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Abstract 
We revise some mathematical morphological operators such as Dilation, Erosion, Opening and 
Closing. We show proofs of our theorems for the above operators when the structural elements 
are partitioned. Our results show that structural elements can be partitioned before carrying out 
morphological operations. 
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1. Introduction 
Mathematical morphology is the theory and technique for the analysis and processing of geometrical structures, 
based on set theory, lattice theory, topology, and random functions. We consider classical mathematical mor- 
phology as a field of nonlinear geometric image analysis, developed initially by Matheron [1], Serra [2] and their 
collaborators, which is applied successfully to geological and biomedical problems of image analysis. The basic 
morphological operators were developed first for binary images based on set theory [1] [2] inspired by the work 
of Minkowski [3] and Hadwiger [4]. They were implemented for gray level images based on local min/max 
operators and level sets [2] [5] or on fuzzy sets [6] [7]. They were also implemented for gray level images with 
weighted min/max operators using a geometric interpretation based on the umbra approach of Sternberg [8] [9] 
which was algebraically equivalent to maxplus convolutions. 

In the development of mathematical morphology in the mid-1960s by Georges Matheron and Jean Serra, they 
heavily stressed the mathematical formalism on mathematical morphology, and in the work of Haralick, Sternberg 
and Zhuang [10], the algebraic structure of morphological operators was given. 
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In this paper, we outline in details the mathematical morphological operators and their algebraic structures 
when they are linked with union and intersection. We show that the partitioning of structural element before 
morphological operations is possible. 

2. Preliminaries 
2.1. Definitions 
The following definitions are important for our purpose. 

2.1.1. Dilation 
Let the image set X and the structuring element B be subsets of the discrete space 2Z : 2X Z⊂ , 2B Z⊂ . The  
dilation of X by B is defined as { }2 : ;X B c x b Z x X b B⊕ = = + ∈ ∈ ∈ ; or the Dilation of a binary image A by  

structure element B, is { }for andA B a b a A b B⊕ = + ∈ ∈ . 

The dilation transform generally causes image objects to grow in size. From the definitions above, dilation is 
equivalent to a union of translates of the original image with respect to the structure element, that is,  

bb BA B A
∈

⊕ =


. 

2.1.2. Erosion 
Let the image set X and the structuring element B be subsets of the discrete space 2Z : 2X Z⊂ , 2B Z⊂ . The  
erosion of X by B is defined as { }2 : , whereX B c Z b B x X c x b= ∈ ∀ ∈ ∃ ∈ = − ; or the Erosion of a binary  

image A by structure element B , is { }A B p p b A b B= + ∈ ∀ ∈ . 

Similarly erosion transform allows image objects to shrink in size, that is, bb BA B A−∈
=


 . 

2.1.3. Opening 
Let the image set X and the structuring element B be subsets of the discrete space 2Z : 2X Z⊂ , 2B Z⊂ . The  
Opening of X by B is defined as ( )X B X B B= ⊕  ; or the Opening of a binary image A by structure  

element B, is ( )A B A B B= ⊕  . 

2.1.4. Closing 
Let the image set X and the structuring element B be subsets of the discrete space 2Z : 2X Z⊂ , 2B Z⊂ . The  
Closing of X by B is defined as ( )X B X B B• = ⊕  ; or the Closing of a binary image A by structure element  

B, is ( )A B A B B• = ⊕  . 

2.2. Algebraic Properties of Dilation and Erosion 

We note that Dilation is commutative and associative, that is, A B B A⊕ = ⊕  and ( ) ( )A B C A B C⊕ ⊕ = ⊕ ⊕ , 
where as Erosion is non-commutative and non-associative, that is, A B B A≠   and  
( ) ( )A B C A B C≠     respectively. 

Furthermore, Dilation and Erosion are both translation invariant, that is, if x  is a vector belonging to A and  
B ( x A∈ , x B∈ ), then ( )x x xA B A B A B⊕ = ⊕ = ⊕  and ( )x x xA B A B A B= =   . Also both Dilation and  

Erosion are increasing in A, that is, if an image set 1A  is a subset of 2A  ( )1 2A A⊂ , then 1 2A B A B⊕ ⊂ ⊕   
and 1 2A B A B⊂  . However, Erosion is decreasing in B, that is, if a structuring element 1B  is a subset of  

2B  ( )1 2B B⊂ , then 1 2A B A B⊃  . Dilation and Erosion transforms are duals of each other, that is,  

( )c cA B A B⊕ =


  and ( )c cA B A B= ⊕


 . Dilation and Erosion are also not the inverse of each other, that is,  

( )A B B A⊕ ≠  and ( )A B B A⊕ ≠ . Both the dilation and erosion transforms have an identity set, I, such  
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that A I A⊕ =  and A I A= . Dilation transform has an empty set, that is, ∅  such that A⊕∅ =∅ . 

2.3. Algebraic Properties of Opening and Closing 

We have Opening and Closing transforms as duals of each other, ( )c cA B A B= •


  and ( )c cA B A B• =


   

but Opening and Closing are not the inverse of each other, ( )A B B A• ≠  and ( )A B B A• ≠ . Also both  
Opening and Closing are translation invariant, if x is a vector belonging to A and B, then  

( )x x xA B A B A B= =    and ( )x x xA B A B A B• = • = • . The opening transform is anti-extensive, the  

Opening of A by a structuring element B is always contained in A, regardless of B ( )A B A⊆ . The Closing  
transform is extensive, the Closing of A by a structuring element B always contains A, regardless of B  
( )A A B⊆ • . 

Furthermore, Opening and Closing are both increasing in A. If an image set 1A  is a subset of or equal to 2A   

( )1 2A A⊆ , then 1 2A B A B⊆   and 1 2A B A B• ⊆ •  but only Opening is decreasing in B, if a structuring  

element 1B  is a subset of 2B  ( )1 2B B⊂ , then 1 2A B A B⊃  . Finally, opening and Closing transforms are  
both idempotent, A B B A B=    and A B B A B• • = • . However if X is unchanged by opening with B, X is  
said to be open, whereas if X is unchanged by closing with B, X is said to be closed. 

3. Results 
In this section we present unions and intersections of Dilation, Erosion, Opening and Closing of two different 
sets and their extensions. The following theorems and their proofs will help us to describe the various results.  

The morphological operators with n distinct sets  
 
Theorem 1 (The union of Dilation with n differents sets)  
If 1 2 3 for 2nA A A A A n= ≥    
Then ( ) ( ) ( ) ( )1 2 3 nA B A B A B A B A B⊕ = ⊕ ⊕ ⊕ ⊕    
Proof. 
If 1 2A A A=   
Then  

( ) ( ) { } ( )

( )

1 2 1 2 1 2 1 2

1 2

b b b b b
b B b B b B b B

A B A B A A A A A A

A A B A B
∈ ∈ ∈ ∈

⊕ ⊕ = = =

= ⊕ = ⊕

   



   

 

This implies ( ) ( ) ( )1 2 1 2A B A A B A B A B⊕ = ⊕ = ⊕ ⊕   
Assume that if 1 2 3 for 2kA A A A A k= ≥    
Then ( ) ( ) ( ) ( )1 2 3 kA B A B A B A B A B⊕ = ⊕ ⊕ ⊕ ⊕    
Now we show that if 1 2 3 1k kA A A A A A +=      
Then  

( )
( )
( ) ( )
( ) ( ) ( ) ( ) ( )

1 2 3 1

1 2 3 1

1 2 3 1

1 2 3 1

k k

k k

k k

k k

A B A A A A A B

A A A A A B

A A A A B A B

A B A B A B A B A B

+

+

+

+

⊕ = ⊕

 = ⊕ 
 = ⊕ ⊕ 

= ⊕ ⊕ ⊕ ⊕ ⊕

   

   

   

   

 

 
Theorem 2 (The intersection of Dilation with n different sets)  

If 1 2 3 for 2nA A A A A n= ≥    
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Then ( ) ( ) ( ) ( )1 2 3 nA B A B A B A B A B⊕ = ⊕ ⊕ ⊕ ⊕    
Proof. 
If 1 2A A A=   
Then  

( ) ( ) { } ( )

( )

1 2 1 2 1 2 1 2

1 2

b b b b b
b B b B b B b B

A B A B A A A A A A

A A B A B
∈ ∈ ∈ ∈

⊕ ⊕ = = =

= ⊕ = ⊕

   



   

 

This implies ( ) ( ) ( )1 2 1 2A B A A B A B A B⊕ = ⊕ = ⊕ ⊕   
Assume that if 1 2 3 for 2kA A A A A k= ≥    
Then ( ) ( ) ( ) ( )1 2 3 kA B A B A B A B A B⊕ = ⊕ ⊕ ⊕ ⊕    
Now we show that if 1 2 3 1k kA A A A A A +=      
Then  

( )
( )
( ) ( )
( ) ( ) ( ) ( ) ( )

1 2 3 1

1 2 3 1

1 2 3 1

1 2 3 1

k k

k k

k k

k k

A B A A A A A B

A A A A A B

A A A A B A B

A B A B A B A B A B

+

+

+

+

⊕ = ⊕

 = ⊕ 
 = ⊕ ⊕ 

= ⊕ ⊕ ⊕ ⊕ ⊕

   

   

   

   

 

 
Theorem 3 (The union of Erosion with n distinct sets)  
If 1 2 3 for 2nA A A A A n= ≥    
Then ( ) ( ) ( ) ( )1 2 3 nA B A B A B A B A B=         
Proof. 
If 1 2A A A=   
Then  

( ) ( ) { } ( )

( )

1 2 1 2 1 2 1 2

1 2

b b b b b
b B b B b B b B

A B A B A A A A A A

A A B A B

− − − − −
∈ ∈ ∈ ∈

= = =

= =

   



   

 

 
 

This implies ( ) ( ) ( )1 2 1 2A B A A B A B A B= =      
Assume that if 1 2 3 for 2kA A A A A k= ≥    
Then ( ) ( ) ( ) ( )1 2 3 kA B A B A B A B A B=         
Now we show that if 1 2 3 1k kA A A A A A +=      
Then  

( )
( )
( ) ( )
( ) ( ) ( ) ( ) ( )

1 2 3 1

1 2 3 1

1 2 3 1

1 2 3 1

k k

k k

k k

k k

A B A A A A A B

A A A A A B

A A A A B A B

A B A B A B A B A B

+

+

+

+

=

 =  
 =  

=

   

   

   

   

 



 

    

 

 
Theorem 4 (The intersection of Erosion with n distinct sets)  
If 1 2 3 for 2nA A A A A n= ≥    
Then ( ) ( ) ( ) ( )1 2 3 nA B A B A B A B A B=         
Proof. 
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If 1 2A A A=   
Then  

( ) ( ) { } ( )

( )

1 2 1 2 1 2 1 2

1 2

b b b b b
b B b B b B b B

A B A B A A A A A A

A A B A B

− − − − −
∈ ∈ ∈ ∈

= = =

= =

   



   

 

 
 

This implies ( ) ( ) ( )1 2 1 2A A B A B A B=     
Assume that if 1 2 3 for 2kA A A A A k= ≥    
Then ( ) ( ) ( ) ( )1 2 3 kA B A B A B A B A B=         
Now we show that if 1 2 3 1k kA A A A A A +=      
Then  

( )
( )
( ) ( )
( ) ( ) ( ) ( ) ( )

1 2 3 1

1 2 3 1

1 2 3 1

1 2 3 1

k k

k k

k k

k k

A B A A A A A B

A A A A A B

A A A A B A B

A B A B A B A B A B

+

+

+

+

=

 =  
 =  

=

   

   

   

   

 



 

    

 

 
Theorem 5 (The union of Opening with n different sets)  
If 1 2 3 for 2nA A A A A n= ≥    
Then ( ) ( ) ( ) ( )1 2 3 nA B A B A B A B A B=         
Proof. 
If 1 2A A A=   
Then  

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

1 2 1 2 1 2

1 2 1 2

A B A B A B B A B B A B A B B

A A B B A A B A B

= ⊕ ⊕ = ⊕  
= ⊕ = =  

    

   

   


 

This implies ( ) ( ) ( )1 2 1 2A B A A B A B A B= =       
Assume that if 1 2 3 for 2kA A A A A k= ≥    
Then ( ) ( ) ( ) ( )1 2 3 kA B A B A B A B A B=         
Now we show that if 1 2 3 1k kA A A A A A +=      
Then  

( )
( )
( ) ( )
( ) ( ) ( ) ( ) ( )

1 2 3 1

1 2 3 1

1 2 3 1

1 2 3 1

k k

k k

k k

k k

A B A A A A A B

A A A A A B

A A A A B A B

A B A B A B A B A B

+

+

+

+

=

 =  
 =  

=

     

    

     

        

 

 
Theorem 6 (The intersection of Opening with n different sets)  
If 1 2 3 for 2nA A A A A n= ≥    
Then ( ) ( ) ( ) ( )1 2 3 nA B A B A B A B A B=         
Proof.  
If 1 2A A A=   
Then  
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( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

1 2 1 2 1 2

1 2 1 2

A B A B A B B A B B A B A B B

A A B B A A B A B

= ⊕ ⊕ = ⊕  
= ⊕ = =  

    

   

   


 

This implies ( ) ( ) ( )1 2 1 2A B A A B A B A B= =       
Assume that if 1 2 3 for 2kA A A A A k= ≥    
Then ( ) ( ) ( ) ( )1 2 3 kA B A B A B A B A B=         
Now we show that if 1 2 3 1k kA A A A A A +=      
Then  

( )
( )
( ) ( )
( ) ( ) ( ) ( ) ( )

1 2 3 1

1 2 3 1

1 2 3 1

1 2 3 1

k k

k k

k k

k k

A B A A A A A B

A A A A A B

A A A A B A B

A B A B A B A B A B

+

+

+

+

=

 =  
 =  

=

     

    

     

        

 

 
Theorem 7 (The union of Closing with n distinct sets)  
If 1 2 3 for 2nA A A A A n= ≥    
Then ( ) ( ) ( ) ( )1 2 3 nA B A B A B A B A B• = • • • •    
Proof.  
If 1 2A A A=   
Then  

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

1 2 1 2 1 2

1 2 1 2

)A B A B A B B A B B A B A B B

A A B B A A B A B

• • = ⊕ ⊕ = ⊕ ⊕  
= ⊕ = • = •  

  

 

  


 

This implies ( ) ( ) ( )1 2 1 2A B A A B A B A B• = • = • •   
Assume that if 1 2 3 for 2kA A A A A k= ≥    
Then ( ) ( ) ( ) ( )1 2 3 kA B A B A B A B A B• = • • • •    
Now we show that if 1 2 3 1k kA A A A A A +=      
Then  

( )
( )
( ) ( )
( ) ( ) ( ) ( ) ( )

1 2 3 1

1 2 3 1

1 2 3 1

1 2 3 1

k k

k k

k k

k k

A B A A A A A B

A A A A A B

A A A A B A B

A B A B A B A B A B

+

+

+

+

• = •

 = • 
 = • • 

= • • • • •

   

   

   

   

 

 
Theorem 8 (The intersection of Closing with n distinct sets)  
If 1 2 3 for 2nA A A A A n= ≥    
Then ( ) ( ) ( ) ( )1 2 3 nA B A B A B A B A B• = • • • •    
Proof. 
If 1 2A A A=   
Then  

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

1 2 1 2 1 2

1 2 1 2

A B A B A B B A B B A B A B B

A A B B A A B A B

• • = ⊕ ⊕ = ⊕ ⊕  
= ⊕ = • = •  
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This implies ( ) ( ) ( )1 2 1 2A B A A B A B A B• = • = • •   
Assume that if 1 2 3 for 2kA A A A A k= ≥    
Then ( ) ( ) ( ) ( )1 2 3 kA B A B A B A B A B• = • • • •    
Now we show that if 1 2 3 1k kA A A A A A +=      
Then  

( )
( )
( ) ( )
( ) ( ) ( ) ( ) ( )

1 2 3 1

1 2 3 1

1 2 3 1

1 2 3 1

k k

k k

k k

k k

A B A A A A A B

A A A A A B

A A A A B A B

A B A B A B A B A B

+

+

+

+

• = •

 = • 
 = • • 

= • • • • •

   

   

   

   

 

4. Conclusion 
We have shown that Dilation, Erosion, Opening and Closing of two or more sets with the same structural element 
and carrying out the union of the outcome is the same as taking the union of the two or more sets and operating 
the results with the structural element. The above result also holds for the intersection. These operators show 
ways of partitioning the structural element in order to carry out the morphological operation with ease. Further- 
more, the results above give a simplification of morphological operations when dealing with lots of sets with the 
same structural element. 
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