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Abstract 
By the complete discrimination system for polynomials, we classify exact traveling wave solutions 
to the Coupled-Higgs Equation. 
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1. Introduction 
There are many methods to study the exact traveling wave solutions of the nonlinear differential Equations, such 
as the inverse scattering method [1], Jacobi elliptic function expansion method [2], homogeneous balance me-
thod [3], ( )G G′ -expansion method [4], and so on. At the same time, Liu [5] introduced the complete discrim-
ination system method to give the classification of exact traveling wave solutions to some nonlinear equations, 
the method is simple and efficient. Using this method, some new traveling wave solutions were obtained to the 
Zhiber-Shabat Equation [6]. 

In this paper, we focus on the Coupled-Higgs Equation to classify its traveling wave solutions. A. Jabbari et al. 
[4] have got some traveling wave solutions to the Coupled-Higgs Equation. By Liu’s method, we’ll classify ex-
act traveling wave solutions to the Coupled-Higgs Equation. 

2. The Traveling Wave Solutions to the Coupled-Higgs Equation 
The Coupled-Higgs Equation reads as 

2 2 0tt xxu u u u uv− + − = ,                               (1) 
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( )2 0tt xx
xx

v v u+ − = .                                   (2) 

We introduce transformation as follows 

( ) ( ) ( )e ,    ,    ,    iu U v V x kt kx tθ η η η λ θ= = = − = + .                     (3) 

Substituting Equation (3) into Equation (1) and Equation (2) yields nonlinear ordinary differential equation as 
follows 

( ) ( )2 2 2 2 31 2 0k U k U U UVλ λ ′′+ − + + − = ,                        (4) 

( ) ( )2 21 2 0k V U UU′′ ′ ′′+ − + = .                                  (5) 

Integrating Equation (5) twice with respect to η , and setting the integration constant to zero yields 
2

2 1
UV

k
=

+
.                                     (6) 

Substituting Equation (6) into Equation (4) yields the following nonlinear ordinary difference equation 

( )
2

3
2 22 2

1 1

1

kU U U
k λλ

−′′ = +
+

.                             (7) 

Integrating Equation (7) once with respect to η  yields 

( )2 4 2
4 2 0U a U a U a′ = + + ,                              (8) 

where 

( )
2

4 22 22 2

1 1,    
2 1

ka a
k λλ

−
= =

+
,                            (9) 

and 0a  is an arbitrary constant. 
In order to find the traveling wave solutions to Equation (1) and Equation (2), let us solve Equation (8). In this 

article, there are two cases to discuss the exact solutions of Equation (8) according to the coefficient 4a . 
Case 2.1. When 4 0a > , we take the transformation as follows 

( ) ( )
1 1
4 44 1 4,    w a U aη η= = .                            (10) 

Substituting (10) into (8) yields 

1

2 4 2w w pw qη = + + ,                                (11) 

where 
2

02

1 2 ,    
1

kp q a
kλ

+
= ⋅ =

−
.                            (12) 

In order to obtain the solutions to Equation (11), we let 
2w ψ= .                                   (13) 

Substituting (13) into (11) yields 

( )1

2 24 p qηψ ψ ψ ψ= + + .                             (14) 

Furthermore, integrating Equation (14), we have 
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( )
( )1 0

d 2
F
ψ η η

ψ ψ
= ± −∫ ,                                (15) 

where 

( ) 2F p qψ ψ ψ= + + ,                                  (16) 

and 0η  is an integrating constant. Let 2 4p q∆ = −  be discriminant of second order polynomial ( )F ψ , there 
are four cases for the solutions of Equation (15) according to the cases of roots of ( )F ψ . 

Case 2.1.1. 0∆ = , for 0ψ > . If 0p > , then the explicit solution of Equation (15) is 

( )2
1 0tan

2 2
p pψ η η

 
= − 

 
.                               (17) 

If 0p = , then the explicit solution of Equation (15) is 

( )2
1 0

1ψ
η η

=
−

.                                   (18) 

Case 2.1.2. 0∆ > , 0q = , for pψ > − . If 0p > , then the explicit solution of Equation (15) is 

( )2
1 0cothp p pψ η η = − −  .                             (19) 

Case 2.1.3. 0∆ > , 0q ≠ . Suppose that α β γ< < , one of α  and β  and γ  is zero, and others are two 
roots of ( )F ψ . As α ψ β< < , the explicit solution of Equation (15) is 

( ) ( )( )2
1 0sn , mψ α β α γ α η η= + − − − .                        (20) 

When ψ γ> , the explicit solution of Equation (15) is 

( )( )
( )( )

1 0

1 0

sn ,

cn ,

m

m

β γ α η η γ
ψ

γ α η η

− − − +
=

− −
,                          (21) 

where 2m β α
γ α
−

=
−

. 

Case 2.1.4. 0∆ < , as 0ψ > , the explicit solution of Equation (15) is 

( )
1
4

1 0

2

1 cn 2 ,

q
q

q m
ψ

η η
= −

 
+ −  

 

,                           (22) 

where 2 1 1
2 2

pm
q

 
= −  

 
. 

Case 2.2. When 4 0a < , we take the transformation as follows 

( ) ( )
1 1
4 44 1 4,    w a U aη η= − = − .                             (23) 

Substituting (23) into (8) yields 

( )1

2 4 2w w pw qη = − − − ,                                (24) 

where 
2

02

1 2 ,    
1

kp q a
kλ

+
= ⋅ =

−
.                              (25) 
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In order to obtain the solutions to Equation (24), we let 
2w ψ= .                                          (26) 

Substituting (26) into (24) yields 

( )1

2 24 p qηψ ψ ψ ψ= − + + .                                  (27) 

Furthermore, integrating Equation (27), we have 

( )
( )1 0

d 2
F
ψ η η

ψ ψ
= ± −∫ ,                                  (28) 

where 

( ) 2F p qψ ψ ψ= − + + ,                                    (29) 

And 0η  is an integrating constant. Let 2 4p q∆ = +  be discriminant of second order polynomial ( )F ψ , 
there are two cases for the solutions of Equation (28) according to the cases of roots of ( )F ψ . 

Case 2.2.1. 0∆ > , 0q = , for 0 pψ< < , then the explicit solutions of Equation (28) is 

( )2
1 0tanhp p pψ η η = − −  .                               (30) 

Case 2.2.2. 0∆ > , 0q ≠ , this case is completely similar to Case 2.1.3. So the Equation (20) and (21) are 
the explicit solution of Equation (28). 

From the above we know that Equations (17)-(22) and (30) are all possible solutions of Equations (15) and 
(28). According to Equations (13), (10), (6), (3) and (26), (23), (6), (3), we can give the classification of all sin-
gle traveling wave solutions to the Coupled-Higgs Equation with respective parameter conditions as follows: 

( ) ( ) ( )

4
2 2 2

1 0222 2 2

1 1 1 1exp tan
2 11 2 1

k k ku i kx t
kk k

η η
λ λ

  
+ + −  = ± + −     −−  +   

, 

( ) ( )

4
2 2 2

2
1 02 22 2 2

1 1 1 1tan
1 2 1 2 1

k k kv
k k k

η η
λ λ

  
+ + −  = −  − −  +   

, 

( )
( )

( )

1
42

2 2 42 2 2

022 2

1 1 exp
2 1 1

2 1

ku i kx t
k k

k

λ
η η

λ

−
 

− = ± ⋅ ⋅ +    + −  −
+

, 

( )

2 2 2
4

2

022 2

2 1
1

1

2 1

v
k

k

k

λ

η η
λ

= ⋅
−  

− −  + 

, 

( ) ( )
( )

4
2 2

2 2
3 02 2 22 2

2 1 2 11 exp coth 1
1 1 2 1

k ku k i kx t
k k k

η η
λ λ

  
+ −  = ± + + ⋅ − −     − −  +   

, 
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( )
( )

42 2 2
2

3 02 2 22 2

2 1 1 2 1coth 1
1 1 2 1

k k kv
k k k

η η
λ λ

   + + −   = ⋅ − −   − −  +     

, 

( )
( ) ( )

( )

1
442 2

2
4 02 22 2 2 2

1 1exp sn ,
2 1 2 1

k ku i kx t m
k k

α β α γ α η η
λ λ

−    
− −   = ± + ⋅ + − − −         + +     

, 

( )
( )

4
2

2
4 02 22 2

2 1sn ,
1 2 1

kv m
k k

λ α β α γ α η η
λ

   
−   = + − − −   −  +     

, 

( )
( )

( )

( )

4
2

1 022 242

5 22 2 4
2

022 2

1sn ,
2 11 exp

2 1 1cn ,
2 1

k m
kku i kx t

k k m
k

β γ α η η γ
λ

λ
γ α η η

λ

−

  
−  − − − +     + −    = ± + ⋅       + −    − −   +   

, 

( )

( )

4
2

022 2

5 2 4
2

022 2

1sn ,
2 12

1
1cn ,

2 1

k m
k

v
k

k m
k

β γ α η η γ
λ

λ

γ α η η
λ

  
−  − − − +   +   = ⋅

−   
−  − −   +   

, 

( )
( )

( )

1
42

6 22 2 41 2
4

022 2

1 2exp 1
2 1 11 cn 2 ,

2 1

ku i kx t
q k kq m

k

λ
η η

λ

−
 

− = ± + ⋅ −       + −    + −   +   

, 

( )

6 2 41 2
4

022 2

2 2 1
1

11 cn 2 ,
2 1

qv
k

kq m
k

λ

η η
λ

 
 
 
 

= − 
−    −   + −    +     

, 

( ) ( )
( )

4
2 2

2 2
7 02 2 22 2

2 1 2 11 exp 1 tanh
1 1 2 1

k ku k i kx t
k k k

η η
λ λ

  
+ −  = ± + + ⋅ − −     − −  +   

, 

( ) ( )
( ) ( )

4
2 42 2 2

2
7 02 22 2 2 2

2 1 2 1 11 tanh
1 1 2 1

k k kv
k k k

η η
λ λ

   + +  −  = ⋅ − −   − −  +      

. 
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3. Conclusion 
By the complete discrimination system for polynomial method, we have obtained the classification of traveling 
wave solutions to the Coupled-Higgs Equation. These solutions include triangle periodic solutions, rational func- 
tion solution, Jacobi elliptic function periodic solutions, and so on. This method is simple and efficient. 
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