these observables in the two frames can then be used as a basis for a coordinate representation of 
the kets of the system. In the operator picture the eigenkets of the coordinate observables,  

( ) ( ) ( )1 2, , , ,
k k knx x x   are defined to be the same in both the primed and unprimed frames, while the eigenva- 

lues of the coordinate operators are required to be related by Equation (29). It follows that the coordinate opera-
tors in the primed and unprimed frames, 

( )n k
xO′  and 

( )n k
xO , must satisfy the equations 

( ) ( ) ( ) ( ) ( ) ( )1 1, , , , , , ,
n k k k k kk

x n n nO x x x x x=                                       (42) 

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )1 1 1, , , , , , , , , .
n k k k k k k k kk

x kn n n n nO x x x x x x a x xδ′ ′= = +               (43) 

from which it follows that the operator 
( )n k

xO′  acting on the eigenket ( ) ( )1 , , ,
k knx x   is equivalent to the  
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operator 
( )( )n k

x kO a Iδ+  acting on the same eigenket. The equivalence can be formulated as an operator equa- 

tion, which is valid when the operators in the equation act on any ket: 

( ) ( )
.

n nk k
x x kO O a Iδ′ = +                                      (44) 

In particular, since the above connection between the operators 
( )n k

xO′  and 
( )n k

xO  is valid when the opera- 
tors act on the eigenkets ( ) ( )1 , , ,

k knx x  , and since any ket relating to the given system’s translational de-

grees of freedom along the k-th axis can be expanded in terms of the eigenkets ( ) ( )1 , , ,
k knx x  , the connec- 

tion between the operators must be valid when the operators act on any ket on which they can act. But as a con-
sequence of Equation (41), the operators 

( )n k
xO′  and 

( )n k
xO  are connected by the equation  

( ) ( ) ( )
, ,

kn n nk k k
x x k P x

iO O a O Oδ  ′ = +   �
                             (45) 

and it follows from comparison of Equations (44) and (45) that the operators 
( )n k

xO  and 
kPO  need to satisfy 

the commutation relation  

( )
, .

kn k
x PO O i  =  

�                                      (46) 

Here the operator 
kPO  can be interpreted as the k-th component of a vector operator, which itself can be de-

composed into a set of operators ( )kP nO  that separately relate to the independent coordinate vectors required to 
describe the translational degrees of freedom of the total system. Specifically, the operator 

kPO  can be repre- 
sented by the sum 

( )k kP P n
n

O O= ∑                                        (47) 

by use of which Equation (46) can be reduced to an equality relating strictly to the degrees of freedom connected 
to the coordinate vector ( )nx . In particular, as a consequence of the fact that operators relating to distinct de-
grees of freedom must commute, the decomposition of the operator 

kPO  given by Equation (47) allows Equa-
tion (46) to be re-expressed as the relation 

( ) ( ) ( )( ), .
n jk

x P jkr n rO O i δ δ  =  
�                               (48) 

It then follows from the fact that the derived commutation relation between the operators 
( )n k

xO  and ( ) jP rO   

is identical to the commutation relation between operators associated with conjugate observables, that the ob-
servables ( )knx  and ( )knp  must satisfy the uncertainty relation  

( ) ( ) .
2k kn nx p∆ ∆ ≥
�                                      (49) 

The conclusion extracted from the operator picture of the coordinate translation is therefore the same as that 
deduced from the ket picture of the transformation (as it should be). In fact, because Equation (36)’ can be de-
rived from Equation (46), the property of the operator 

kPO  expressed in Equation (46) in the operator picture is 
exactly equivalent to the property of 

kPO  expressed in Equation (36)' in the ket picture, consistent with the re-
quired arbitrariness in the choice of either picture; and the content of Equation (48) is only that in Equation (49). 

Similarly, by considering the connections between coordinate frames related by a rotation of the coordinate 
axes rather than by a translation of the origin, an analysis parallel to the above demonstrates that the observable 
associated with the (properly defined) generator of an infinitesimal rotation about the k-th coordinate axis, 

kLO , 
is conjugate to the azimuthal angle coordinate kϕ  in the plane perpendicular to the k-th axis [7]. The result can 
be expressed in the form of the uncertainty relation 

,
2k kLϕ∆ ∆ ≥
�                                        (50) 

with the operator associated with the observable kL  connected to the generator of the infinitesimal rotation, 
kG , by way of the equation  



R. T. Deck 
 

 
445 

.
kL kO G≡ �                                         (51) 

It can be demonstrated that the observables associated with the generators of infinitesimal translations and ro-
tations have in fact all the familiar properties of linear and angular momentum observables [1]. Specifically, the 
invariance principle requirement that the equations of motion of a closed system be unaltered by a translation or 
rotation demands that the generators of the transformations commute with the Hamiltonian and that their eigen-
values therefore be constants of the motion. In addition, it is shown below that the linear momentum observable 
is connected in the usual way to the energy observable, which itself can be associated with the generator of an 
infinitesimal translation of the origin of time. The overall conservation of linear momentum and energy can then 
be derived from the invariance principle requirement that the equations of motion of a closed system be inva-
riant in form under translations of the origins of the space and time axes. The connection between the energy 
observable and the generator of a time translation also allows for a rigorous derivation of an energy-time uncer-
tainty relation expressing the well known connection between the energy “width” and the lifetime of a state2 [1] 
[8]. 

It is important that Equation (36)' in the form  

( ) ( )cm cm ,
k

k

i O
x
∂

− Ψ = Ψ
∂ Px x�                            (52) 

where ( )cmx  denotes the center of mass coordinate, connects the operator 
k

OP  to a space derivative in the 
same way that the definition of the Hamiltonian H as the generator of a time shift connects H to a time deriva-
tive through the equation 

( ) ( )cm cm
d .
d

i H
t

Ψ = Ψx x�                               (53) 

The covariance of the equations under the complete set of Lorentz transformations requires that the two equa-
tions be combinable into a four-vector equation. This can be guaranteed only under the condition that the opera-
tors OP  and H/c can be defined to be the space and time components of a single fourvector ( )0,1,2,3PO

µ
µ =  

(with c the speed of light). In the case of a closed system, for which cOP  and H much commute, the simulta-
neous eigenvalues of the two operators, cP , and E form a four-vector, the “scalar” product with itself of which 
must have an invariant (constant) value in physically equivalent frames, as expressed by the equation  

( )22 2Constant .E c κ− = ≡P                                 (54) 

But when an equation involves only simultaneous observables, the equation must be valid when the values of 
the observables are replaced by their corresponding operators acting on any ket ( )tΨ  that can be expanded 
in terms of the eigenkets of the operators. This allows Equation (54) to be re-expressed as the operator equation 

( ) ( ) ( )2 2 2 2 .PH c O t tκ− Ψ = Ψ                             (55) 

Multiplication of Equation (55) on the left by a coordinate eigenbra ( )cmx  and use of Equations (52) and 
(53) (twice) to replace the operators by derivatives converts this equation into the (free particle) Klein-Gordon 
equation expressible as 

( ) ( ) ( )
2 2

2
cm2 2 2

1 0,t
c t c

κ ∂
−∇ + Ψ = 

∂  
x

�
                       (56) 

which the notation 

( ) ( ) ( ) ( )
2

cm cm 2, , , ,t t m
c
κ

= Ψ = Ψ =x x x x                    (57) 

re-expresses as 

( )
22

2
2 2

1 , 0.mc t
c t

 ∂  −∇ + Ψ =  ∂    
x

�
                          (58) 

 

 

2Because time needs to be interpreted as a parameter in the theory rather than an observable, the derivation and interpretation of the uncer-
tainty relation connecting energy and time are very different from those developed here for the observables x and px. 
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An approximate equation for a free particle can be derived from this equation by solution of Equation (54) for 
the energy eigenvalue E in terms of a square root, and approximation of the square root in the case in which 
cp κ . The approximation reduces Equation (58) to the free particle Schrodinger equation  

( ) ( )
2

2 2, , 0.
2

i t mc t
t m

 ∂
Ψ = − ∇ + Ψ = ∂  

x x�
�                          (59) 

The validity of Equations (58) and (59) is limited by the fact that the forms of the equations are altered by a 
phase change in the function ( ), tΨ x . Instead, where ( ), tΛ x  is an arbitrary real phase function, ( ), tΨ x  
and ( ) ( ),, ei tt ΛΨ xx  can satisfy the same equations only if Equations (58) and (59) are modified by the inclusion 
of additional terms that can compensate for the derivatives of the phase function ( ), tΛ x  in the solution of the 
equations. The added terms can do this only provided they add directly to the derivative operators in the equa-
tion, and their physical significance is unaltered by the addition of derivatives of an arbitrary function of x and t. 
Specifically, it can be shown [1] that the phase invariance of an equation with the derivative structure of Equa-
tion (58) is guaranteed only if the equation is modified by replacement of the space and time derivatives accord-
ing to the prescriptions 

( ) ( )0, , , ,k
k k

iA t iA t
x x t t
∂ ∂ ∂ ∂

→ − → +
∂ ∂ ∂ ∂

x x                          (60) 

where kA  and 0A  are the space and time components of a four-vector function of x and t, and where values of 
physical observables derived from the functions kA  and 0A  are unchanged by the following transformations  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
0 0 0

,
, , ,

,
, , ,k k k

k

t
A t A t A t

t
t

A t A t A t
x

∂Λ
′→ = −

∂
∂Λ

′→ = +
∂

x
x x x

x
x x x

                           (61) 

with ( ), tΛ x  an arbitrary function of x and t. After omission of a non-dynamical “rest energy term”, 2mc , and 
with ( )1,2,3kA k =  set to zero, the prescriptions (60) convert Equation (59) into the non-relativistic “Schro-
dinger equation”, 

( ) ( ) ( )
2

2, , , ,
2

i t t t
t m

 ∂
Ψ = − ∇ + Ψ ∂  

x x x�
�

∨                          (62) 

with 0cA= �∨ . But because the addition of space and time dependent functions to the basic equations of the 
theory is inconsistent with the invariance of the equations under space and time translations, the transformed 
equations cannot describe a closed system, and therefore cannot describe a free particle. Instead, the added terms 
can be associated with an influence on the described system dependent on the system’s location in space and 
time, which influence can only be interpreted in terms of an interaction of the system with an external system. 
From this it follows that the equation of motion of a particle can satisfy the requirement of local phase inva-
riance only if the particle can couple to another system through an interaction. Moreover, the phase invariance 
condition serves to determine the way in which the interaction terms can be introduced into the basic equations 
of the theory. 

4. Summary and Conclusion 
What is demonstrated here is that combination of the invariance principle with only a weak statement of the un-
certainty principle that asserts only the existence of unspecified pairs of conjugate observables is sufficient to 
establish the existence of specific pairs of such observables, which in fact exhaust the complete set of known 
pairs of observables satisfying uncertainty relations of the form (1). It is shown in addition that the invariance 
principle, formulated within the quantum formalism, determines the forms of the basic “equations of motion” of 
the theory. 

Acknowledgements 
The author thanks Professor D. G. Ellis for useful comments relating to this paper. 



R. T. Deck 
 

 
447 

References 
[1] Deck, R.T. (2010) A Logical Development of Quantum Mechanics from Physical Principles. CreateSpace 2010.  
[2] Eisberg, R. and Resnick, R. (1985) Quantum Physics. 2nd Edition, John Wiley & Sons, New York.  
[3] Merzbacher, E. (1970) Quantum Mechanics. 2nd Edition, John Wiley & Sons, New York. 
[4] Liboff, R.L. (1992) Introductory Quantum Mechanics. 2nd Edition, Addison-Wesley, New York, 66-80.  
[5] Dirac, P.A.M. (1958) The Principles of Quantum Mechanics. 4th Edition, Clarenden Press, Oxford. 
[6] Goswami, A. (1992) Quantum Mechanics. 2nd Edition, Wm.C. Brown Publishers, Dubuque. 
[7] Deck, R.T. and Ozturk, N. (1994) Foundations of Physics Letters, 7, 419-436. http://dx.doi.org/10.1007/BF02189245 
[8] Sposito, G. (1970) An Introduction to Quantum Physics. John Wiley & Sons, Inc., New York, 178. 

http://dx.doi.org/10.1007/BF02189245

	A Formulation of Quantum Theory Based on Two Physical Principles
	Abstract
	Keywords
	1. Introduction
	2. Development of Formalism
	3. Incorporation of Principles
	3.1. Uncertainty Principle
	3.2. Invariance Principle
	3.2.1. Ket Picture of Translation
	3.2.2. Operator Picture of Translation


	4. Summary and Conclusion
	Acknowledgements
	References

