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Abstract 
Nonlinear monopulses of dust sound waves in cylindrical dusty plasma waveguides bounded by a 
dielectric are investigated. The dusty plasma includes the positive ions as a light component and 
the negative dust as a heavy one. The dusty plasma with different masses of dust particles is con-
sidered. The set of hydrodynamic equations for the dust jointly with the Poisson one are used. The 
Boltzmann distribution is valid for the ions. The boundary conditions are applied at the smooth 
interface. When the moderate volume nonlinearity manifests, near the interface the variations of 
the dust concentration reach extremely high values, and the collapse of the dust sound waves oc-
curs. In the cylindrical waveguides the collapse manifests at the values of the initial wave ampli-
tudes essentially smaller than in the planar geometry. When the particles of lower masses are 
near the interface, the collapse realizes more rapidly. 
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1. Introduction 
Last time the investigations of dusty plasmas are of great interest, not only due to various technological applica-
tions, but also because of atmosphere and ionosphere contaminations by a space trash and volcano activity [1]- 
[5]. An important property of dusty plasmas is the support of various waves and oscillations, both linear and 
nonlinear ones [3]-[8]. The dusty plasmas can be bounded and can be the waveguides for plasma waves. In the 
bounded plasma waves the oscillations of the surface charge take place [2] [6]. Even in the case when the vo-
lume nonlinearity is small, the variations of the dust concentration near interfaces can reach essential values [9] 
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[10] and cannot be considered as moderate. Earlier it demonstrated the sharp increase of the dust concentration 
in the thin layer near the boundary, which was called the collapse of the surface plasma waves [9]. The collapse 
of surface plasma wave was observed experimentally [11].  

In the present paper the nonlinear monopulses of dust sound waves in the cylindrical dusty plasma wave-
guides bounded by a dielectric are investigated. The waves propagate along OZ-axis, see Figure 1.  

The dusty plasma includes the positive ions as the light component and the negative dust as the heavy com-
ponent. The set of hydrodynamic equations for the dust, namely, the continuity equation and the equation for the 
momentum jointly with the Poisson one for the electric field are used. The Boltzmann distribution is used for the 
ions. The electric and hydrodynamic boundary conditions are applied at the smooth interface dusty plasma-dielectric. 
The initial condition for the electric potential is monopulse-like, as well as for the perturbation of the dust con-
centration. The simulations have demonstrated that the wave collapse occurs near the interface at essentially 
smaller initial amplitudes, when compared with the planar case. The dynamics of the wave collapse depends on 
the distribution of the dust particles with different masses near the interface. When the particles of lower masses 
are near the interface, the collapse realizes more quickly.  

2. Basic Equations 
Consider the dusty cylindrical plasma waveguide, 0 < ρ < R, bounded by a dielectric of the permittivity ε > 1 at 
ρ > R, see Figure 1(a). The dusty plasma includes positively charged ions (+e) and negative charged dust par-
ticles (−Q). The temperature of ion fluid is Ti, one of the dust is Td. It is assumed that d iT T . Note that Td is 
the temperature of the collective motion of the dust particles but not the temperature within each particle. The 
mass of the ion is mi, the mass of the dust particle is d im m . Generally the dust particles can possess different 
masses in different regions: ( )d dm m r= .  

The set of hydrodynamic equations for the dust fluid concentration nd and the velocity vd is [2] [3] [12]-[14]:  
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The ion concentration ni obeys the Boltzmann distribution:  
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here ni0, nd0 are unperturbed concentrations, in the neutral state there is 0 0i de n Q n× = × . 
Equation (1) are added by the Poisson equation for the electric potential ϕ (in absolute units):  
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The basic equations have been reduced to the undimensional form. The following units have been used for 
prepare of undimensional values like ϕTi for the potential, ( )2

04πn Di B i il r k T e n=≡  for distances,  
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04πn d dt m Q n=  for time. The parameter md0 is some typical value of the dust particle mass. As the result 

the basic equations are:  
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Here n, v, u are undimensional dust concentration, velocity, and displacement; ( ) ( ) 1d iT T T e Q= ×  ; the un-
dimensional dust mass is ~ 1m . One can see that the dependence of mass on the coordinate results in an addi-
tional mechanism of nonlinearity. In calculations the value of T ≠ 0 is used, because in the limiting case T = 0 it 
is necessary to consider the motion of the surface charge separately. Our results are independent on the value of 
T, when T < 0.01.  
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(a)                                   (b) 

Figure 1. Geometry of the problem. Part (a) is the cylindrical dusty plasma 
waveguide, (b) is the planar one.                                          

 
Within the dielectric at ρ > R the Laplace equation is valid:  

0.ϕ∆ =                                           (5) 

The system possesses the axial symmetry. Therefore, the dust velocity v has only the two components vρ, vz.  
The volume equations are added by the boundary condition at ρ = R. Namely, the electric potential ϕ and the 

normal component of the electric induction Dρ should be continuous at ρ = R:  

( ) ( ) ( ) ( )0 0 , 0 0 .R R R Rϕ ϕϕ ρ ϕ ρ ρ ε ρ
ρ ρ
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= − = = + = − = = +
∂ ∂

                 (6) 

Also, because it is considered the case T ≠ 0, it should be ( )-0 0rv r R= = . Otherwise, in the limiting case T 
→ 0 the surface dust concentration should be considered separately. Note that the interface is assumed as smooth, 
so the tangential component of the dust velocity is ( )0 0zv r R= − ≠ .  

To solve the equations, the explicit 3-layer finite difference schemes have been applied for n, vρ, vz, uρ. For the 
Poisson equation at ρ < R the fast Fourier transform has been used:  
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Equation (5) for the potential ϕ within the dielectric at ρ > R is:  
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The proper solution of Equation (7b) that decreases at ρ → +∞ is  

( ) ( )0l lCK kρ ρΨ =                                      (8) 

Therefore, the boundary conditions (6) are rewritten as:  
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In the center of the waveguide ρ = 0 the following condition is d d 0lF r = , because the radial component of 
the electric field is Eρ = 0 there due to symmetry.  

Equations (7a), (9) have been solved by the finite differences within the region ρ < R with several iterations, 
which show a good convergence.  
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3. Results of Simulations  
Earlier it was demonstrated that a manifestation of nonlinearity near the surfaces is more essential than in the 
volume [9] [10]. Moreover, it is possible to expect that an influence of the interface plasma―dielectric is more 
important in the cylindrical geometry than in the plane one, analogously to the wave collapse within framework 
of the nonlinear Schrödinger equation [15] [16].  

Equations (4) (5) added by boundary conditions (6) have been simulated. It is possible to solve these equa-
tions under the proper initial conditions. Namely, the initial monopulses of almost rectangular shape and of 
moderate maximum values 0 1a   have been considered:  
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Here –1ñ n≡  is the perturbation of the dust concentration.  
The following distribution of the masses of the dust particles has been used:  

( ) ( )
4
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Rm m m m ρρ
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  − = + − ⋅ −     
                          (11) 

Namely, the values of the masses of the dust are m1 and m2 in the center of the waveguide and at the boundary, 
respectively; ρq is the scale of variation of the mass. The used parameters are: z0 = 10, R = 3, ρq = 1 − 0.1, ε = 4. 
The results of simulations are tolerant to the change of the radius of the cylindrical waveguide 2 < R < 6.  

In Figure 2 there are the dependencies of the maximum values of perturbations of the dust concentration ñ on 
the time t in the cylindrical waveguide. The sharp peaks of the dust concentration near the surfaces are formed, 
which are localized both in longitudinal (z) and transverse (ρ) directions. The maximum values of ñ are 40 - 50 
times higher then in the volume. The nonlinearity ceases to be moderate near the surface. Moreover, under the 
levels of 0 0.01a ≥ , see Equation (10), the calculations overflow. It is possible to interpret this phenomenon of 
the sharp growing and the narrowing of the dust concentration near the surface as a manifestation of the wave 
collapse [9] [11]. At the undimensional dust temperatures T < 0.01 the dynamics of surface dust sound waves 
does not depend on the value of this temperature. 
 

 
Figure 2. The dependencies of the maximum values of perturbations of dust 
concentration ñ on the time t in the cylindrical waveguide. Curve 1 is for the ini-
tial amplitude a0 = −0.012, constant masses m1 = m2 = 1; curve 2 is for a0 = 
−0.012, m1 = 0.5, m2 = 1 (the lighter particles are within the volume), ρq = 0.3; 
curve 3 is for a0 = −0.012, m1 = 1, m2 = 0.5 (the lighter particles are near the 
boundary), ρq = 0.3; curve 4 is for a0 = −0.012, constant masses m1 = m2 = 0.5; 
curve 5 is for a0 = −0.01, constant masses m1 = m2 = 1; curve 6 is for a0 = 
−0.008, constant masses m1 = m2 = 1.                                        
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One can see that in the cylindrical geometry the wave collapse occurs at very low values of initial amplitudes 
of 0 ~ 0.01ñ a . These values are one order lower than in the plane geometry [9] [10]. The analogous dependen-
cies for the planar waveguide are presented in Figure 3. The thickness of the planar waveguide is Lx = 6, ε1 =ε2 = 
4. The shape of the initial perturbation of the dust concentration ñ is the same as in the cylindrical geometry, 
Equation (10). In the planar geometry the wave collapse occurs at higher initial amplitudes 0 ~ 0.1a . Moreover, 
the tendencies to the collapse are different when the initial amplitudes are slightly above the threshold. Namely, 
the curves in Figure 3, planar geometry, are oscillatory, whereas in Figure 2 the curves are similar to ones in the 
case of the explosive instability [17].  

The wave dynamics depends on the values of the dust particle mass at the boundaries; see different curves in 
Figure 2 and corresponding Figure 4, Figure 5. The wave collapse occurs at smaller times t when the lighter 
particles are near the boundary: m2 < m1. Figure 4 and Figure 5 are for the same masses of the particles near the 
center, m1 = 1. The collapse occurs more quickly for the nonuniform distribution of masses m1 ≠ m2 within the 
waveguide, compare Figure 4 (greater masses of the dust particles near the boundary, m2 = 1) and Figure 5 
(smaller masses near the boundary, m2 = 0.5). The dynamics of the plasma wave below the collapse is presented 
in Figure 6. The perturbation of the dust concentration ñ reaches its maximum value at some time moment and 
then decreases there. 
 

 
Figure 3. The dependencies of the maximum values of perturbations of dust concentration ñ on the time t in the planar wa-
veguide of the thickness Lx = 6. For all the cases the dust masses are constant m1 = m2 = 1. Curve 1 is for the initial ampli-
tude a0 = −0.13; curve 2 is for the initial amplitude a0 = −0.12; curve 3 is for the initial amplitude a0 = −0.11; curve 4 is for 
the initial amplitude a0 = −0.10; curve 5 is for the initial amplitude a0 = −0.08.                                        
 

   
(a)                                   (b)                                   (c) 

  
(d)                                   (e) 

Figure 4. The spatiotemporal evolution of the perturbation of the dust concentration above the threshold for a0 = −0.012, 
m1 = m2 = 1 (see curve 1 in Figure 2). Part (a) is at t = 0; part (b) is for t = 4; part (c) is for t = 5; parts (d), (e) are for t = 5.42, 
the general view and the details near the boundary.                                                               



V. Grimalsky et al. 
 

 
94 

    
(a)                                        (b) 

Figure 5. The spatiotemporal evolution of the perturbation of the dust concentration above the threshold for a0 = −0.012, 
m1 = 1, m2 = 0.5 (see curve 3 in Figure 2). Part (a) is at t = 4.5; part (b) is for t = 4.53. The initial pulse is the same as in 
Figure 4(a).                                                                                                   
 

 
(a)                                      (b) 

Figure 6. The spatiotemporal evolution of the perturbation of the dust concentration below the threshold (curve 6 in Figure 
2). Part (a) is the initial distribution at t = 0; part (b) is at t = 8.                                                     
 

 
(a)                                  (b)                                  (c) 

 
(d)                                  (e)                                  (f) 

Figure 7. The spatiotemporal evolution of the pulses in the planar dusty waveguide. The initial data a0 = −0.12 correspond to 
Figure 3, curve 1. Part (a) is the initial distribution at t = 0; part (b), is at t = 2; parts (c), (d) are at t = 4; parts (e), (f) are at 
t = 4.5.                                                                                                   
 

The dynamics of wave collapse in the planar geometry is presented in Figure 7. There is some difference be-
tween the wave dynamics in the cylindrical and planar geometries. In the cylindrical geometry, Figure 4, there 
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are two sharp peaks of the perturbation of the dust concentration in the transverse direction ρ. In the planar 
geometry, Figure 7, there are two peaks in the longitudinal direction z.  

4. Conclusions  
The evolution of initial rectangular pulses of dust sound waves in the cylindrical plasma waveguides with di-
electrics has demonstrated the essential surface nonlinearity near the interface. Under low values of the input 
amplitudes the values of the dust concentrations near the surface dusty plasma-dielectric reach high values, and 
the formation of narrow peaks of the dust concentration occurs. The nonlinearity near the surface ceases to be 
moderate, the compression of these pulses both in longitudinal and transverse directions takes place, and the 
wave collapse can be observed. The dynamics of the wave collapse depends on the distribution of the masses of 
the dust particles within the waveguide.  

The estimated temporal and spatial scales have demonstrated that an appearance of the investigated pheno-
mena of the nonlinear wave collapse could be possible in the dust objects within the atmosphere and in labora-
tory plasmas.  
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