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ABSTRACT 

Distributed intelligent systems like self-organizing wireless sensor and actuator networks are supposed to work mostly 
autonomous even under changing environmental conditions. This requires robust and efficient self-learning capabilities 
implementable on embedded systems with limited memory and computational power. We present a new solution called 
Spiral Recurrent Neural Networks (SpiralRNN) with an online learning based on an extended Kalman filter and gradi-
ents as in Real Time Recurrent Learning. We illustrate its stability and performance using artificial and real-life time 
series and compare its prediction performance to other approaches. SpiralRNNs perform very stable and show an ac-
curacy which is superior or similar to other state-of-the-art approaches. In a memory capacity evaluation the number 
of simultaneously memorized and accurately retrievable trajectories of fixed length was counted. This capacity turned 
out to be a linear function of the size of the recurrent hidden layer, with a memory-to-size ratio of 0.64 for shorter tra-
jectories and 0.31 for longer trajectories. Finally, we describe two potential applications in building automation and 
logistics and report on an implementation of online learning SpiralRNN on a wireless sensor platform under the 
TinyOS embedded operating system.  
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1. Introduction 

Visions like the “intelligent factory” [1] or “ambient in-
telligence” [2] rely heavily on embedded systems with a 
high degree of autonomy. Of particular interest are en-
ergy autarkic self-organizing wireless sensor networks 
due to their simplified installation and robustness during 
operation. These consist of so called “sensor nodes”, 
hardware platforms with usually a battery, a microproc-
essor, a transceiver module and one or more sensors. 
They are able to communicate wirelessly with each other; 
suitable protocols enable them to set up a network by 
themselves. If necessary, data are relayed by other nodes 
to a destination. Data may also be processed locally or 
inside the network.  

A very useful kind of data processing is forecasting 
data. Examples for applications in building automation 
and logistics are given at the end of this paper. Solutions 
for this task have to fulfill at least the following require-
ments in order to be really useful:  

R1 The limited computational power and memory of 
these sensor nodes puts a limit on the computa-
tional complexity of the forecasting solution.  

R2 As the environment of the sensor network is usu-
ally unknown in advance the solution has to learn 
a forecast model online and in an efficient way.  

Neural networks, and in particular recurrent neural 
networks, have proven their suitability at least for offline 
learning forecast tasks. Examples can be found in [3] or 
[4]. However, traditional approaches like Elman or stan-
dard recurrent neural networks (SRN) [5], time delay 
neural networks (TDNN) [6], block-diagonal recurrent 
neural networks (BDRNN) [7] or echo state neural net-
works (ESN) [8] have deficiencies with respect to the 
requirements above. For a TDNN one has to specify the 
length of the history to be considered as input. If this is 
chosen too small, some time series like spike time series 
with large inter-spike intervals cannot be predicted relia-
bly. Elman networks avoid this problem due to their re-
current hidden layer; this allows them to adjust their 
short term memory in a data driven way by online learn-
ing. However, their basically unbounded recurrent 
weight matrix sometimes leads to dynamically unstable 
behavior making them less attractive for online learning 
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purposes. Echo state networks try to cure this deficiency 
by choosing random but constant weights for the recur-
rent weight matrix, but such that its absolute eigenvalues 
are smaller than one; only the weights of the output layer 
are trained. Unfortunately, with this approach the recur-
rent layer has to be large enough in order to provide a 
rich reservoir of responses from which to construct the 
output signals. Block diagonal recurrent neural networks 
try to cure the dynamical instabilities by a specific struc-
ture of the recurrent layer. The corresponding weight 
matrix is zero except for 2×2 diagonal block matrices. 
These blocks can be trained but there is a constraint on 
their maximum eigenvalue. This constraint is either im-
plemented implicitly via training or explicitly via a suit-
able parametrization of the weights. For online learning 
the scaled orthogonal version described in [7] is more 
useful. However, this structure seemed to be too con-
strained leading to poor performance for some prediction 
problems. This motivated us to develop a new approach 
called Spiral Recurrent Neural Network (SpiralRNN) 
[9].  

2. Spiral Recurrent Neural Networks 
(SpiralRNN) 

2.1 Architecture 

Like other Recurrent Neural Network (RNN) models, 
SpiralRNN consists of an input layer feeding into a re-
current hidden layer and an output layer which receives 
input from the recurrent hidden layer. The hidden neuron 
states t  and the output neuron states  satisfy the 
following update equations:  

s tx

1 1( )t hid t in t hg W W   s s x b id

)

 

(t out t outh W x s b                  (1) 
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()g  and  are activation functions. Us-

ing the data  instead of the previous network output 
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forcing; this is used whenever data are available.  
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The main difference to other approaches lies in the 
structure of the recurrent hidden matrix . Motivated 
by the analysis underlying the development of echo state 
neural networks (ESN) [8], we have chosen a constraint 
on the weights of the recurrent layer in order to guaran-
tee stability, respectively the “echo state” property, while 
still allowing the weights to be trained. With the follow-
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with l the number of hidden nodes in the recurrent layer, 
tanh( ) [1 1]k k k l       , k trainable parameters 

and a suitable fixed , one can guarantee a 

bounded eigenvalue spectrum of  and thus stability 

in the sense of the “echo state” property:  
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The structure of  is best illustrated with Figure 1, 

also giving an idea for the choice of the name “Spi-
ralRNN”. 

hidW

It turned out that a block structure in case of several 
inputs is a good compromise concerning computational 
complexity and performance (see Figure 2). Although 
the recurrent hidden layer has this block structure, all 
input neurons are coupled to all hidden neurons; the 
same holds for the output neurons. 

2.2 Online Learning 

Due to the second requirement mentioned in the intro-
duction the learning of the neural network weights has to 
be online. We understand online learning as a continuous 
update of weights controlled only by the data. Realtime 
Recurrent Learning (RTRL) is based on an approximate 
error gradient taking into account all previous steps; it 
sometimes shows slow or poor convergence. Particle 
filtering and evolutionary approaches require much memory 
 

 
Figure 1. Structure of SpiralRNN recurrent hidden layer 
for 1-dimensional input; only the connections rooted in one 
neuron are shown 
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Figure 2．SpiralRNN for 3-dimensional input; the recurrent hidden matrix is split into 3 blocks but all other layers are fully 
connected 

 
The last line in Equation (6) is the gradient calculated 

in real time recurrent learning (RTRL) [10]. This ap-
proximation is justified if the weight vector is changing 
slowly which holds at least for the later phase of the 
converging learning process.  

in order to provide reasonable behavior. As explained in 
[9] the optimal choice is an extended Kalman filter (EKF) 
based on gradients calculated like in Realtime Recurrent 
Learning (s. appendix).  

According to this derivation, the iterative update rule 
for the weight vector , representing all weight matri-

ces ,  and  and all bias vectors  and 

, is the following:  

tw

outWinW hidW hidb

outb

It is worth mentioning that these iterative Kalman fil-
ter equations for the update of expected weight values 
and their covariance matrix are derived analytically un-
der three reasonable approximations: 1) the distribution 
of noise on the data is Gaussian, 2) the weights change 
slowly and 3) the distribution of weights representing 
their uncertainty is unimodal and also Gaussian. While 1) 
is a standard assumption, the other two approximations 
deserve some explanation: 2) is true if the process gener-
ating the data is stationary and if the model is powerful 
enough to reproduce the data; only in the initial phase of 
learning and for very non-stationary processes this as-
sumption might be questionable. Usually, 3) is only true 
for a local neighborhood around the true weight vector; 
in general, the distribution will be multi-modal implying 
several competing weight vectors and thus models. 
However, for complexity reasons we have to focus on 
one set of weights; we have no guarantee that we get the 
optimal model but we will find a “locally” optimal 
model in the sense, that small changes of the weights 
lead to a decrease in performance. As a consequence we 
will end up with a distribution of different models in 
repeated experiments with different initial conditions or 
noise. The reader should notice, that there will be always 
several degenerate solutions, because a renumbering of 
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tx  is the output vector of the Spiral RNN and  are 

the data. Pt is the covariance matrix of  representing 
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the hidden neurons yields exactly the same dynamical 
model but the weight vector is changed; the components 
have just been reshuffled. This is actually an advantage 
for learning because it is sufficient to reach one of these 
degenerate solutions.  

2.3 Performance 

Spiral RNN have been compared to other architectures 
like ESN, Elman networks and BDRNN [9]. TDNN is 
not included due to the need to fix the number of historic 
inputs in advance. The generalization ability of these 
networks was tested with three artificial time series: A 
spike time series with spike intervals of 21 time steps (20 
zeros followed by a one), and the chaotic Mackey-Glass 
and Lorenz time series. The one-dimensional Mackey- 
Glass time series is given by  

( )
( ) ( )

1 ( )c

ax t
x t

x t





 

 
 bx t            (7) 

with the parameters a = 0.2, b = 0.1, c = 10 and  =17. 
The differential equation was solved numerically using 
Euler’s method with step size 1. All time series values 
before start time were set to 0.5. The time series was 
normalized by its standard deviation. 

The three-dimensional Lorenz time series is defined 
by the following equations:  

( )x s y x                  (8) 

( )y r z x y                  (9) 

z xy bz                     (10) 

The parameters were set to s = 16, r = 40, b = 6 and 

the initial values were x0 = y0 = 0.1 and z0 = −0.1. Inte-

gration was done using Euler’s method with step size 

0.01. The data were finally scaled down by factor of 20.  
All time series are corrupted - after normalization - by 

normally distributed noise with a standard deviation of 
0.01.  

As the computational complexity depends mainly on 

the online learning step we compared different networks 

with roughly the same number of trainable parameters. 

For the activation function in the hidden layer we took 

 and in the output layer we took the identity map. 

The blocks in the diagonal of the recurrent weight matrix 

for the BDRNN were parameterized as  

tanh()

tanh( )sin( ) tanh( ) cos( )

tanh( )cos( ) tanh( )sin( )

   

with a pair of trainable parameters  and    indep- 
endently for each block.  

For the ESN model, the recurrent weight matrix was 
initialized with random numbers uniformly distributed in 
the interval [−1,1] with a sparsity degree of 95%; the 
matrix was rescaled such that the maximum absolute 
eigenvalue was 0.8. All other weights are initialized with 
random numbers uniformly distributed in [−0.1,0.1].  

For SpiralRNNs, a value 1
1l   guarantees that the 

maximum eigenvalue of the recurrent weight matrix is 
smaller than one. However, the actual eigenvalues can be 
much smaller than one. Experiments have shown good 
and reliable performance with 1  .  

The online learning method was the same as described 
above for all networks with appropriate gradients de-
pending on the architecture. For the Kalman filter, the 
covariance matrix Pt was initialized with the identity 
matrix Id and the model noise covariance matrix 
Qt=10−8Id was chosen to be constant. The measurement 
covariance matrix Rt was initialized to 10−2Id and up-
dated according to  

 1(1 ) e eT
t tR R     

t

             (12) 

with ˆe x xt  the forecast error at time t and 0 01   .  

During online learning we used teacher forcing. After 
some specific time steps we performed multi-step fore-
cast tests using the output as input for the next time step. 
After each test we returned to the beginning of the test 
and continued online learning with teacher forcing.  

The prediction performance during the tests is meas-
ured with the logarithmic normalized mean square error 
(logNMSE):  
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Here, d is the dimension of the data, t0 is the time be-
fore the test phase starts, t  is the maximum number of 
test steps and   is the standard deviation of the whole 
data set. This definition of an error measure takes into 
account that the prediction error in the test phases in-
creases with time; as we do not want the error measure to 
be dominated by the large errors of the future prediction 
steps we have chosen a measure corresponding to a 
geometric mean instead of a traditional algebraic mean.  


    



   (11) 

For the spike time series we performed tests with a 
duration of t =2000 time steps. For this time series 
many forecast models tend to predict a small constant 
value close to 1/21. This can give a small error as this 
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value is close to zero for 20 out of 21 time steps. There-
fore, we evaluated the error measure for this particular 
time series only with the time steps when the spikes oc-
curred; this provides a much more informative measure. 

Figure 3 shows the results for networks with about 
100 trainable weights. Obviously, SRN and SpiralRNN 
can predict the spike time series at least after 104 time 
steps (recall that this corresponds to about 500 spike pe-
riods). On the other hand, ESN and BDRNN fail to pre-
dict the spike trains properly. Not quite unexpectedly, 
SRN, having more degrees of freedom, performs best. 
However, the results for SRN include only those runs 
which were successful; after longer training a significant 
fraction of runs failed due to dynamical instabilities. An 
encouraging observation is that SpiralRNN is pretty 
close in performance to the successful SRN runs, taking 
into account the logarithmic error measure. 

Figure 4 shows the results for the Lorenz time series 
with tests consisting of 200 time steps. Here, SRN, 
BDRNN and SpiralRNN show similar behavior and 
good prediction capabilities at least after longer training. 
ESN outperforms the other approaches in the beginning 
of the training phase. This can be explained by the fact 
that the training of its output weights is basically a linear 
regression task and the Kalman filter learning is essen-
tially the optimal method. However, ESN can hardly 
improve its performance even for long training periods. 
Obviously, for a good generalization it is necessary to 
adapt the recurrent hidden layer weights as well, a fea-
ture shared by the three other architectures. The interme-
diate increase of the error for all approaches can be ex-
plained with the characteristics of the time series which 
obviously explores new state space areas in these phases. 
Another interesting result is the test with the Mackey- 
Glass time series. Figure 5 shows the result for networks 
with about 100 trainable weights and prediction tests for 
up to 200 time steps. Here, SpiralRNN clearly outper-
forms the other approaches, even SRN. For smaller net-
work size with about 50 trainable weights, SRN is 
slightly better than SpiralRNN, while both approaches 
show almost as good behavior as SpiralRNN with about 
100 weights; however, ESN and BDRNN perform simi-
larly poor. An example of autonomous output of the Spi-
ralRNN model on MackeyGlass time series is shown in 
Figure 6 where the difference between autonomous out-
put and target data can be hardly identified until around 
time step 400. 

2.4 Stability 

Stability of a trained SpiralRNN model has been demon-
strated by autonomous tests with deviated initial input 

values. Recall that, in autonomous tests, the model uses 
the previous output value as the current input value. The 
only exception is the initial input value which is supplied 
from outside. 

Figure 7 shows the autonomous outputs generated by a 

trained SpiralRNN model from the simulation with data 

set Spike21. Each sub-figure in Figure 7 shows the 

autonomous output result from simulation with different 

initial input values ｛±0.1, ±1, ±10, ±100｝respectively.  
Without exception, all models with different initial 

inputs converge after an initial transition phase to the 
trained attractor regime with periodic spike output with 
period 21.  
 

 

Figure 3. Modified logNMSE for the spike time series 
with period 21. The networks have about 100 trainable 
weights. The test points correspond to the times 

 3 3.5 4 4.5 5{10 ,10 ,10 ,10 ,10 }

 

 

Figure 4. LogNMSE for the Lorenz time series and predic-
tion tests with 200 time steps. The networks have about 100 
trainable weights. The test points correspond to the times 

 3 3.25 3.5 4.75 5{10 ,10 ,10 ,...,10 ,10 }

Copyright © 2009 SciRes                                                                                JILSA 
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Figure 6. The autonomous output of a trained SpiralRNN 
model vs. corresponding target data. The solid line is auton- 
omous output, and the dashed line is target data 

Figure 5. LogNMSE for the Mackey-Glass time series and 
prediction tests with 200 time steps. The networks have 
about 100 trainable weights. The test points correspond to 
the times  3 3.5 4 4.5 5{10 ,10 ,10 ,10 ,10 }

 

 

 

(a) -0.1                                          (b) -1 
 

 

(c) -10                                         (d) -100 
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(e) 0.1                                        (f) 1 
 

 

(g) 10                                       (h) 100 

 

Figure 7. Stability test of a trained SpiralRNN model from the simulation with the Spike21 data set. The sub-figures show the 
results for different initial input values ｛−0.1, −1, −10, −100, +0.1, +1, +10, +100｝respectively. The X-axis is the time in the 
autonomous tests, and the Y-axis is the output 

 
As another example, Figure 8 depicts the trajectories of 
two hidden-neuron activations during the autonomous 
test with a trained SpiralRNN model from a simulation 
with the Lorenz data set. In the test phase, the Spi-
ralRNN model, is iterated autonomously for 1000 time 
steps starting with different initial input values. During 
the iteration, the recurrent layer neuron states are re-
corded. Sub-figures in Figure 8 show the trajectories of 
two neurons. The five initial time steps of the autono-
mous test are marked by black squares. Again, after 
some initial transition phase the trajectories always con-
verge to an attractor corresponding to the Lorenz time 
series. Note that the sub-figures have different scale in 
order to display the initial transition path, and that the 
position of the attractor is in the range [−0.2, 0.6] for 

the X-axis and [−0.2, 0.6] for the Y-axis in all sub-fig-
ures. 

3. Application Examples 

3.1 NN5 Competition 

NN5 competition1 puts emphasis on computational intel-
ligence methods in data prediction. The data for this 
competition correspond to the amount of daily money 
withdrawal from ATM machines across England. These 
data exhibit strong periodical2 (ref. Figure 9) behavior: 

1http://www.neural-forecasting-competition.com/ 
2Note that the Easter Fridays in 1996 to 1998 should have the indices 
“19”, “376” and “753” in the given data and the Saturdays before 
Christmas day of 1996 and 1997 have the indices “283” and “648”. 
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1F
 

Strong weekly periodic behavior dominates the
frequency spectrum, usually with higher values on
Thursday and/or Friday;   

2F
 

Important holidays such as the Christmas holi-
days (including the New Year holiday) and the
Easter holidays have a visible impact on the data;  

3F
 

Several of the time series such as time series
No. 93 and No. 89 show strong seasonal behavior,
i.e. a yearly period;  

4F
 

Some of the time series (like No. 26 and No. 48)
show a sudden change in their statistics, e.g. a shift
in the mean value.  

The dynamics associated with data have deterministic 
and stochastic components. In general, they will not be 
stationary, as for example more tourists are visiting this 
area or a new shopping mall has opened. There are in 
total 111 time series in the database, with each time se-
ries representing the withdrawal from one ATM machine 
and each data point in a particular time series indicating 
the withdrawal amount of the day from the particular 
ATM machine. All 111 time series were recorded from 
the 18th March 1996 until 22nd March 1998, and there-
fore contain 735 data points. The task of the competition 
is to predict the withdrawal of each ATM machine from 
23rd March 1998 to 17th May 1998, 56 data points in 
total. The evaluation of prediction performance is based 
on the so-called SMAPE error value defined in Equation 
(14), where tx  and ˆ tx  are respectively the predicted 

output and data. 

 

 

(a) ｛−4, −4, −4｝                                (b) ｛−4, −4, +4｝ 
 

 

(c) ｛−4, +4, −4｝                                (d) ｛−4, +4, +4｝ 
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(e) ｛+4, −4, −4｝                                (f) ｛+4, −4, +4｝ 

 

 

(g) ｛+4, +4, −4｝                                (h) ｛+4, +4, +4｝ 
 
Figure 8. Stability test of a trained SpiralRNN model from simulations with the Lorenz data set. Each sub-figure shows the 
trajectory of two hidden neurons during autonomous tests with different initial inputs. The starting point coordinates are 
given beneath each sub-figure. The X-axis and the Y-axis respectively refer to activation values of these two hidden neurons. 
The first five positions of the trajectory are denoted by black square marks 

 

1 ˆ
100

( ) 2ˆ

n
t t

smape
t t t

xxE
n xx

  


  %       (14) 

The competition did not require online learning. Nev-
ertheless, we used this competition to test our approach 
against sophisticated offline learning methods. As prior 
knowledge was available through the data sets and as 
computational complexity was not limited for this appli-
cation, we have extended our approach in the following 
way:  

 

 (a) data were rescaled and additional artificial in-

puts were added providing periodicity information;  

 (b) a “committee of experts” was employed in or-

der to reduce the prediction error due to local 

suboptima;  

 (c) the EKF learning process was modified taking 

into account the SMAPE error function.  
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(a) sample 1 

 

 
(b) sample 2 

 

 
(c) sample 3 

 

(d) sample 4 

Figure 9. Sample data from NN5 competition dataset with 
cross markers indicating Saturdays 
 

The data presented to the neural network are mapped 

to a useful range by the logarithm function. In order to 

avoid singularities due to original zero values, they are 

replaced with small positive random values. Additional 

sinusoidal inputs are provided as a representation of cal-

endar information. These additional inputs include:  

 Weekly behavior addressing feature 1F : Refer to 

Figure 10(a); the period is equal to 7.  

 Christmas and seasonal behavior addressing feature 

2F  and 3F : It is often observed from the dataset 

that, right after the Christmas holiday, withdrawal of 

money is low and then increases during the year, fi-

nally reaching its summit value right before Christ-

mas. Seasonal features do not prevail in the dataset, 

but they do exist in several of them, e.g. time series 

9, 88. As both are regular features with a yearly pe-

riod, it makes sense to provide an additional input as 

shown in Figure 10(b) which has period 365.  

 Easter holiday bump addressing feature 2F : The 

Easter holidays did not have as much impact on the 

data dynamics as the Christmas holidays did, but it 

shows an effect on the usage of ATM in some areas 

(shown in some time series). Furthermore, as the 

58-step prediction interval includes the Easter holi-

days of year 1998, the prediction over the holiday  

Copyright © 2009 SciRes                                                                                JILSA 
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 can be improved when the related data behavior is 
learnt. This additional input uses the Gaus-
sian-distribution-shape curve to emulate the Easter 
holiday bump as in Figure 10(c).  

 

 
 

(a) Weekly-input 
 

 
 

(b) Christmas-input 
 

 
 

(b) Easter-input 
 

Figure 10. Additional inputs of neural networks. On the 
X-axis is the time steps, and Y-axis is the additional input 
value 

 

 
Figure 11. Online training of SpiralRNN in NN5 competi-
tion with additional inputs 
 

Supplied with additional inputs, SpiralRNNs were 
trained online (see Figure 11) such that data were fed-in 
the network one-by-one and network parameters are 
trained before the next data is fed-in. 

Although SpiralRNN is capable of learning time series 
prediction, the learned weights usually correspond to 
local minima of the error landscape as mentioned in [11]. 
As computational complexity is not an issue for this 
competition, a committee of experts ansatz is applied.  

The committee of experts consists of several Spi-
ralRNN models with identical structure but different 
initialization of parameter values. Each SpiralRNN 
model operates in parallel without any interference to the 
others. They are trained online using teacher forcing. The 
importance of an expert’s output is determined by the 
average SMAPE value over the last 56 steps. Therefore, 
at time step t=6791, each model k produces a prediction 
xk,t for the next 56 steps using its output as the input for 
next time step. After that, online learning continues until 
the end of the training data. Then the SMAPE error value 
for the last 56 time steps is calculated according to Equa-
tion (15), where Es refers to the SMAPE error.  

56

679

1
( ˆ

56
k tk s k t

t

E x )x 


              (15) 

1The value is calculated via: t = 795-56 = 679. 
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The final prediction for the 56 time steps following t = 
735 consists of a weighted average of the committee 
members’ autonomous predictions according to  

21
n

k
k

                   (16) 

2

1

1 n

t t k k
k

xx 
 



               (17) 

The whole procedure is listed in Table 1, and a sche-
matic diagram Figure 12 depicts the organization of the 
committee. 

As a last step we have to adapt the calculation of the 
gradient matrix  in Equation (5) to the error func-
tion 



 
Table 1. Committee of experts 

0. Initialize the n experts; 

1. 

For a SpiralRNN model k, implement online 
training with the data and make a 56-step 
prediction Uk at time step t = 679. The pre-
diction value Uk will be compared to the data 
in order to obtain the average SMAPE error 
value according to Equation (15). 

2. 

After the prediction at time step t = 679, 
continue the online training till the end, and 
produce another 56-step autonomous predic-
tion Vk. 

3. 
Based on their k values, combine the pre-

diction Pk according to Equation (17). 

 

 
Figure 12. Committee of SpiralRNN experts where their 
weights in committee are determined by their SMAPE val-
ues on testing dataset 

 
Figure 13. Comparison between result and data showing 
weekly behavior for time series 35. Dashed line with circles 
is the data and solid line with squares is the prediction. The 
x-axis shows the time in days 

 
in Equation (14) according to Equation (20) with 

( )ty ln xt  being the output and ˆ ( )ˆ tt lny x  the data in 

logarithmic scale:  

ˆexp( ) exp( )t tS y y                  (18) 

ˆexp( ) exp( )D yt ty                 (19) 

exp( )
( )t t

t
t

y yD
sign D

S S

       w

     (20) 

For data sets with missing values we replace these 
with predicted values and simultaneously skip the weight 
update while still aggregating the gradient.  

We have evaluated our approach using the last 56 data 
of the available data while the remaining data were used 
for online-training. In Figure 13, prediction and data are 
compared for time series 35 which has a pronounced 
weekly periodicity. Obviously, this periodicity can be 
reproduced pretty well, even details like the small bump. 

Seasonal behavior of data can also be learned as 
shown in Figure 14. The curves in both sub-plots begin 
with the values in Christmas holidays (with time indices 
around 280 and 650). The rise and fall of the data during 
the first about 100 days and a subsequent rise in Figure 
14(a) can also be seen one year later in Figure 14(b). 
Obviously, the model is able to capture this behaviour 
pretty well. 
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Easter holidays can also be recognized by the trained 
model as shown in Figure 15 for time series 110. Since 
the expert-weight in the committee is determined by a 
 

 

 (a) seasonal-data previous year 

 
 

(b) seasonal-data and prediction 
 

Figure 14. Comparison between prediction and data for 
time series 9 showing seasonal behavior. Dashed curve is 
the data and solid curve is the prediction. The x-axis de-
notes time measured in days. The upper figure shows the 
same period one year before 

 
Table 2. Statistic results. The committee-averaged  

SMAPE error value of the expert committee on all 111 time 
series with varying number of experts 

 

 

Figure 15. Prediction result (solid curve) and data (dashed 
curve) for time series 110 showing a peak around Easter. 
The x-axis displays time in days 

 
period not containing Easter holidays, the prediction for 
them might be expected to be less accurate. Neverthe- 
less, as shown in Figure 15, the corresponding bump in 
the data has been learned well. The Easter holidays in 
1996 to 1998 occur at times around 20, 375 and 755. In 
Figure 15, the prediction for the Easter holidays 1998 
shows a similar behaviour as the Easter holidays in 1996 
and 1997 with a pronounced peak. 

Table 2 shows the SMAPE errors on the test set (i.e. 
the data from the last 56 time steps) for a varying num-
ber of experts. Obviously, the number of experts has no 
significant influence on the average result. This indicates 
that the learning process is quite reliable; in addition this 
allows saving computational effort using a small com-
mittee. Figure 16 shows the histogram of committee- 
averaged SMAPE values over the 111 time series in the 
dataset. The majority of the results have a SMAPE value 
around 20.  

Our approach has won the time series forecasting 
competition at WCCI20081 for both the full data set and 
a reduced data set consisting of 11 time series. Among 
the competitors was also commercial software currently 
implemented in the ATMs. Although a few sophisticated 
statistical and neural network approaches which were not 
taken into account for the awards performed better, the 
final results for the top 10 performing approaches are 
quite close. The most important result for our approach is 
that even with a remarkably simple extension our online 
learning approach is competitive to world class statistical 
and neural network solutions. 

3.2 Mouse Tracking — A Toy Example 

Besides using artificial data we also made experiments 

1http://www.wcci2008.org/.
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with real-life data. For this purpose we recorded the po-
sition of a computer mouse moved along a periodic tra-
jectory by a person and trained a SpiralRNN online with 
these data. The background for this experiment is e.g. 
applications in logistics and factory automation where 
the motion of transported goods or robot arms has to be 
tracked and analyzed.  

For the mouse tracking we did some preprocessing on 
the data in order to become independent of the velocity 
of the mouse. For this purpose we took the path-length of 
the trajectory as the “time”-variable and interpolated the 
position at equidistant length intervals. These positions - 
after a suitable rescaling - are used as input for the Spiral 
RNN during online training, trying to learn to predict the 
next position on this discretized trajectory. Figure 17 
illustrates such discretization. Figure 18 shows one par-
ticular trial. The blue line is generated by a user moving 
the mouse along a lying figure 8. After about thirteen 
iterations of this pattern the online training is stopped 
and the Spiral RNN is fed with its previous output thus 
generating the red trajectory. Obviously, the Spiral RNN 
has learned to reproduce the full trajectory. The mean 
square error (MSE) is normalized to the variance of the 
time series. The reader may notice that this pattern is 
nontrivial in the sense that a certain amount of short-term 

memory is necessary in order to select the correct direc-
tion at the crossing. 

Such a pattern produces 2-dimensional periodical time 
series as targets for the neural networks. For this exam-
ple we have also analyzed the frequency spectrum of the 
data and the predicted outputs of different neural net-
work models. The result is given in Figure 19 with blue 
dashed and green solid lines for the two time series re-
spectively. SpiralRNN produces (refer to Figure 19(b)) 
autonomous output trajectories with a frequency spec-
trum similar to the frequency spectrum of the target data 
 

 

Figure 16. Histogram (over 111 time series) of committee- 
average SMAPE error 

 

 

Figure 17. Segmentation by boundary points in MouseTracking. The hollowed arrow indicates the movement direction, the 
dashed line is the movement path of the cursor, circles represent the position measured by computer in every 1/100 second, 
and black dots refer to boundary points that segment the movement path of cursor. The identical length between boundary 
points is “0.02 ”. The positions of these boundary points are taken as the training data at each “time” step 
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Figure 18. Mouse tracking example: The noisy line in the upper figure is the trajectory generated by the user; the smooth line 
is the test with the Spiral RNN trained online and iterated with its own output as next input. The lower figure displays the 
logarithm of the normalized one-step prediction mean square error which decays along training 

 

(refer to Figure 19(a)), while the other models cannot. 
If the training time was too short, the network usually 

runs into the closest of a set of fixed points; two of them 
are usually located within the two loops of the Figure 
eight. This experience is confirmed with more complex 
pattern where the required training time increases corre-
spondingly. One reason is the usually large amount of 

noise due to manually moving the mouse. This noise 
prevents establishing a large enough short-term memory 
which may be required for correct prediction and favors 
the development of fixed-point attractors.  

Sharp turns in a trajectory are also difficult to repro-
duce. Typical examples are triangles or squares. Even if 
the network has learned to reproduce such a pattern, it 

 

frequency analysis of original trajectory                         frequency analysis of spiralRNN 

    

(a) Target                                 (b) SpiralRNN 
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frequency analysis of ESN                               frequency analysis of BDRNN 

  

(c) ESN                                      (d) BDRNN 

Figure 19. Frequency analysis of the output trajectory after 5000 training steps of different neural network models with 
around 100 parameters. Note that the vector value at frequency “zero” is trivial and is therefore omitted in diagrams, and 

that the period length of data is 130 therefore the dominant frequency is 008.0
130

1
  

 

always produces smooth turns and it takes much more 
additional training to sharpen these turns.  

3.3 Duty Cycle Adaptation in Wireless Sensor 
Networks 

In energy autarkic wireless sensor networks, achieving a 
long lifetime requires the wireless sensors to switch off 
individual components as often as possible. Most energy 
is used by the transceiver in transmit mode as well as in 
receive mode. Therefore, sensor nodes have organized 
their activity in duty cycles consisting of an active period 
and a passive period with most components switched off. 
The longer the second passive period is, the smaller is 
the duty cycle and the longer is the lifetime of the sensor 
node.  

One way of reducing the duty cycle effectively is to 
skip listening to neighboring sensor nodes for their data 
and instead use predicted values. For this reason, a sen-
sor node does not have to transmit its own sensor values 
to its neighbors as well. This implies that sensor nodes 
can increase their inactivity period thus reducing the duty 
cycle. Of course, the prediction error will increase also 
with decreasing duty cycles. Therefore, there will be an 
optimal choice concerning prediction error and energy 
saving.  

We analyzed this application example using a simula-
tion of a room equipped with 10 temperature sensor 

nodes and 4 heat sources as shown in Figure 20. The 
varying strength of the heat sources was modeled by a 
4-dim. chaotic Lorenz time series with 6000 time steps; a 
short interval is shown in Figure 21. The diffusion of 
heat from the heat sources into the room was modeled by 
a simple diffusion model, discretized in space and time, 
with random additive noise. An example for the resulting 
sensor values is shown in Figure 22. 

Each of the 10 sensor nodes is equipped with a Spi-

ralRNN supposed to predict the sensor node’s measured 

temperature value and those of the neighboring nodes. 

The SpiralRNN had 100 trainable weights for this 

evaluation. The neighbor nodes are those nodes which 

have a direct communication link to the sensor node (see 

Figure 20). In regular intervals, the sensor nodes broad-

cast their current sensor value to their neighbors. One 

complete exchange involving all 10 sensor nodes corre-

sponds to one time step in the simulation.  
In order to reduce the duty cycle, the sensor nodes do 

not listen to their neighbors every second time step. This 
saves energy for communication: with a normal duty 
cycle, a sensor node with k neighbors has to run its trans- 

ceiver 2*(k+1) times in two intervals; for a reduced duty 

cycle it is 2+k times in two intervals, a reduction by a fa- 

ctor of 2
2 2

k
k




. With just one neighbor this is a factor of 
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Figure 20. Simulation environment with sensors (numbered circles) and heat sources (stars). Also shown are the communica-
tion links between sensor nodes 

 

 
Figure 21. Example of time series of heat sources. Only one period is shown. Similar pattern occur in other periods 

 

 
Figure 22. Example of measured temperature values at the different sensors. Only one period is shown. Similar pattern occur 
in other periods. 
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Figure 23. Comparison of relative prediction error for normal duty cycle (continuous line, circles) and reduced duty cycle 
(dotted line, squares, listening only every second interval). Shown are mean, minimum and maximum of the rms error of 30 
runs 

 

0.75, with 4 neighbors it is a factor of 0.6, with 9 
neighbors already 0.55 and quite close to the large-k 
limit of 0.5.  

However, the picture is not complete without looking 
at the accuracy of the predicted instead of measured 
sensor values. We performed 30 independent runs with 
randomly chosen locations of sensors and heat sources, 
random scaling of each of the heat sources with a factor 
in the range [0,1] and additive noise of amplitude 0.01 at 
each update of the heat diffusion on every grid point. 
The result for the relative error - normalized for each 
sensor to the variance of its sensor value time series - is 
shown in Figure 23: For up to 5 prediction steps the per-
formance with the reduced duty cycle is almost the same 
as for the normal duty cycle. The outliers with a normal-
ized error larger than one are due to sensors with an al-
most constant sensor value whose variation is mainly due 
to noise. This result indicates that there is even more 
room for duty cycle reduction for this example: Listening 
to the neighbors only every fourth interval yields a duty 

cycle reduction of 4
4 4

k
k




; with 4 neighbors this gives a 

reduction factor of 0.4, with 9 neighbors it gives 0.325 
and the large-k limit is 0.25. 

4. Conditional Prediction 

So far, SpiralRNN turned out to be excellent in online 
learning the dynamics of stationary processes. However, 
in reality we often have to deal with non-stationary 
processes. A typical example are cars approaching a 

crossing: without knowledge about their destination one 
usually can predict their approaching the crossing and 
their leaving again, but not whether and into which di-
rection they turn at the crossing. Even our daily activities 
consist of sequences of typical pattern like walking, 
standing, talking, eating, and drinking and so on. Again, 
without additional knowledge about the motivation of a 
person usually it is impossible to predict the sequence of 
these patterns, which can themselves be predicted very 
well.  

4.1 Application Example: Warehouse Logistics 

We consider an application example from the logistics 
domain: A warehouse stores goods of different type in 
different areas (refer to Figure 24). Newly delivered 
goods have to be transported to these areas by trucks; we 
assume that these trucks always use the same trajectory 
to a specific destination. Each truck is equipped with a 
SpiralRNN learning the different trajectories. However, 
different from previous examples we assume that there is 
additional information available about the type of prod-
uct; for example, this could be provided by a RFID 
reader at the entrance registering newly delivered goods 
carrying RFID tags with product information. After hav-
ing learned the trajectories accompanied with this addi-
tional information, the Spiral RNN just receives this ad-
ditional information and has to recall the trajectory. This 
can be used for diagnosis purposes (e.g. is it the correct 
trajectory?) or for autonomous truck driving. 
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In addition to the current position coordinates, the in-
put vector of the Spiral RNN now also stores an addi-
tional trigger signal [12]. The network output is trained 
to predict the changes in this vector. At occurrence of 
each trigger signal, the hidden state of the network is 
reset to zero and the input vector consists of some arbi-
trary, but otherwise fixed position vector and of the trig-
ger signal; the latter is kept at this initial value until an-

other trigger signal indicates completion of the trajectory 
or start of a new trajectory. At subsequent steps, the 
network - while in online learning mode - learns to pre-
dict the changes in position and change in the trigger 
signal; the latter is actually zero. In recall mode, the pre-
vious output added to the previous input together repre-
senting the new position and trigger signal is fed back as 
input for the next time step.  

 

 
Figure 24．Application example “warehouse”: Depending on their type, newly delivered goods have to be stored in different 
areas labeled by A-F. The trajectories used by trucks are shown as well 

 
 

 
Figure 25. Conditional prediction of trajectory to area A (circles). The starting point of the trajectory is at [0.4,0]. 
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Figure 26. Conditional prediction of trajectory to area B (circles). The starting point of the trajectory is at [0.4,0]. 

 

 
Figure 27. Conditional prediction of trajectory to area C (circles). The starting point of the trajectory is at [0.4,0]. 

 

 
Figure 28. Conditional prediction of trajectory to area D (circles). The starting point of the trajectory is at [0.4,0]. 
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Figures 25-28 show the performance of a trained Spi-
ralRNN on reproducing the trajectories to the areas A, B, 
C and D given just the initial trigger signal. The network 
had 200 trainable weights and each trajectory was pre-
sented 20 times until the root mean square error (RMSE) 
for each trajectory was below a threshold of 0.05, i.e. 
half grid spacing. Obviously, the trajectories have been 
learned pretty well. 

4.2 Storage Capacity 

Encouraged by the good performance of this approach, 
we investigated the storage capacity of SpiralRNN in 
dependence on the number of hidden neurons and the 
length of the pattern time series. For this purpose we 
created random two-dimensional trajectories with each a 
different but randomly chosen trigger signal value. We 
considered trajectories of 6 and 11 steps. The perform-
ance of a trajectory prediction is evaluated as above as 
the MSE over the whole trajectory. We consider a num-
ber of trajectories trainable if within at most 30 trials 
with each consisting of 50 presentations of each trajec-
tory the RMSE over all trajectories is at least once below 
the threshold of 0.05. The whole process contains 5 steps, 
as the following:  

1) The experiment starts with small networks (The 

value of nh starts from 6, such that the network 

comprises 3 hidden units and each hidden unit has 

2 hidden nodes); Training data is the combination 

of np = 2 trajectory patterns.  

2) With each pair of ｛nh ,np｝, at most 30 simulations 

are performed, each of which contains 50 training 

rounds. In each training round, the learning model 

is trained on-line with the presentation of these np 

trajectory patterns, in a shuffled sequence but 

each pattern only once. The hidden-state vector of 

network is reset before the training with any tra-

jectory pattern starts. After every 10 training 

rounds, a testing round starts, trying to reproduce 

all np trajectories in an autonomous manner sepa-

rately. 

3) The autonomous output results are evaluated. Let 

lp be the length of trajectory patterns (the lp value 

is identical to all pattern), xi,k be the ith-step ahead 

prediction over the kth pattern, and ˆ i kx   be the 

respective target, the evaluation error ε is calcu-

lated as:  

2

1 1

1 1
ˆ

p pl n

i k i k
i kp p

xx
n l

 
  

 

  



        (21) 

4) If it satisfies 20 05   , this particular Spi-

ralRNN network with nh hidden nodes is claimed 

to be capable of reproducing np number of trajec-

tory patterns of length lp, and thus the associative 

memory satisfies Ma ≥np. The model (with the 

same structure but re- initialized values) will then 

be assessed with a training data with more pat-

terns, i.e. higher np value. 

If 20 05   is not satisfied at least once within 30 

simulations, it is claimed that SpiralRNN with nh 

hidden nodes is not able to reproduce np number 

of trajectory patterns with length lp. New experi-

ment will start with same value in np but a larger 

SpiralRNN model by increasing the nh value by 3. 

Note that the threshold value is set to 0.05, half 

the grid distance 0.1, so that the prediction can be 

rounded to the nearest grid point if the error is less 

than 0.05. 

5) The experiment are continued until simulations 

with nh = 60 are finished. 

Figures 29 and 30 show the dependence of the number 

of trainable pattern on the number of hidden neurons. 

Obviously, the graphs show an almost linear dependence. 

For short pattern of length 6 we get a relation np / nh = 

0.64 ± 0.04 and for long pattern of length 11 we get np 

/ nh = 0.31 ± 0.02.  

5. Tiny OS Implementation 

Finally we report on an implementation of SpiralRNN in 

a typical wireless sensor platform. One example of such 

a sensor platform is the TelosB[13] sensor mote from the 

University of California at Berkley. It provides sensors 

for temperature, light and humidity. A microprocessor 

(Texas Instruments, MSP430, 16 bit, 8 MHz, 48kB ROM, 

10kB RAM) allows to run software for communication, 

data processing and energy management. A wireless 

transceiver (Chipcon 2420, IEEE802.15.4, 2.4 GHz, 250 

kbps) provides communication links to other sensor 

motes or to a gateway.  
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Figure 29. Pattern storage capacity of SpiralRNN with dif-
ferent number of hidden nodes and with patterns of length 6 

 

 
Figure 30. Pattern storage capacity of SpiralRNN with di- 
fferent number of hidden nodes and with patterns of length 11 

 
Figure 31. Structure of a typical smart sensor mote. TinyOS is the specific operating system for embedded system such as 
smart sensor and provides interfaces among hardwares and softwares. NesC language, as a compiler, compiles and builds 
softwares for different applications 
 

We have deployed TinyOS, a small footprint operating 
system developed at the University Berkeley, on such 
motes. Programs developed for TinyOS are written in the 
programming language NesC [13]. Figure 31 shows the 
typical software architecture of a sensor mote. It allows 
implementing even advanced functionalities like analysis 
and learning on such embedded devices. 

In order to accelerate the task execution, we replaced 
the floating point operations by suitable fix-point opera-

tions. Thus we achieved a runtime for one online learn-
ing iteration of the SpiralRNN with a single input/output 
node and 6 hidden nodes (totally 24 parameters in the 
neural network) of roughly 300 milliseconds, a reduction 
of about a factor 8 compared to a floating point arith-
metics implementation. Figure 32 shows a comparison of 
the floating-point model and the fixed-point model with 
respect to processing time and memory requirement 
(RAM) for a TelosB sensor mote (both models have sin-
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gle input and output neuron). The limited memory ca-
pacity (10 Kbytes) of such a sensor mote prevents de-
ployment of floating-point model images with more than 
36 parameters or running it with more than 32 parame-
ters. In contrast, the fixed-point model takes less than 
one second for each online learning step for networks 
with up to 40 weight parameters (i.e. 10 hidden nodes). 
Similarly, the fixed-point model requires less RAM al-
lowing working with more complex neural networks.  

It is also interesting to compare the processing time of 
the pure feed-forward step with the complete online 
learning step. Figure 33 compares two fixed-point mod-
els with feed-forwarding (FFD) only and with full online 
learning (FULL) including feed-forwarding, gradient 
calculation and extended Kalman filter update. Obvi-
ously, the full online learning step requires much more 
time; while a pure feed-forward step requires only 11ms 
for 48 weight parameters, the full online learning step 
takes about 1500ms for the same network. As a conse-
quence, one can reduce the number of learning steps 
when the neural network is well trained and thus save 
quite some energy.  

We close this section with a comparison of a theoreti-
cal estimate of the computational complexity with the 
measured times for one update step. Measured in multi-
ples of the summed effort for an average elementary 
fix-point or floating point operation consisting of multi-
plication, addition and potentially some copying, the 
feed-forward iteration cost is proportional to 2

hn   
 with nh the number of hidden neurons 

and d the dimension of the input and output. This can be 
expressed in terms of nw=(2d+2)nh+d－1, the number of 
weights, leading to nh=(nw－d+1)/(2d+2). The effort for 
the derivative calculation is proportional to 

 and the effort for the extended 
Kalman filter updates is proportional to 2 32 wd d dn   

(2 1) hd n

2( h hn n 

d

dn ) w

2
w  

Although the complex  of the matrix inversions in 

Eq

full online learning

pared with the measured proc-
es

h d n

2 23 5 2w w wn d n dn n    .

ity

uation (4) scales as 3d , in practice, this is not the 

dominant contribution as wn d≫  can be assumed. The 

dominant contribution for t l online learning step 

comes from the term 2 3 2(2 2)h w wn n n d    of the gra-

dient calculation of the Kal

pure feed-forward step the leading term is 
2 2 2(2 2)h wn n d   , i.e. a factor nw smaller than for the 

 step.  

These estimates are com

 

he ful

man filter update. For the 

sing times in Figure 34. Here, the processing times are 
plotted against the estimated effort for d=1 and varying 
nw. The linear relationships and the very similar propor-
tionality coefficients confirm the theoretical estimates. 
As a by-product we get a typical processing time per 
elementary optimized floating-point operation of about 
0.063ms. 

 

 

(a) Processing time 

 

 

(b) RAM requirement 

Figure 32. Comparisons of processing time and RAM Re-

amounts parameter in model 

quirement between floating-point models and fixed-point 
models that installed in TelosB sensor motes with different 
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Figure 33. Comparison of processing time between models
with feed-forward functionality only and with full function-

hown excellent prediction perform-
ance and stability during online learning making them a 

rediction. Here, different temporal pattern are 
ac

ction tasks. It turned out that the 
nu

tation of SpiralRNN on a typical wireless sen-
sor platform. A significant reduction of the runtime has 

be

ne learning rule can be derived from a Bayesian 
 the probability density 

 

ality (including feed-forwarding, gradient calculation, ex-
tended Kalman filter learning) 

6. Conclusions 

Spiral RNN have s

good candidate for application in autonomous systems. A 
first example are wireless sensor networks where Spi-
ralRNN can be used to reduce duty cycles and thus en-
ergy consumption leading to an increased battery life-
time.  

Another interesting and not so rare use case is condi-
tional p

companied by an additional constant signal which can 
be derived from an initial trigger signal. This approach 
allows training different pattern reliably provided a trig-
ger signal is available. Such trigger signals can also be 
used to suspend online training, e.g. in periods with just 
noise on the input.  

We have analyzed the storage capacity of SpiralRNN 
in conditional predi

mber of successfully trained temporal pattern is pro-
portional to the number of hidden neurons. This result is 
qualitatively similar to the memory capacity of Hopfield 
networks [15]. As expected, the storage capacity for 
longer pattern is smaller than the one for shorter pattern. 
Further investigations might clarify whether there is a 
typical storage capacity per hidden node and pattern 
length.  

Finally, we have reported about an embedded system 
implemen

en achieved by applying fix-point arithmetics. This 
allows developing solutions based on online learning of 
dynamics with reasonably complex models. A typical 
example is duty cycle adaptation in wireless sensor net-
works. 

Appendix 

The onli
approach for ˆt t

f
w X

 of the 

weights w given all previous data 1 0t tt   x x xX .  

 

ˆ { }ˆ ˆ ˆ

 

(a) Feedforward 

 

 

(b) Full online learning step 

Figure 34. Processing time as a function of the theoretical 
estimate of computational complexity for fixed-point im-
plementation: f nline learning 
step (bottom). The linear behavi lmost identical 

eedforward (top) and full o
or and the a

proportionality factors of 0.063 ms/operation indicate the 
validity of the theoretical estimate 
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We start with a generic dynamic system:  

 11 ˆ tt t t   s s w xH              (22) 

 1ˆ ˆt tt t t   s wx xG             (23) 

t1t t  w w   

Equation (22) describes the dynam

system by a (hidden) state vector 

of depends in some, usually nlinear way on the 

pr

             (24) 

ic evolution of the 

ts  at time t. The value 

ts  

at

 no

mo

evious hidden state vector 1ts , on the previous ob-

servation vector 1ˆ tx  and on the del parameters tw . 

Equ ion (23) describes the measurement process: ˆ tx  is 

the vector of observations (sensor data) at time 

t,  (. . . )G  is the el estimation of these observations 

based on ts , tw  and 1ˆ tx . The variable t

mod

  the 

measurement noise vector, assumed to be normally dis-

tr ith a probability distribution function (p.d.f.) 

is 

ibuted w

(
t t 0 )tf R  N Finally uation (24) descri s the e- 

volution of the model parameters: that the dynamics of 

the environment within a reasonable time window are 

. , Eq be

assumed to be stationary, i.e. the model parameters are 

static, up to additive random fluctuations t ; these are 

assumed to be normally distributed with zero mean, co-

variance matrix tQ  and thus with a corresponding p.d.f. 

( 0 )
t t tf Q  N .  

Using the Bayes rule, the chain rule and the Chap-

man-Kolmogorov Equation (16), the conditional p.d.f.  

ˆt t
f

w X
for the mode rameters at time t given the current 

an

l pa

d all previous observations 1 0
ˆ { }ˆ ˆ ˆt tt   x x xX  is 

given by following equations:  

1

1 1

ˆ ˆˆ

ˆˆ

tt tt t

t t

1

ˆ

ˆˆ

tt t

t t
f

w
f f

f f



 

x

X

X

           (25) 









w x

w wx

X X

X

1 1ˆ ˆ ˆˆ ˆt tt t t t tt t 1t
tf f f d s       (26) 

    
w s w s wx xX X X

1 11 1 1
1ˆ ˆ ˆt t t tt t t

tf f f d
   

 
w w w w

w
X X X

     (27) 

Equation (25) is the famous Bayes rule, Equation (26) 
introduces the hidden-state vector  into the “evi-

dence” p.d.f. and Equation (27) is the “prio
the model parameters . The last equation

th

ts

r” p.d.f. for 
 introduces tw

e conditional p.d.f. 
1 1ˆt t

f
 w X

 which allows to interpret 

Equation (25) to Equation (27) as iterative update equa-
tions for ˆt t

f
w X

.  

Before the on-line training rules from these update 
equations are derived as to introduce some as-
sumptions and approximations for the specification of 
each p.d.f

, one h

.:  

 

1 1
1ˆ 1 1( ) ( )

t t
ta t tf P

 
    wS w wX

N is assumed to be 

normally distributed with mean 1tw  and co-

variance matrix 1tP . In general this p.d.f. will 

be multi-modal; however, if the environment 

doesn’t change its dynamics

he m

eco

 

 too fast and if the 

model is powerful enough, then t odel pa-

rameters should b me static and this assump-

tion is justified.  

1 1ˆ 1( )
t t t t t t( )b f Q

     w w w w
X

N  according to the a- 

ssumption made in Equation (24).  

S

 

t with 

ious 

1
2 1ˆ( ) ( ( (... ) ))ˆ ˆ

t t t
t tc t tf 


        s wS s w wx xX

H H

the dots indicating an iterat

e prev

hidden states 

ion of the function 

( )H  which further represents th

 1 2 ...t     s  according to

uation (22). The Dirac delta-function 

 eq- 

( )  

corresponds to a normal distribution with in-

simally small covariance matrix and re-

flects the ass  any uncertainty 

comes from the measurements and from (

dom) changes of model parameters.  

1ˆˆ t t t t
f

finite

umption that

ran-

 

( )d  s wx X
 in Equation (26) is normal distributed 

with mean value 1( )ˆ tt t  s w xG  and covariance 

matrix tR  according to Equation (23)

S

, i.e.  

 
1

1( )ˆ ˆt tˆˆ t t t t t t tf R
      s wx xN G .  

the specifications 

s wx X

 Sa b , Equation (27) 

olution  normal distributions and thus f

S
1ˆt tw X
 

With and 

is a conv of

can be easily calculated:  

1

†
1ˆ

†
1

t t
tt t

t t t

f P

P P Q



 
   



  

 

w w wX
N

         (28) 
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Given the  -function lik .f. 
1

f


 in specifica-

tion  cS  and the p.d.f. of 
1ˆˆ t t t t

f
 s wx X

 in specification 

 dS , one finds: 

e p.d ˆt t t s w X

 
1

1ˆˆ ˆ ˆ
t t t

t tt t tf R 





    

    wx
s wx xX

N G       (29) 

  2 1ˆ ˆt tt t  

ade in s

t s w w   x xH H       (30)

The same assumption as m pecification  aS  

1 1ˆt t
f

 w X
 - namfor ely the slow change of the m

ram when the model has been well trained - 

ju er approximation: the function

odel pa-

eters tw

stifies anot

 

h  ( )G  can 

be rized with respect to their dependence
m ters . In particular,  

linea
odel param

 on the 
e tw

1 1( ) ( )ˆ t tt t t tg        s w x w wx        

where the output vector tx  and the gradient matrix 

 are respectively defined as:  

(31)

 †
11 andˆ t

ttt t

d
    

x
x s w xG    (32) 

1td w

Finally, the definition of is given here.

pa

†
ts  

tio

 According 

to Equation (30) and Equa n (31), †
ts  should be the 

hidden state vector calculated with the previous model 
rameters 1tw . However, this requires a recalculation 

of the whole history whe er the model parameters 
change and therefore is not a viable s lution fo
learning in distributive se p  Instead, the 
app
th

nev

nsor a
3) 

he 

o
plication.

r on-line 

roximation in Equation (3 is applied, which implies 
at the model takes †

ts  as t flawless hidden value.  

  †
2 12 1ˆ ˆt tt tt       s w wx xH H       (33) 

With the approximations in Equation (31), Equation 
(32) and Equation (33), the calculation of 

1ˆˆ t t tX
f

 wx
 in 

Equation (29) is rewritten as:  

 
1ˆˆ

†
11

1

( ( )ˆ ˆ

( )

t t t

t ttt

tt t )R









   
  

x

s wx x

w w

X

N G

), the p.

f  w      

(34) 

Combining Equation (28) and equation (34 d.f. 

ˆt t
f w X

 in Equation (25) ends up with a normal distribu-

 Equation (35). Note that is computed

n (28) and is the gradient m trix.  

tion in

Equatio

†
tP  

a

 in 

  

ˆ ( )
t t

tt tf N P  w w wX
          35)       (

 1 ˆ tt t t t tP R    xw w x
1T            (36) 

on

†

1† † †

t t

T T
t t t t

P P

P P R P
 

 
 

 

    

     
(37)

 

Equation (35) is consistent with specificati   aS  

whilst Equation (36) and Equation (37) constitute t
extended Kalman filter (EKF)
[16,17,18]). 
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