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Abstract 
 
In the present work, and along the lines of Hermann, ScR theory is applied to a finite one-dimensional square 
well potential problem. The aim is to show that scale relativity theory can reproduce quantum mechanical 
results without employing the Schrödinger equation. Some mathematical difficulties that arise when obtain-
ing the solution to this problem were overcome by utilizing a novel mathematical connection between ScR 
theory and the well-known Riccati equation. Computer programs were written using the standard MATLAB 
7 code to numerically simulate the behavior of the quantum particle in the above potential utilizing the solu-
tions of the fractal equations of motion obtained from ScR theory. Several attempts were made to fix some of 
the parameters in the numerical simulations to obtain the best possible results in a practical computer CPU 
time within limited local computer facilities. Comparison of the present results with the corresponding re-
sults obtained from conventional quantum mechanics by solving the Schrödinger equation, shows very good 
agreement. This agreement was improved further by optimizing the parameters used in the numerical simu-
lations. This represents a new example where scale relativity theory, based on a fractal space-time concept, 
can accurately reproduce quantum mechanical results without invoking the Schrödinger equation. 
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1. Introduction 
 
The extension of the principle of relativity gives new 
theory of relativity, which is the scale relativity (ScR) 
theory as introduced by Nottale [1-3] in 1993. This the-
ory states that: “the fundamental laws of nature apply 
whatever the state of scale of the coordinate system”. 
The state of a reference system is characterized by the 
resolutions at which this system is observed. It can be 
defined only in a relative way. The main idea of ScR 
theory is to give up the arbitrary hypothesis of differen-
tiability of space-time. This theory reformulated quantum 
mechanics from first principles leading to the covariance 
and geodesic equations by considering a particle as a 
geodesic in fractal space-time. ScR theory applies in the 
three domains of microphysics, cosmology and complex 
systems [2-9]. 

As far as quantum mechanics is concerned, Nottale 

and co-workers were able to apply the theory to solve 
many problems, especially those related to the concep-
tual and interpretation aspects. In this connection, we 
mention the work on the derivation of the postulates of 
quantum mechanics from the first principles of the ScR 
theory [10]. In terms of the results of this work, all 
quantum mechanics and not only the Schrödinger equa-
tion, arises as a direct consequence of the fractality of 
space-time. The extension of the ScR theory to the deri-
vation of the main equations of relativistic quantum me-
chanics [11] and the relationship between the classical 
and quantum regimes [12] have been also discussed on 
the basis of the ScR theory, among other important con-
sequences and implications. With all these far reaching 
aspects of the theory, direct investigations which would 
shed light on the basic workings of the ScR theory as 
formulated by Nottale seem to be warranted. 

In this regard, Hermann [13] was the first, and to our 
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knowledge, the only researcher, who directly applied the 
fractal equations of motion obtained from ScR theory in 
terms of a large number of explicit numerically simu-
lated trajectories for the case of the quantum-mechanical 
problem of a free particle in an infinite one-dimensional 
box [14-17]. He constructed a probability density from 
these trajectories and recovered in this way the solution 
of the Schrödinger equation without explicitly using it. 
The results of this work as originally obtained by Hermann 
[13] are considered as pioneering in this respect since 
they show the importance of the direct application of 
ScR theory to quantum systems to reveal how quantum 
behavior arises from the fractality of space-time. They 
also demonstrate the validity of this theory and lay the 
ground for the numerical methods needed in such appli-
cations. 

It is believed that the results of more applications are 
important to prove the direct validity of ScR theory in 
more general cases and not only in a single isolated case 
as done by Hermann [13]. Besides, such applications are 
expected to reveal some novel concepts, such as the 
connection between ScR theory and the Riccati equation 
[18-21] as revealed in the present work and not observed 
by Hermann [13] before. 
 
2. Equation of Motion 
 
As for a particle in an infinite square well potential, one 
may start with the complex Newton Equation [10]: 

ð

dt
u m  V                  (1) 

where u is a scalar potential and V is a complex velocity, 
then separate this equation into real and imaginary parts. 
Also, for this problem the average classical velocity v of 
the particle is expected to be zero [13]. Then, the equa-
tions of motion reduce to the forms: 

( . )

0
d

D U U U u

U
t

      


 
 

 
           (2) 

where U is the imaginary part of complex velocity and D 
is the diffusion coefficient. If one takes the 1st of Equa-
tions (2) and rewrite it for one-dimension as: 

     21 1

2
DU x U x u x

x x m x

        
     (3) 

then, integrating, one obtains: 

     2
1

1 1

2
D U x U x c u x

x m


  


        (4) 

where c1 is a constant of integration. According to 
Hermann’s Scale-Relativity method [13], c1=E/m. Then, 

Equation (4) can be written in the form: 

     2d 2

d

m
U x U x u x E

x
   

 
       (5) 

where 
2

D
m




. Equation (5) has the form of a Riccati 

Equation [18,19]. To solve this equation, one may trans-
form it into a 2nd order differential equation [18,19] of 
the form, 

     2 0ry x r q x y x                 (6) 

where [18,19], 

   
 

1 y x
U x

r y x


                      (7) 

and  y x  is an arbitrary function of x. From equation 

(5), it follows that: 

m
r  


;    2
q x u x E  


          (8) 

Using Equation (8), Equation (6) becomes, 

      
2

2 2

d 2
0

d

m
y x u x E y x

x
 




x

      (9) 

Depending on the values of E, there are two general 
classes for the solution of Equation (9) [14,22,23] which 
are: 
 Bound state solution if 0E u ; the particle is con-

fined to the region of potential well. 
 Free particle state solution if 0E u ; the particle is 

free to reach x = ± . 
In the present problem, the case 0  is assumed. 

There are three regions of potential in the problem of a 
finite square well that are [14,22]: 

E u

 
0       

0

u at a

u x at a x a

u at x a




   
   0 

           (10) 

Then, the general solutions of Equation (9) are given 
by [14-17,23]: 

 
 

 

1

2

3

cos    sin

Kx Kx

Kx Kx

y x Ge G e for x a

y x A x B x for a x a

y x H e He for a x

 





        


    

 

 (11) 
where G, G, A, B, H and H are arbitrary constants, 

κ 22 /mE   and   2
02K m u E  / . Applying 

the boundary conditions at x  ± , this leads to  y x  
 0. Then, one can rewrite Equations (11) as: 
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 

 
 

1

2

3

cos sin

Kx

Kx

y x Ge

y x A x B x

y x He

 




  


 

        (12) 

The next step is to apply the matching conditions at 
the boundaries between regions, which require that both 
function and its derivative be continuous. In this way, 
one gets a set of four homogeneous linear equations with 
four unknowns [19]:  

(1) 

cos sin

sin cos

Kx

Ka

Ge A a B a
for x a

KGe A a B a

 

   





    
  

 

(13) 

(2) 

cos sin

sin cos

Ka

Ka

A a B a He
for x a

A a B a KHe

 

   





   
    

 

(14) 
These equations can be rewritten in matrix form as: 

cos sin 0

sin cos 0
0

cos sin 0

cos cos 0

Ka

Ka

Ka

Ka

a a e
A A

a a Ke B B

G G
a a e

H H
a a Ke

 

  

 

   









                             

M  

(15) 
where the matrix M is given by: 

cos sin 0

sin cos 0

cos sin 0

cos cos 0

Ka

Ka

Ka

Ka

a a e

a a Ke

a a e

a a Ke

 

   

  

   









  



 




M











     (16) 

The trivial solution of Equation (15) is A = 0, B = 0, G 
= 0 and H = 0 [23]. While, for a non-trivial solution to 
exist, the condition [23]: 

detM = 0                 (17) 

must be satisfied. To simplify, one eliminates the coeffi-
cients G and H. Then, Equation (15) becomes the 2 × 2 
matrix equation [23]: 

0

tantan

tantan





































B

A
M

B

A

aKKa

aKKa



     (18) 

For this equation to have a non-trivial solution, the de-
terminant of the coefficients must be equal to zero, or: 

   2 tan tan 0a K K a             (19) 

Then, there are two solutions which are [23]: 
(a) κ tan κ =K, this means B =0 and a

 2 cosy x A x                  (20) 

(b) K tan κ = κ, this means A = 0 and a

 2 siny x B  x                  (21) 

Equation (20) corresponds to even parity solutions 
while Equation (21) corresponds to odd parity solutions. 
These equations can be simplified by introducing the 
new dimensionless variables: 

x a  and  = K             (22) a

From the definition of κ and K, one can write: 

2 2
02

2m
K u  


                 (23) 

Using Equation (22), one can rewrite Equations (20), 
(21) and (23) in the forms: 

 = x tan x                   (24) 

 = – x cot x                   (25) 

2 2 2
2

2m
x u a 2   

            (26) 

where the dimensionless parameter  measures the vol-
ume of the potential  in unit of ħ2/2 m. 2

0u a
To determine the values of κ and K in Equations (24) 

and (25), one may solve these equations graphically 
together with Equation (26) [14-17,22,23]. 

Figures (1) and (2) give the intercepts for the even 
parity solution (Equation (24)) and the odd parity 
solution (Equation (25)) for two sets of values of the 
potential volume parameter ( = 1 and 4) and ( = 2 and 
6) for the even and odd parity solutions respectively. In 
these figures, κ is drawn horizontally and   vertically. 
The dashed curve is that of x tan x  (for even parity) or 
x cot x  (for odd parity). The continuous curve is that of 

2 2x 2    
The values of κ and K (x and  ) corresponding to the 

solutions of Equations (24), (25) and (26) can be deter-
mined from Figures (1) and (2). Then, one can calculate 
the state energy and the function  for different val-
ues of  in the following way: 

)( xy

(1) For  =1 (equivalent to n = 1), x  0.7391 and  = 
0.673. This is called the ground state energy, which is: 

 
2 2

2

2
0.7391 0.273

2gsE
ma ma

 


2


       (27) 
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(a)                                                          (b) 

Figure 1. Graphical solution of Equation (24) (even parity solution), for (a) α = 1 and (b) α = 4. 
 

 
(a)                                 (b) 

Figure 2. Graphical solution of Equation (25) (odd parity solution), for (a) α = 2 and (b) α = 6. 
 
and Equation (12) can be re-written for even parity solu-
tions as: 

 

0.673
exp

0.7391
cos

0.673
exp

G x for x a
a

y x A x for a x a
a

H x for x
a

       
     

 
     

 

 

As in Hermann [13],  U x  is treated as a difference 
of velocities, i.e., it is a kind of acceleration. Thus, the 
equation of position coordinate (2) has the following 
form, which is a stochastic process [13]: 

a

    (28) 

 
 

 

 

d

0.673.d d

0.739
0.739 tan d d

0.673.d d

x t

t t for x a

x t t for a x
ma a

t t for x a















   

  

a    
 

  


 

 

(30) 

According to Equation (7), the function  can be 
defined, using Equation (28), as: 

 U x

 

0.673

0.739
0.739 tan

0.673

for x a

U x x for a x a
ma a

for x a

  

        

 
 


 

(2) For  = 2 (equivalent to n = 2), x   1.9 and  = 
0.638, the energy is: 

 
2 2

2

2
1.9 1.805

2
E

ma ma
 


2


          (31) 

and Equation (12) can be re-written for odd parity solu- (29) 
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tions as: 

 

0.638
exp

1.9
sin

0.638
exp

G x for x
a

y x B x for a x a
a

a

H x for x a
a

       
     

 
     

 

   

(32) 
Also, 

 

0.638

1.9
1.9cot

0.638

for x a

U x x for a x a
ma a

for x a

  

     

 
 


   

(33) 
and, 

 
 

 

 

d

0.638.d d

1.9
1.9cot d d

0.638.d d

x t

t t for x a

x t t for a x
ma a

t t for x a















   

      

 
  


a 

 

(34) 
(3) For  = 4 (equivalent to n = 3), x = 3.61 and  = 

1.75, the energy is: 
2

2
6.51E

ma



                (35) 

and Equation (12) for even parity solutions becomes: 

 

1.75
exp

3.61
cos

1.75
exp

G x for x a
a

y x A x for a x a
a

H x for x
a

       
     

 
     

 
a

   

(36) 

Again, 

 

1.75

3.61
3.61tan

1.75

for x a

U x x for a x a
ma a

for x a

  

        

 
 


 

(37) 

and, 

 
 

 

 

d

1.75d d

3.61
3.61tan d d

1.75d d

x t

t t for x a

x t t for a x
ma a

t t for x a















   

  

a    
 

  


 

 

(38) 
(4) For  = 6 (equivalent to n = 4), x = 5.23 and   = 

2.95, the energy is: 

2

2
13.6E

ma



                (39) 

and Equation (12) for odd parity solutions becomes: 

 

2.95
exp

5.23
sin

2.95
exp

G x for x a
a

y x B x for a x a
a

H x for x
a

       
  

a

     
 

     
 

 

(40) 

Also, 

 

2.95

5.23
5.23cot

2.95

for x a

U x x for a x a
ma a

for x a

  

       

 
 


 

(41) 

and, 

 
 

 

d

2.95d d

5.23
5.23cot d d

2.95d d ( )

x t

t t for x a

x t t for a x
ma a

t t for x a















  

       

 
  


a

 

(42) 

where d+(t) is a random variable of a Gaussian distribu-

tion with width 2 dD t  [13]. 

 
3. Numerical Simulations 
 
To simplify Equations (30), (34), (38) and (42), one can 
take 2Ddt = 1 [13], then, these equations become: 

(1)  = 1 
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 
 

 

 

d

0.673 0,1

1 0.739
0.739 tan 0,1

0.673 0,1

x t

N for x a

x N for a x
a a

N for x a



   

      

 
  

a 
 

(43) 
(2)  = 2 

 dx t   

 

 

 

0.638 0,1

1 1.9
1.9cot 0,1

0.638 0,1

N for x a

x N for a x
a a

N for x a

   

      

 
  

a   

(44) 
(3)  = 4 

 
 

 

 

d

1.75 0,1

1 3.61
3.61tan 0,1

1.75 0,1

x t

N for x a

x N for a x
a a

N for x a



   

      

 
  

a 
 

(45) 
(4)  = 6 

 
 

 

 

d

2.95 0,1

1 5.23
5.23cot 0,1

2.95 0,1

x t

N for x a

x N for a x
a a

N for x a



   

      

 
  

a 
 

(46) 
where N (0, 1) is a normalized random variable [10]. 

A computer program was written (see Appendix A), 
following Hermann’s procedure [13], to make numerical 
simulations for the FODSW problem. Numerical simula-
tions are performed using Equations (43), (44), (45) and 
(46) which represent trajectory equations of the particle 
for different value of . The output of these simulations 
gives the probability density ƒ(x) of the particle in a fi-
nite square well potential. To construct it, one may di-
vide the region into 1800 pieces (boxes), which gives the 
best results. This choice comes after many numerical 
tests. Here, one chooses the time step equal to 5  108 
which gives best results also after many numerical tests. 
The x position in the region will be drawn horizontally 
and the number of occurrences vertically. So, a point of 

the curves to be drawn has to be understood as (x, y); x is 
the number of boxes and y is the number of time steps 
for which the particle was in box x. The continuous 
curves indicate the results of the present simulations and 
the dashed curves the results of conventional quantum 
mechanics, with the same normalization as the numerical 
results. The results are always normalized by multiplying 
the number of occurrences in each box by the total num-
ber of boxes which is a. 

The probability density P(x) of conventional quantum 
mechanics, which will be compared with the present re-
sults, is given by: 

(1) For even parity solutions: 

 
2

1

2 2
2

2
3

exp 2

cos

exp 2

P x

x
N for x

a

x
N x for a x

a

x
N for x

a







       
       

 
     

 







a

a

a

 

(2) For odd parity solutions: 

 
2

4

2 2
5

2
6

exp 2

sin

exp 2

P x

x
N for x

a

x
N x for a x

a

x
N for x

a







       
       

 
     

 







a

a

a

6

 

where  are normalization constants [14-18]. 1,...,N N 

For  = 1, 2, 4 and 6 this probability density is given 
by [23]: 

(1)  = 1 

  2

0.844exp 1.3

1
0.4019cos 0.739

0.844exp 1.3

x
for x a

a

x
P x for a x a

a a

x
for x a

a

       
       

 
     

 

 (47) 

(2)  = 2 

  2

1.4304exp 1.27

1
0.445sin 1.9

1.4304exp 1.27

x
for x a

a

x
P x for a x a

a a

x
for x a

a

       
       

 
     

 

 (48) 
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(3)  = 4 

  2

16.828exp 3.5

1
0.638cos 3.61

16.828exp 3.5

x
for x a

a

x
P x for a x a

a a

x
for x a

a

       
     

 
     

 

The comparison between the present results and the 
results of conventional quantum mechanics is further 
facilitated by calculating the standard deviation σ and 
correlation coefficient ρ, which are given by [13]: 

       2

1

N

i P i f i

N


 



          (51) 

 
and (49) 

(4)  = 6 

  2

227.37 exp 5.9

1
0.8244sin 5.23

227.37 exp 5.9

x
for x a

a

x
P x for a x a

a a

x
for x a

a

       
   

     

     

1

2
2

i 1 1

ƒ i  

ƒ i

N

i

N N

i

P i P f

P i P f




 

     


     



 
  (52) 

  
 

     
 

  
where N is the number of pieces, P(i) ≡ P(x) and f(i) ≡ 
f(x). 

Figures (3) and (4) show a first attempt of modeling for 
 = 1 and 4 (even parity solutions) and for  = 2 and 6 

(50) 
 

 
(a)                                                              (b) 

Figure 3. Probability density for even parity solutions corresponding to a particle in a FODSW potential (a) α = 1 and (b) α = 
4 without thermalization process. 
 

 
(a)                                                               (b) 

Figure 4. Probability density for odd parity solutions corresponding to a particle in a FODSW potential (a) α = 2 and (b) α = 
6, without thermalization process. 
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Figure 5. Probability density for α = 6 (odd parity solution
corresponding to a particle in a FODSW potential after 

y. The numerical simula-

 

present work that the behavior of a 

 Prof. Dr. L. Nottale (Di- 
 Paris, France) for clarifying 
theory of scale relativity and 

The Theory of Scale Relativity,” Interna-
 of Modern Physics A, Vol. 7, No. 20, 
-4936. doi:10.1142/S0217751X92002222

) 

increasing the number of boxes. 
 
(odd parity solutions) respectivel
tions start with arbitrary point which is x = 100 (corre-
sponding to box No. 100). In these figures, there is a clear 
difference between the present results and the results of 
quantum mechanics, that is measured by  and ρ. 

Hermann [13] indicated in his work that the simula-
tions were restarted after 105 steps, or more, with a new
starting position. Then, better thermalization of the sys-
tem is obtained and convergence is increased. Tests in 
the present work indicated that the thermalization proc-
ess as used by Hermann [13] cannot be applied here 
without fixing additional parameters. This required very 
long computer time and, therefore, was not adopted in 
the present work. However, these tests also indicated that 
the present results can be improved by increasing the 
number of divisions of a (i.e., number of boxes). Figure 
(5) shows the results obtained for  = 6 after increasing 
the number of boxes from 1800 to 2200. 
 

4. Conclusions 
 

It can be seen from the 
quantum particle in an infinite one-dimensional square well 
potential can be obtained without explicitly writing the 
Schrödinger equation or using any conventional quantum 
axiom. This leads one to conclude from the present work 
that ScR is a well-founded theory for deriving quantum 
mechanics from the concept of fractal space-time. 

Even though many of the aspects of Hermann’s work 
were used in the present work as they are, the application 
of his approach to the present quantum mechanical prob-
lem was not a direct one. Successful applications were 
not achievable without, among other things, a new ad-
justment for the time step dt after some deeper under-
standing of the underlying particle motion in the present 
problem. It is expected that this understanding is neces-

mechanical problems along the lines of Hermann’s work 
[13] and the present work. It is also concluded from the 
attempts made in the present work to improve the results 
of numerical simulation by parameter optimization, that 
such attempts are successful in achieving some im-
provement, and that further improvement is possible, but 
requires more computer time. 
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ppendix A: 

 
 

lowchart 1. A schematic illustration of the different parts of the program that calculates the probability density of a particle 
 square well potential (even parity). 
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Input cc, x = 100, a, x, ŋ, Ñ1, Ñ2, Ñ3 
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P(x) = Ñ1^2*exp(2*ŋ*x / a)   for x < – a 
P(x) = Ñ3^2*exp(–2*ŋ*x / a)   for x > a 

Implement loop for step of time until cc. 
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END 
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Flowchart 2. A schematic illustration of the different parts of rogram that calculates the probability density of a particle 

 a finite square well potential (odd parity). 
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