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Abstract 
 
The non-Fourier effect in heat conduction and the coupling effect between temperature and strain rate, be-
came the most significant effects in the nano-scale beam. In the present study, a generalized solution for the 
generalized thermoelastic vibration of a bounded nano-beam resonator induced by ramp type of heating is 
developed and the solutions take into account the above two effects. The Laplace transforms and direct me-
thod are used to determine the lateral vibration, the temperature, the displacement, the stress and the energy 
of the beam. The effects of the relaxation time and the ramping time parameters have been studied with some 
comparisons. 
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1. Introduction 
 
The generalized thermoelasticity theories have been de-
veloped with the aim of removing the paradox of infinite 
speed of heat propagation inherent in the classical dy-
namical coupled thermoelasticity theory (Biot-CTE) [1], 
Lord and Shulman (L-S) [2] obtained a wave-type heat 
equation by postulating a new law of heat conduction to 
replace the classical Fourier’s law. Since the heat equa-
tion of this theory is of the wave-type, it automatically 
ensures finite speeds of propagation for heat and elastic 
waves. The remaining governing equations for this 
theory, namely, the equations of motion and constitutive 
relations, remain the same as those for the coupled 
theory. 

Many attempts have been made recently to investigate 
the elastic properties of nanostructured materials by ato-
mistic simulations. Diao et al. [3] studied the effect of 
free surfaces on the structure and elastic properties of 
gold nanowires by atomistic simulations. Although the 
atomistic simulation is a good way to calculate the elastic 
constants of nanostructured materials, it is only applica-
ble to homogeneous nanostructured materials (e.g., na-
noplates, nanobeams, nanowires, etc.) with limited num-
ber of atoms. Moreover, it is difficult to obtain the elastic 
properties of the heterogeneous nanostructured materials 
using atomistic simulations. For these and other reasons, 
it is prudent to seek a more practical approach. One such 
approach would be to extend the classical theory of elas-

ticity down to the nanoscale by including in it the hither-
to neglected surface/interface effect. For this it is neces-
sary first to cast the latter within the framework of con-
tinuum elasticity. 

Nano-mechanical resonators have attracted considera-
ble attention recently due to their many important tech-
nological applications. Accurate analysis of various ef-
fects on the characteristics of resonators, such as reso-
nant frequencies and quality factors, is crucial for de-
signing high-performance components. Many authors 
have studied the vibration and heat transfer process of 
beams. Kidawa [4] has studied the problem of transverse 
vibrations of a beam induced by a mobile heat source. 
The analytical solution to the problem was obtained us-
ing the Green’s functions method. However, Kidawa did 
not consider the thermoelastic coupling effect. Boley [5] 
analyzed the vibrations of a simply supported rectangular 
beam subjected to a suddenly applied heat input distri-
buted along its span. Manolis and Beskos [6] examined 
the thermally induced vibration of structures consisting 
of beams, exposed to rapid surface heating. They have 
also studied the effects of damping and axial loads on the 
structural response. Al-Huniti et al. [7] investigated the 
thermally induced displacements and stresses of a rod 
using the Laplace transformation technique. Ai Kah Soh 
et al. studied the vibration of micro/nanoscale beam re-
sonators induced by ultra-short-pulsed laser by consider-
ing the thermoelastic coupling term in [8,9].  

When very fast phenomena and small structure di-
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mensions are involved, the classical law of Fourier be-
comes inaccurate. A more sophisticated model is then 
needed to describe the thermal conduction mechanisms 
in a physically acceptable way. Modern technology has 
enabled the fabrication of materials and devices with 
characteristic dimensions of a few nanometers. Examples 
are super-lattices, nanowires, and quantum dots. At these 
length scales, the familiar continuum Fourier law for heat 
conduction is expected to fail due to both classical and 
quantum size effects [10]. Among many applications, the 
studying of the thermoelastic damping in MEMS /NEMS 
has been improved in [11,13].  

It is worthwhile to mention here that in most of the 
earlier studies, mechanical or thermal loading on the 
bounding surface is considered to be in the form of a 
shock. However, the sudden jump of the load is merely 
an idealized situation because it is impossible to realize a 
pulse described mathematically by a step function; even 
very rapid rise-time (of the order of 10–9 s) may be slow 
in terms of the continuum. This is particularly true in the 
case of second sound effects when the thermal relaxation 
times for typical metals are less than 10–9 s [14]. It is thus 
felt that a finite time of rise of external load (mechanical 
or thermal) applied on the surface should be considered 
while studying a practical problem of this nature. Most 
ultrafast heat sources (such as certain lasers) involve the 
emission of a pulse (for example) that heats a material 
over a finite time due to the finite rise time of the pulse. 
Considering the aspect of rise of time, Misra et al. [15] 
and Youssef with many authors investigated many ap-
plications in which the ramp-type heating is used [16- 
22]. 

In this paper, the non-Fourier effect in heat conduction, 
and the coupling effect between temperature and strain 
rate in nanoscale beam will be studied. In the present 
work, a generalized solution for the generalized ther-
moelastic vibration of a nano beam resonator induced by 
ramp type of heating will be developed. The solution 
takes into account the above two effects. The Laplace 
transformation method will be used to determine the lat-
eral vibration, the temperature, the displacement, the 
stress and the energy of the beam. The effects of the re-
laxation time and the ramping time parameters will be 
studied and represented graphically. 
 
2. Problem Formulation 
 
Since beams with rectangular cross-sections are easy to 
fabricate, such cross-sections are commonly adopted in 
the design of NEMS resonators. Consider small flexural 
deflections of a thin elastic beam of length  

( )2L L x L− ≤ ≤ , width 
2 2
b bb y − ≤ ≤ 

 
 and thickness 

2 2
h hh z − ≤ ≤ 

 
, for which the x, y and z axes are de-  

fined along the longitudinal, width and thickness direc-
tions of the beam, respectively. In equilibrium, the beam 
is unstrained, unstressed, and at temperature T0 every-
where [8].  

In the present study, the usual Euler–Bernoulli as-
sumption [8,9] is adopted, i.e., any plane cross-section, 
initially perpendicular to the axis of the beam, remains 
plane and perpendicular to the neutral surface during 
bending. Thus, the displacements are given by 

( ) ( ) ( )
,

, 0, , , , ,
w x t

u z v w x y z t w x t
x

∂
= − = =

∂
   (1) 

Hence, the differential equation of thermally induced 
lateral vibration of the beam may be expressed in the 
form: 

24 2

4 2 2 0T
T

Mw A w
EIx t x
ρ α

∂∂ ∂
+ + =

∂ ∂ ∂
,        (2) 

where E is Young’s modulus, I [= bh3 /12] is the inertial 
moment about x-axis, ρ  is the density of the beam, 

Tα  is the coefficient of linear thermal expansion, 
( ),w x t  the lateral deflection, x is the distance along the 

length of the beam, A hb=  is the cross section area, t is 
the time, and TM  is the thermal moment, which is de-
fined as 

/2

3
/2

12 d
h

T
h

M z z
h

θ
−

= ∫ ,             (3) 

where 0T Tθ = −  is the dynamical temperature incre-
ment of the resonator, in which T(x, z, t) is the tempera-
ture distribution and T0 is the environmental temperature. 
The non-Fourier heat conduction equation has the fol-
lowing form [16-18]: 

2 2 2
0

2 2 2o
C T

e
t k kx z t

υρ βθ θ τ θ
 ∂ ∂ ∂ ∂  + = + +  ∂∂ ∂ ∂   

,   (4) 

where u v we
x y z
∂ ∂ ∂

= + +
∂ ∂ ∂

 is the volumetric strain, where  

Cυ  is the specific heat at constant volume, oτ  is the 
thermal relaxation time, k is the thermal conductivity and  

1 2
TEα

β
ν

=
−

 in which ν  is Poisson’s ratio. 

Where there is no heat flow across the upper and lower  

surfaces of the beam, so that 0
z
θ∂
=

∂
 at 2z h= ± , for  

a very thin beam and assuming that the temperature va-
ries in terms of a ( )sin pz  function along the thickness 
direction, where πp h= , gives: 

( ) ( ) ( )1, , , sinx z t x t pzθ θ= . 
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Hence, Equation (2) gives  

( )
2 /24 2

1
4 2 3 2

/2

12
sin d 0

h
T

h

w A w z pz z
EIx t h x

α θρ

−

∂∂ ∂
+ + =

∂ ∂ ∂ ∫   (5) 

and Equation (4) gives 

( ) ( )

( )

2
21

12

2 2
0

12 2

sin sin

sino

pz p pz
x

C T wpz z
t k kt x

υ

θ
θ

ρ β
τ θ

∂
−

∂
  ∂ ∂ ∂

= + −  ∂ ∂ ∂  

   (6) 

After doing the integrations, Equation (5) takes the 
form 

24 2
1

4 2 2 2

24
0Tw A w

EIx t h x
α θρ
π

∂∂ ∂
+ + =

∂ ∂ ∂
.       (7) 

In Equation (6), we multiply the both sides by z and 
integrating with respect to z from 2h−  to 2h , then 
we obtain 

22 2 2
2 01

1 12 2 2

π
24o
T h wp

t kx t x
βθ

θ τ ηθ
    ∂ ∂ ∂ ∂

− = + −    ∂∂ ∂ ∂    
, (8) 

where 
C
k
υρ

η = .  

Now, for simplicity we will use the following non- 
dimensional variables: 

( ) ( ) ( ) ( )2

21
1

, , , , , , , ,

, ,

o o o o

o
o

x w h c x w h t c t
Ec

E T

η τ η τ

θσσ θ
ρ

′ ′ ′ ′ ′= =

′ ′= = =
  (9) 

Then, we have 
24 2

1
1 24 2 2 0w wA A

x t x
θ∂∂ ∂

+ + =
∂ ∂ ∂

,         (10) 

and 
2 2 2

1
3 1 1 42 2 2o

wA A
tx t x

θ
θ τ θ

  ∂ ∂ ∂ ∂
− = + −  ∂∂ ∂ ∂  

,   (11) 

where 
2

2
1 2 3 42 2

2412 , , ,
24

t oT hA A A p A
kh h

α π β
ηπ

= = = = , 

and we have canceled the prime for convenient. 
 
3. Formulations the Problem in the Laplace 

Transform Domain 
 
Applying the Laplace transform for Equations (10) and 
(11) defined by the formula  

( ) ( ) ( )
0

e dstf s L f t f t t
∞

−= =   ∫ . 

Hence, we obtain the following system of differential 
equations 

24
2 1

1 24 2

dd 0
d d

w A s w A
x x

θ
+ + = ,         (12) 

and 

( )
2 2

21
3 1 1 42 2

d d
d do

wA s s A
x x
θ

θ τ θ
 

− = + − 
 

.    (13) 

We have considered all the initial states of variables 
were zero, i.e. 

( ) ( ) ( ) ( )1
1

d ,0 d ,0
,0 ,0 0

d d
x w x

x w x
x x

θ
θ = = = =   (14) 

We can re-write the above system of equations in the 
form 

24
2 1

1 24 2

dd 0
d d

A s w A
x x

θ 
+ + = 

 
,        (15) 

and 
2 2

1 1 22 2

d d
d d

w
x x

α θ α
 

− = − 
 

,          (16) 

where 

( ) ( )2 2
1 3 2 4,o oA s s s s Aα τ α τ= + + = +  

By eliminating w  from the above system of equation, 
we get 

( )6 4 2 2 2
1 2 2 1 1 1 0D A D A s D A s wα α α − + + − =  ,  (17) 

where 1θ  satisfies the same equation, i.e.  

( )6 4 2 2 2
1 2 2 1 1 1 1 0D A D A s D A sα α α θ − + + − =  .  (18) 

The characteristic equation can be presented as 
6 4 2 0m nλ λ λ− + − =           (19) 

The roots of this equation, namely, 1λ± , 2λ±  and 
3λ± , satisfy the following relations 

2 2 2
1 2 3 1 2 2Aλ λ λ α α+ + = + =  , 

2 2 2 2 2 2 2
1 2 2 3 1 3 1A s mλ λ λ λ λ λ+ + = = , 

2 2 2 2
1 2 3 1 1A s nλ λ λ α+ + = = . 

We can consider the solution take the form 

( )
6

1
expi i

i
w C xλ

=

= ∑ ,           (20) 

and 

( )
6

1
1

expi i
i

E xθ λ
=

= ∑ ,           (21) 
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where iC  and iE  (i = 1, 2,  , 6) are some parame-
ters depend, only, on s. 

Using Equation (16) and (21), we get 

( )
2

2
2

1

i i
i

i

C
E

α λ
λ α

= −
−

, 

this gives 

( ) ( )
26

1 2 2
1 1

expi
i i

i i

C x
λ

θ α λ
λ α=

= −
−

∑ .      (22) 

Now, to get the values of the constants iC  and iE  
we will consider the two ends of the micro-beams are 
clamped, then the boundary conditions are [8,9]: 

( ) ( )2

2

d ,
, 0

d
w L t

w L t
x
±

± = = ,         (23) 

and loaded thermally by ramp-type heating, which give  

( )1 0 0
0

0

0 for 0

, for 0

1 for

t
tL t t t
t

t t

θ θ

 ≤
 
 ± = < < 
 

≥  

,       (24) 

where 0t  is non-negative constant and is called ramp- 

type parameter and 0θ  is constant [18]. 
After using Laplace transform, the above conditions 

take the forms 

( ) ( )2

2

d ,
, 0

d
w L s

w L s
x
±

± = = ,         (25) 

and 

( ) ( )
0

0
1 2

0

1 t ses F s
t s
θ

θ
− −

= = 
 

.        (26) 

Applying the conditions (25) and (26) into Equations 
(20) and (22), we obtain 

( )
3

1
cosh 0i i

i
C Lλ

=

=∑ ,           (27) 

( )
3

2

1
cosh 0i i i

i
C Lλ λ

=

=∑ ,          (28) 

( ) ( ) ( )23

2
1 21

coshi
i i

i i

F s
C L

λ
λ

αλ α=

= −
−

∑ .     (29) 

By solving the above system of linear algebraically 
equations, we get 

The lateral deflection  

( ) ( ) ( )
( )( )

( ) ( )
( )( )

( ) ( )
( )( )

3 31 1 2 2
2 2 2 2 2 2 2 2 2 2 2 2

1 2 1 3 1 2 3 2 1 3 2 3

cosh coshcosh cosh cosh cosh
,

x Lx L x L
w x s G

λ λλ λ λ λ

λ λ λ λ λ λ λ λ λ λ λ λ

 
 = + +
 − − − − − − 

           (30) 

The temperature 

( ) ( ) ( ) ( )
( )( )( )

( ) ( )
( )( )( )

( ) ( )
( )( )( )

2 2
1 1 1 2 2 2

2 2 2 2 2 2 2 2 2 2 2
1 1 1 2 1 3 2 1 1 2 3 2

2
3 3 3

2 2 2 2 2
3 1 1 3 2 3

cosh cosh cosh cosh
, , sin

cosh cosh

x L x L
x z s G pz

x L

λ λ λ λ λ λ
θ α

λ α λ λ λ λ λ α λ λ λ λ

λ λ λ

λ α λ λ λ λ


= − +
 − − − − − −


+
− − − 

,                    (31) 

The displacement 

( ) ( ) ( )
( )( )

( ) ( )
( )( )

( ) ( )
( )( )

3 3 31 1 1 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2

1 2 1 3 1 2 3 2 1 3 2 3

sinh coshsinh cosh sinh cosh
, ,

x Lx L x L
u x z s zG

λ λ λλ λ λ λ λ λ

λ λ λ λ λ λ λ λ λ λ λ λ

 
 = − + +
 − − − − − − 

,     (32) 

 
where  

( )( )( )( )2 2 2
1 1 1 2 1 3

1 2

F s
G

α λ α λ α λ

α α

− − −
= . 

 
4. The Stress and the Strain Energy  
 
The stress on the x-axis, according to Hooke’s law is 

( ), ,xx T
ux z t E
x

σ α θ∂ = − ∂ 
,          (33) 

By using the non-dimensional variables in (9), we ob-
tain the stress in the form 

( ) 0, ,xx T
ux z t T
x

σ α θ∂
= −
∂

.          (34) 

After using Laplace transform, the above equation 
gives 
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( ) 0, ,xx T
ux z s T
x

σ α θ∂
= −
∂

.          (35) 
By using Equations (31) and (32) with equation (35), 

we get 

( ) ( ) ( )
( )( )

( ) ( )
( )( )

( ) ( )
( )( )

( ) ( ) ( )
( )( )( )

( ) ( )
( )

2 2
1 1 1 2 2 2

2 2 2 2 2 2 2 2
1 2 1 3 1 2 3 2

2
3 3 3

2 2 2 2
1 3 2 3

2 2
1 1 1 2 2 2

0 2 2 2 2 2 2 2
1 1 1 2 1 3 2 1 1

cosh cosh cosh cosh
, ,

cosh cosh
         

cosh cosh cosh cosh
sin

xx

T

x L x L
x z s z G

x L

x L x L
T G pz

λ λ λ λ λ λ
σ

λ λ λ λ λ λ λ λ

λ λ λ

λ λ λ λ

λ λ λ λ λ λ
α α

λ α λ λ λ λ λ α λ


= − +
 − − − −


+
− − 

+ +
− − − − ( )( )

( ) ( )
( )( )( )

2 2 2 2
2 3 2

2
3 3 3

2 2 2 2 2
3 1 1 3 2 3

cosh cosh
                              

x L

λ λ λ

λ λ λ

λ α λ λ λ λ



 − −


+
− − − 

       (36) 

 
The energy which is generated on the beam is given 

by 
23

2
, 1

1 1 1
2 2 2ij ij xx xx xx

i j

wW e e z
x

σ σ σ
=

∂
= = = −

∂
∑ ,    (37) 

or, we can write as follows: 

( )
2

1 1
2

1
2 xx

wW z L L
x

σ− −  ∂ = −     ∂   
,      (38) 

where ( ) ( )1L f s f t−   =   is the Laplace inverse trans-
form. 
 
5. Numerical Inversion of the Laplace 

Transform 
 
In order to determine the solutions in the time domain, 
the Riemann-sum approximation method is used to ob-
tain the numerical results. In this method, any function in 
Laplace domain can be inverted to the time domain as  

( ) ( ) ( )
1

1 Re 1
2

t N n

n

e inf t f f
t t

κ πκ κ
=

  = + − +    
∑   (39)  

where Re is the real part and i is imaginary number unit. 
For faster convergence, numerous numerical experiments 
have shown that the value of κ  satisfies the relation 

4.7tκ ≈  [23]. 
 
6. Numerical Results and Discussion 
 
Now, we will consider a numerical example for which 
computational results are given. For this purpose, Silicon 
is taken as the thermoelastic material for which we take 
the following values of the different physical constants 
[24]:  

( )156K W mK= , ( ) 6 12.59 10T kα − −= , 
32330kg mρ = , 0 293T k= , 

( )713C J kgKυ = 169E GPa= , 0.22υ = . 

The aspect ratios of the beam are fixed as 10L h =  
and 1 2b h = , when h is varied, L and b change accor-
dingly with h. 

For the nanoscale beam, we will take the range of the 
beam length ( ) 121 100 10L m−− × . The original time t 
and the ramping time parameter 0t  will be considered 
in the picoseconds ( ) 121 100 10 sec−− ×  and the relaxa-
tion time 0τ  in the range ( ) 141 100 10 sec−− × . 

The figures were prepared by using the non-dimen- 
sional variables which are defined in (9) for a wide range 
of beam length 2L when 1.0L = , 0 1.0θ =  6z h=  
and 0.15t = . 

In Figures 1-5, we represented the lateral vibration, 
the temperature, the displacement, the stress and the 
energy of the beam at different values of the relaxation 
time when 0 0.0τ =  (Biot model) and 0 0.02τ =  (L-S 
model) and we have found that, the relaxation time has 
significant effects on all the studied fields. In the context 
of L-S model, the relaxation time gives values of the 
lateral vibration, the temperature, the displacement, the 
stress and the energy less than their values in the context 
of Biot model which is very obvious in the peek points.  

We can say that, in the context of the generalized 
thermoelasticity the speed of the wave propagation of all 
the studied fields are finite and the damping of the strain 
energy increasing. 

In Figures 6-10, we represented the lateral vibration, 
the temperature, the displacement, the stress and the 
energy of the beam at different values of the ramping 
time parameter when ( ) ( )0 0.10 0.15t t= < = ,  

0 0.15t t= =  and ( ) ( )0 0.20 0.15t t= > =  in the context  
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Figure 1. The lateral deflection w for L-S and Biot theories. 
 

 
Figure 2. The temperature for L-S and Biot theories. 

 

 
Figure 3. The displacement for L-S and Biot theories. 

 
Figure 4. The stress for L-S and Biot theories. 

 

 
Figure 5. The energy for L-S and Biot theories. 

 

 
Figure 6. The lateral deflection w at different time of 
ramping parameter. 
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Figure 7. The temperature at different time of ramping 
parameter. 
 

 
Figure 8. The displacement at different time of ramping 
parameter. 
 

 
Figure 9. The stress at different time of ramping parameter. 

 
Figure 10. The energy at different time of ramping para-
meter. 
 
of L-S model. 

We have found that, the ramping time parameter has 
significant effects on all the studied fields. The increas-
ing in the value of the ramping time parameter causes 
decreasing in the values of the lateral vibration, the tem-
perature, the displacement, the stress and the energy 
which are very obvious in the peek points of the curves. 
Also, the damping of the strain energy is increases when 
the ramping time parameter increases. 
 
7. Conclusions 
 
This paper has investigated the vibration characteristics 
of the deflection, the temperature, the displacement, the 
stress and the strain energy of an Euler–Bernoulli beam 
induced by a ramp type heating. An analytical direct 
method and numerical technique based on the Laplace 
transformation has been used to calculate the vibration of 
the deflection, the temperature, the displacement, the 
stress and the strain energy. The effects of the relaxation 
time and the ramping time parameter on all the studied 
fields have been shown and represented graphically. The 
non-Fourier law of heat conduction gives a finite speed 
of wave propagation and increases the damping of the 
strain energy. 
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