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Abstract 
 
Heat transfer to pins swimming in non-isothermal fluidic systems is theoretically analyzed. Four different 
cases are considered: [A] pins aligned longitudinally in flowing fluid having constant temperature gradient, 
[B] pins aligned transversely in flowing fluid flow with constant temperature gradient, [C] pins moving lon-
gitudinally towards a heated surface, and [D] pins moving transversely towards the heated surface. The Ap-
propriate unsteady energy transport equations are solved and closed form solutions for the fin temperatures 
are obtained. Accordingly, different performance indicators are calculated. It is found that heat transfer to the 
swimming pin increases as the pin thermal length, Peclet number and fluid temperature difference along the 
pin length increase. It decreases as fluid temperature index along the motion direction increases. Moreover, 
the swimming pins of case C are found to produce the maximum system effective thermal conductivity. In 
addition, pins of case B with thermal lengths above 11 produce system thermal conductivity independent on 
the thermal length. Meanwhile, pins of case A having thermal lengths above 10 produce system thermal 
conductivities less responsive to the thermal length. The system thermal conductivity is noticed to increase 
as the thermal length and Peclet number increase. Eventually, pins of case D produce system thermal con-
ductivities that are independent on the transverse temperature. Finally, the results of this work provide a ba-
sis for modeling super convective fluidic systems that can be used in cooling of electronic components. 
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1. Introduction 
 
Enhancing heat transfer in thermal systems becomes the 
primary goal in thermal engineering. This goal can be 
achieved by various means such as using fins [1-4] and 
nanofluids [5]. Researchers succeeded to enhance the 
heat transfer from the finned heated surfaces by several 
means. For example, many fins configurations such as 
the slit fins have produced heat transfer coefficient 50 to 
100 percent above those of flat fins [6]. Moreover, Yang 
et al. [7] succeeded to increase the heat transfer rate from 
a fin-tube heat exchanger by 6.3 percent by optimizing 
the fin spacing. Sahiti et al. [8] found out that employing 
interrupted elliptic fins could produce heat transfer coef-
ficient 50 percent above that produced by interrupted 
circular fins. 

Almogbel and Bejan [9] and Almogbel [10] proved 
that constructal optimization of a fin assembly is capable 

of producing heat transfer coefficient 500 percent above 
those of single fin under the same constraints. Li et al. 
[11] showed that microfinnned helical tubes caused an 
increase in the heat transfer by 120 percent compared to 
that of plain tube. Kiwan and Al-Nimr [12] were among 
the recent researchers who found that using a porous fin 
with certain porosity might give same performance as 
conventional fin and save 100 times porosity percent of 
the fin material. Aldoss et al. [13] found out that the heat 
transfer through a capsulated liquid metal fins might 
reach about 500% above that of an equal-size steel fin. 
Recently, Khaled [14,15] showed that heat transfer using 
joint and permeable fins could be 100% and 40% above 
that of typical flat fins, respectively. Moreover, Khaled 
[16,17] showed that fins with roots and fins with internal 
flows can increase heat transfer by about 100% and 
200%, respectively, compared flat rootless fins. 

Another recent method for enhancing the heat transfer 
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from the heated surfaces is by using nanofluids. These 
are fluids containing suspensions of nanoparticles made 
of high thermally conductive materials. Nanofluids are 
noticed to possess large effective thermal conductivities 
for very low concentrations of nanoparticles. For exam-
ple, the effective thermal conductivity of ethylene glycol 
is increased by about 40% above that of the base fluid 
when a 0.3% volume of copper nanoparticles of diame-
ters less than 10 nm are suspended in the fluid [18]. In 
addition, Xuan and Li [19] showed that the convective 
heat transfer coefficient was increased by 60% for nan-
ofluid composed of water and 2% Cu-nanoparticles by 
volume. Finally, the estimated maximum levels of the 
heat transfer enhancement due to different recent en-
hancing methods are summarized in the work of Man-
soor et al. [20]. Among these methods are utilizing (a) 
fins and microfins, (b) porous media, (c) large particles 
suspensions, (d) nanofluids, (e) phase-change devices, (f) 
flexible seals, (g) flexible complex seals, (h) vortex gen-
erators, (i) protrusions, and (j) ultra high thermal conduc-
tivity composite materials. 

From the previous brief literature survey, it is noticed 
that many novel ideas were developed recently to en-
hance the heat transfer from the solid surfaces. In addi-
tion, it is proposed in the present work to consider high 
thermally conductive pins submerged and swimming in 
the fluid as a new novel method for enhancing the heat 
transfer from the solid surface. The pin velocities are 
considered different from the fluid velocity. It is referred 
to these pins as to “swimming pins”. The resulting sol-
id-fluid system is different from the two-phase flow or 
the nanofluid system [20] by having the pins moving at 
constant or predetermined velocity. The velocity of the 
swimming pins can be attained using different methods. 
Among these methods are: 1) Applying appropriate 
magnetic forces on the swimming pins along with using 
magnetized pins, 2) Applying appropriate centrifugal 
forces on the fluid/suspended-pins system, and 3) Ap-
pling appropriate electrostatic forces on the swimming 
pins along with using electrically charged pins. To the 
best author knowledge, this proposal has not been dis-
cussed before and it is though to be useful for cooling of 
electronic components.  

In this work, four different types of swimming pins are 
theoretically analyzed. These are the following: [A] Pins 
swimming longitudinally in flowing fluid having con-
stant temperature gradient, [B] Pins aligned transversely 
and swimming in flowing fluid having constant tem-
perature gradient, [C] Pins swimming longitudinally to-
wards a heated surface, and [D] Pins moving transversely 
towards the heated surface. Such these cases can form a 
basis for constructing and modeling super convective 
fluid/swimming-pins systems. Appropriate unsteady en-

ergy transport equations are identified and solved theo-
retically. Closed form solutions for the pin temperature 
are obtained for each case. Accordingly, different pin 
performance indicators and the effective thermal conduc-
tivity of the fluid/swimming-pins system are computed 
for the studied cases. 
 
2. Problem Formulation 
 
2.1. Pins Swimming Longitudinally in Flowing 

Fluid Having Constant Temperature  
Gradient (Cases A) 

 
Consider a pin having a uniform cross-sectional area AC 
and a uniform perimeter P. This pin is suspended in 
flowing fluid inside a heated pipe of diameter 2ro. 
Moreover, the pin is considered to move inside the flow-
ing fluid at a constant velocity U. The pin length L which 
is much larger than its characteristic transverse dimen-
sion LC = AC/P is taken for this case to be aligned along 
the x'-direction as shown in Figure 1. Both x' and U have 
the same direction. Let the pipe be subjected to constant 
heat flux sq  and the mass flow rate of the flowing fluid 
be . As such, the surrounding fluid stream tempera-
ture d  inside the pipe can be shown to be equal to the 
following under fully developed condition:   

m
T

  ,
s o

d d i
p

q P
T x T x x

mc


   


          (1) 

where Po, cp, ,d i , x' and x are the pipe perimeter T
 2πoP r o , fluid specific heat, surrounding fluid stream 
temperature at the inlet, distance between the inlet and 
the pin left end and the pin coordinate starting from its 
left end, respectively. The magnitude of x' is given by x' = 
Ut where t is the time variable. The one-dimensional 
energy equation applied to the pin can be written in the 
following form: 

 
2

2

f f f f f f f
f d

f f C f

T c U T chP
T T

k x k A kx

       T

t

  
                    

 

(2) 
where Tf, f, cf, kf and h are the pin temperature, pin den-
sity, pin specific heat, pin thermal conductivity and the 
convection heat transfer between the pin and the sur-
rounding fluid, respectively. Correlations for the 
h-coefficient for each case with sufficient accuracy can 
be obtained using any recent heat transfer textbooks [21].  

Applying the following dimensionless variables: 

* ;
x

x
L

                  (3a) 

* ;
Ut

t
L

                 (3b) 
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Figure 1. Schematic diagram for swimming pins of cases: A and B, and the flow configurations with coordinates system. 
 

,

f d

d i d

T T

T T






                (3c) 

on Equation (2) will change it to the following dimen-
sionless form: 

 
2

2

1 1*2 *

1 *

2 2

2

f f

f f

Pe mL Pe
x x

Pe Pe
t

   



           


 


   (4) 

where fPe  (pin Peclet number), m (pin index) and 1  
(characteristic function) are given by 

;f f
f

f

c UL
Pe

k


               (5a) 

;
f C

hP
m

k A
                (5b) 

1 * *

1

x t
 


                (5c) 

The pin is considered to be insulated from both left 
and right ends. In addition, it is considered to be at tem-
perature ,f d i  when t = 0. As such, the dimen-
sionless boundaries and initial conditions are given by 

T T

 
* *

* *
*

0,

0, 1;
x t

t x
x

 



  


*t         (6a) 

   
* *

* *
*

1,

1
x t

t x
x

 



  


*1, 1;t 

1

      (6b) 

 * *, 0x t                (6c) 

The net heat transfer rate from the pin to the flowing 

fluid, f dq  , is given by 

 

 

1
*

0

1
* * *

0

d

d

f d d

s o

p

q hPL T T x

q P L
hPL x t x

mc


  

 
    

 





      (7) 

The temperature increase across any pipe differential 
element of thickness L which is denoted by TL is equal 
to L s o pT q P L mc   . Define the dimensionless pin heat 
transfer rate A as the ratio between the pin heat transfer 
rate to that having maximum temperature difference of 
TL. Mathematically, it is equal to 

 
1

* * *

0

df d
A

L

q
x t x

hPL T
    

          (8) 

Closed Form Solutions 
Define the variable  * *,g x t  as the following: 

     * * * * * *, ,g x t x t x t            (9) 

Substituting Equation (9) in Equation (4) results in the 
following form of energy equation: 

 
2

2

*2 * *
2f f f

g g g
Pe mL g Pe Pe

x x t

  
   

  
   (10) 

The boundaries and initial conditions are obtained by 
substituting Equation (9) in Equations (6a-c). As such, 
the boundary and initial conditions of  * *, g x t  are giv-
en by  

 
* *

* *
0 1

* * *

1;

, 0

x x

g g

x x

g x t x

 

 
 

 

 
         (11a-c) 
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The solution of  * *,g x t  can be decomposed into 
sum of two solutions: 1) the steady state solution 

 *
sAg x  and, 2) the homogenous solution  * *,A x t . 

The corresponding governing equations for each one are 
taken to be 

 
2

2

*2 *

d d
2

d d
sA sA

f sA

g g
Pe mL g Pe

x x
   0f      (12) 

 
2

2

*2 * *
A A

f APe mL Pe A
f

x x t

  


 
  

 



    (13) 

The corresponding boundary and initial conditions are 
taken to be 

* *
* *

0 1

d d
1;

d d
sA sA

x x

g g

x x 

           (14a) 

* * * *
* *

0, 1,

0;A A

x t x tx x

 

 

 


 


sA

      (14b) 

  * * * *, 0A x t x g    x

*
1

      (14c) 

Utilizing the theory of ordinary differential equations, 
separation of variables and the Sturm-Liouville theory 
[17], the following solutions can be obtained: 

     * *
1 1 2 2exp expsAg x C s x C s x  A      (15) 

   

 

 

2
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2

*

* 2 2 *
*

1
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4
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2
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f

f

f

f
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Pe
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t
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





  
    
    
  
    
    

 
   

 
 n x

(16) 

where A1, C1, C2, s1 and s2 are equal to 

 1 2

2
;fPe

A
mL

               (17a) 

 
    

2
1

1 2 1

exp 1
;

exp exp

s
C

s s s





       (17b) 

 
    

1
2

2 2 1

1 exp
;

exp exp

s
C

s s s





       (17c) 

 
2

2

1 ;
2 4

f fPe Pe
s mL          (17d) 

 
2

2

2 2 4
f fPe Pe

s mL          (17e) 

The functions  *πnX n x  are equal to 

    * *π cos π sin π
2 π

f
n

Pe *X n x n x n x
n

 
   

 
   (18) 

The constants Ea and En’s are equal to 

 
   

 

1

2

1

1 1

exp 1

exp exp

exp 1

a
f f

f m m f

m m ff

E A
Pe Pe

Pe s C Pe

s PePe

          
      

           


  (19a) 
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 
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2
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1
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2
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nf

n

f
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m
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m
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E
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n
n
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

       
   

        
       
   

                



 (19b) 

As such, the dimensionless heat transfer rate is equal 
to 

     

 

 

 

1 2
1 1 2
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*
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*
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2
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4
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π
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f
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n
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s s
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E t Pe
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t

Pe
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n t
E

Pe Pe
n





     

  
    
    

  
    
    

  
           

   
 





(20) 

The maximum effective swimming pin index denoted 
by m can be obtained by solving the following equation:  

0.99f d f dm m m
q q


  

 . As such, mL for this case is  

obtained by solving the following equation: 

        2* *sinh 2 cosh 0.01 sinhf
*s Pe s m L s   

(21) 

where  2* 4fs m L Pe  2 . Note that the maximum 
heat transfer rate is equal to  
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2 2f d f C L f f f Cm
q k A T Pe L c A 

      LU T . 

 
2.2. Pins Aligned Transversely and Swimming  

in Flowing Fluid Having Constant  
Temperature Gradient (Cases B) 

 
Let the pin described in section 2.1 be aligned trans-
versely such that the pin centerline is normal to the 
U-direction as shown in Figure 1. The fluid temperature 
around the pin can be approximated by the following 
expression: 

  s o
d i d

p

q Px
T x T T Ut

L mc

              
       (22) 

where d  is the fluid undisturbed stream temperature 
increase across the pin length. Define the dimensionless 
time according to the following: 

T

*
2

f

f f

k t
t

c L

           
             (23) 

According to Equation (23) and Equation (3a), Equa-
tion (22) changes to 

 * * * *,d i d LT x t T T x T Pe t     f       (24) 

The one-dimensional energy equation applied to the 
pin for this case has the following form: 

 
2

2

f f f f
f d

f C f

T hP
T T

k A k tx

   
             

c T
   (25) 

Utilizing the dimensionless variables given by Equa-
tion (3a,c) and Equation (23), Equation (25) can be 
changed to the following dimensionless form:  

 
2

2

2 1 2*2 * *
2 mL

x x t

            
 


   (26) 

where 2  (characteristic function) and 1  (Tempera-
ture difference ratio) are given by 

2 * *
1

1
;

x t






            (27a) 

1
L

f
d

T
Pe

T


 
   

           (27b) 

The dimensionless boundaries and initial conditions as 
adopted in section 2.1 can be expressed in the following 
dimensionless forms:   

 
* *

* *
1 *

0,

0, 1;
x t

t x
x

 



  



   
* *

* *
1 *

1,

1
x t

t x
x

 


 *1, 1;t   


    (28b) 

 * *, 0x t  1

*

            (28c) 

The heat transfer from the pin to the flowing fluid is 
given by 

 

 

1
*

0

1
* *

1
0

d

d

f d d

d

q hPL T T x

hPL T x t x 
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   




     (29) 

Define the dimensionless pin heat transfer rate B as 
the ratio between the pin heat transfer rate to that having 
maximum temperature difference of . Mathemati-
cally, it is equal to  

dT

 
1

* *
1

0

df d
B

d

q
*x t x

hPL T
     

       (30) 

Closed Form Solutions 
Redefine the variable  * *,g x t  as the following: 

     * * * *
1, ,* *g x t x t x t          (31) 

Substituting Equation (31) in Equation (25) results in 
the following dimensionless form of the energy equation: 

 
2

2

*2 *f

g g
mL g Pe

x t

 
 

 
         (32) 

The boundaries and initial conditions are obtained by 
substituting Equation (31) in Equations (28a-c). They are 
given by Equations (11a-c). The equations for the steady 
state and homogenous solutions are given by 

 
2

2

*2

d
0

d
sB

sB

g
mL g

x
            (33) 

 
2

2

*2 *
B B

BmL
x t

 



 


 

         (34) 

The corresponding boundary and initial conditions are 
given by Equations (14a-c). Utilizing the theory of ordi-
nary differential equations, separation of variables and 
the Sturm-Liouville theory [22], the following solutions 
can be obtained. 

     
   

* *

*
cosh cosh 1

sinhsB

mLx mL x
g x

mL mL

       (35) 

       2* * * 2 2 * *

1

, exp exp π cos πB n
n

x t mL t F n t n




   x  

(36) 
The coefficients Fn are equal to 

   
 2 2 2 2 2

1 1 1 1
2

π π

n n

nF
n mL n

            
      

     (37) *t       (28a) 
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As such, the dimensionless heat transfer rate is equal 
to 

      2 * 2 2 *
2 2

1

1 1
exp exp π

π

n

B n
n

mL t F n t
n





         
  

  

(38) 
The steady state value of B  is zero. According to 

Equation (35), the pin base section is located at  
where the convection heat transfer changes its direction 
at this section. Therefore, the maximum conduction heat 
transfer rate through this pin is obtained from the fol-
lowing mathematical relationship:  

* 0.5x 

 

*
*

0.5

1
1

cosh 2

fC
f f

x

C
f d

TA
q k

L x

A
k T

L mL



      

        
    



      (39) 

As such, the pin maximum dimensionless conduction 
heat transfer denoted by  is equal to 

   2

1 1
1

co sh 2
f

d

q

h P L T m Lm L


     
    

   (40) 

The effective swimming pin length denoted by L can 
be obtained by solving the following equation:  

   0.99f
L L L

q q
 
 f 

. As such, mL can be shown  

to be . 10.597mL 
 
2.3. Pins Swimming Longitudinally Towards a 

Heated Surface (Cases C) 
 
Let the pin described in section 2.1 be moving towards a 
hot surface with temperature Ts at a constant velocity U 
as shown in Figure 2. The fluid stream temperature sur-
rounding the pin can be approximated by the following 
expression: 

     expd sT x T T T b x x            (41) 

where T, b, x' and x are the fluid far stream temperature, 
positive quantity, the position vector of the pin upper end 
and the pin axial coordinate starting from the pin upper 
end, respectively. The position vector x' is a time de-
pendent quantity given by x' = xo – Ut where t is the time 
variable. In terms of dimensionless variables given by 
Equation (3a,b), Equation (41) changes to  

     * * * *, expd sT x t T T T C B x t      

x

  (42) 

where B and C are equal to 

;B bL                  (43a) 

exp oC b                (43b) 

According to Equation (41), the dimensionless time  

 

Figure 2. Schematic diagram for swimming pins of cases: C 
and D, and the flow configurations with coordinates system. 
 
required for the pin to reach the heated surface is equal to 

* 1f ot x L  . Redefining Equation (3c) as 

    
 

* * * *

* *

* *

, ,
,

,

d

d

T x t T x t
x t

T T x t








       (44) 

Applying the dimensionless variables given by Equa-
tion (3a,b) and Equation (44) on Equation (2) will 
change it to the following dimensionless form: 

 
2

2 2 2
*2 *

*

2 2

2

f f

f f

Pe B mL Pe B B B
x x

BPe Pe
t

  



             


 


 

(45) 

The dimensionless boundaries and initial conditions as 
adopted in section 2.1 can be expressed in the following 
dimensionless forms:  

 
* *

* *
*

0,

0, ;
x t

B x t B
x

 



  


       (46a) 

 
* *

* *
*

1,

1, ;
x t

B x t B
x

 



  


       (46b) 

 * *, 0x t  1             (46c) 

The heat transfer from the pin to the flowing fluid is 
given by 

 

   

1
*

0

1
* * *

0

d

exp d

f d d

s

q hPL T T x

hPL T T C B x t x





 

     




 (47) 

Define the dimensionless pin heat transfer rate C as 
the ratio between the pin heat transfer rate to that having 
maximum temperature difference of  sT T T   . 
Mathematically, it is equal to 
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 
1

* * *

0

exp df d
C

q
C B x t

hPL T
         x



    (48) 

Closed Form Solutions 
The solution of  * *,x t  can be decomposed into 

sum of two solutions: 1) the steady state solution 
 *

sC x  and, 2) the homogenous solution  * *,C x t . 
The corresponding governing equations for each one are 
taken to be 

 
2

2 2
*2 *

2

d d
2 2

d d

2 0

sC sC
f f

f

Pe B mL Pe B B
x x

B BPe

 
sC         

  
 

(49) 

 
2

2 2
*2 *

*

2 2C C
f f C

C
f

Pe B mL Pe B B
x x

Pe
t

 




            





 

(50) 

The corresponding boundary and initial conditions are 
taken to be 

 
*

*
*

0

d
0

d
sC

sC
x

B x B
x






  ;        (51a) 

 
*

*
*

1

d
1

d
s

sC
x

B x B
x






   ;        (51b) 

 
* *

* *
*

0,

0, 0;C
C

x t

B x t
x







 


      (51c) 

 
* *

* *
*

1,

1, 0;C
C

x t

B x t
x







 




sC

     (51d) 

  * * *, 0 1C x t    x         (51e) 

According to Equation (48), C is always increasing 
with time. The maximum value of C which is denoted 
by 

maxC  is of special importance to this work. It is 
equal to C at the maximum available dimensionless 
time (

 

*
f ot x 1L  ). At that time,  * *,x t  is expected 

to be equal to  *
sC x . The solution of  *

sC x  as 
obtained from solving Equation (49) is equal to  

     * *
5 5 6 6exp expsC

*
2x C s x C s x   A    (52) 

where A2, C5, C6, s5 and s6 are equal to 

 

2

2 2 2

2
;

2

f

f

BPe B
A

mL BPe B




 
        (53a) 

 
   

62
5

5 6 5

exp 11
;

exp exp

sA
C B

s B s s

       
    

    (53b) 

 
   

52
6

6 6 5

1 exp1
;

exp exp

sA
C B

s B s s

       
    

    (53c) 

 
2

2

5 ;
2 4

f f
f

Pe Pe
s B Pe B m

 
     
 

L   (53d) 

 
2

2

6 2 4
f f

f

Pe Pe
s B Pe B

 
     
 

mL   (53e) 

As such,  maxC is equal to 

     

   

 

5
5max

5

6
6

6

2

exp exp

exp exp

exp 1

C

B s
C

s B

B s
C

s B

B
A

B

      
  

       
     

  

       (54) 

Note that the maximum heat transfer rate can be ob-
tained and it is equal to  

   2 expf d f f C sm
q c A U T T 

1B    . Since m 

can be obtained by solving the following equation: 

0.99f d f dm m m
q q


  

 . It is the solution of 

      2

max
1.98 exp 1C fm m

m L Pe B


 
       (55) 

 
2.4. Pins Moving Transversely Towards the 

Heated Surface (Cases D) 
 
Let the pin described in section 2.3 be aligned trans-
versely and be moving at a constant velocity U towards 
the hot surface as shown in Figure 2. The heated surface 
temperature is considered to be varying exponentially 
with xs-axis that is coinciding with pin axial axis. This 
variation is according to the following relationship: 

     2exps soT x T T T b x           (56) 

where b2 is a positive quantity. Accordingly, the fluid 
stream temperature surrounding the pin given by Equa-
tion (41) is equal to 

     2 1, expd soT x x T T T b x b x      '    (57) 

where Tso is the temperature of the surface opposing the 
pin left end. In terms of dimensionless variables given by 
Equation (3a) and Equation (23), Equation (57) changes to  

     * * * *
2 2, expd soT x t T T T C B x t        (58) 

where B2, C and 2 are equal to  

2 2 ;B b L                 (59a) 
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 1exp ;oC b x              (59b) 

1 1 ;B b L                 (59c) 

 2 1 fB Pe B  2



            (59d) 

According to Equation (57), the dimensionless time 
required for the pin to reach the heated boundary is given 
by *

f o f . Applying the dimensionless vari-
ables given by Equation (3a), Equation (44) and Equa-
tion (23) on Equation (25) will change it to the following 
dimensionless form: 

t x LPe

 
2

2 2
2 2 1*2 *

1 *

2 f

f

B mL B B Pe
x x

B Pe
t

  



         


 


2
2B

  (60) 

The dimensionless boundaries and initial conditions as 
adopted in section 2.1 can be expressed in the following 
dimensionless forms:   

 

   

* *

* *

* *
2 2*

0,

* * * *
2 2*

1,

0, ;

1, ; , 0 1

x t

x t

B x t B
x

B x t B x t
x

 

  






  




   




*

 (61) 

The heat transfer from the pin to the flowing fluid is 
given by 

 

   

1
*

0

1
* *

2 2
0

d

exp d

f d d

so

q hPL T T x

hPL T T C B x t x 





 

     




 (62) 

Define the dimensionless pin heat transfer rate D as 
the ratio between the pin heat transfer rate to that with 
maximum temperature difference of  D soT T T   . 
Mathematically, it is equal to 

 
1

* *
2 2

0

exp df
D

D

q
C B x t

hPL T
         *x   (63) 

Closed Form Solutions 
According to Equation (62), D is always increasing 

with time. As such, the maximum value of D, denoted 
by , is computed at dimensionless time given 
by 

 maxD
*
f ot x L . At that time,  * *,x t  is expected to be 

equal to sD *x . The solution of  *
sD x  as obtained 

from solving Equation (60) at large times is equal to 

     * *
7 7 8 8exp expsD

*
3x C s x C s x   A    (64) 

where A3, C7, C8, s7 and s8 are equal to 

 

2
1 2

3 2 2
1 2

;f

f

B Pe B
A

mL B Pe B




 
         (65a) 

 
   

83
7 2

7 2 8 7

exp 11
;

exp exp

sA
C B

s B s s

       
    

   (65b) 

 
   

73
8 2

8 2 8 7

1 exp1
;

exp exp

sA
C B

s B s s

           
   (65c) 

 2

7 2 1 ;fs B mL B Pe           (65d) 

 2

8 2 1 ;fs B mL B Pe           (65e) 

As such,  maxD  is equal to 

     

 

7 2 8 2
7 8max

7 2 8 2

2
3

2

1 exp 1 exp

1 exp

D

s B s B
C C

s B s B

B
A

B

                    
    

  



(66) 

Equation (66) is reducible to the following expression: 

 
 

 1 2

2max
21

exp 1f
D

f

B Pe B

BmL B Pe

   
         

  (67) 

The maximum effective swimming pin index denoted 
by m can be obtained by solving the following equation:  

0.99f d f dm m m
q q


  

 . As such, the dimensionless  

effective length for this case mL can be obtained to be 
equal to 19.95 fm L B Pe  .  
 
2.5. Effective Thermal Conductivity for the 

Fluid Loaded With Swimming Pins of  
Kind (A) 

 
Suppose that the pin volume fraction is equal to 

f sfn V V   where nf is the number of swimming pins, 
Vsf is the volume of a single pin and V is the fluid volume. 
The maximum value of   is taken to be 1.5% which is 
expected to cause insignificant effect on the fluid flow 
pressure drop [5,19]. The net heat flux received by the 
fluid can be shown to be equal to 

o

f dCo d
d s

C o r r

qA T
q q k

A P L r
 



           
    (68) 

where ACo, k and r are the pipe cross-sectional area 
 2πC oA r , fluid thermal conductivity and the pipe ra-
dial coordinate, respectively. For homogenous mixture of 
the swimming pins and the pure fluid, the mixture can be 
approximated as a continuum fluid with effective thermal 
conductivity keffA. For this case, the boundary heat flux, 

sq , is given by  
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o

d
s effA

r r

T
q k

r 

 


            (69) 

By solving Eqs. (68) and (69) simultaneously, keffA can 
be obtained and it is equal to 

 
12

1 2effA f o
A

A

k k mLr

k k L Pe



        

   




   (70) 

where PeA is the pure fluid Peclet number;  
2A p m oPe c u r k . Note that um is the pure fluid mean 

velocity. 
 
2.6. Effective Thermal Conductivity for the 

Fluid Loaded With Swimming Pins of  
Kind (B) 

 
The steady state rate of heat transfer through the pin is 
independent on the pin speed. As such, the effective 
thermal conductivity can be obtained by equating the 
transverse conduction across a given volume of fluid and 
swimming pins (V = ACoL) to that across a homogenous 
mixture with effective thermal conductivity keffB under 
the same temperature difference. Mathematically, this 
energy balance is given by 

 1 d Co
Co d effB Co

C

T A
kA hPL T k A

L A
  

  
    

 
dT

L
 (71) 

As such, keffB is given by: 

   
1

1 1
cosh 2

effB fk k

k k
 

mL

        
   

   (72) 

Based on effective pin length, Equation (72) is reduci-
ble to 

 1 0.99effB fk k

k k
 

 
   

 
          (73) 

 
2.7. Effective Thermal Conductivity for the 

Fluid Loaded With Swimming Pins of  
Kind (C) 

 
The rate of heat transfer from the heated surface (per unit 
cross-sectional area normal to x’-axis) is given by: 

   
max

0

0

d 1
1

d

d

d

d
d

Cx

d
effC

x

T
q k q

x A

T
k

x

  




 
       

 


f d

  (74) 

As such, keffC can be obtained and it is equal to 

     
2

max
1effC f

C

k kmL

k B k




 
    

 
    (75) 

 
2.8. Effective Thermal Conductivity for the 

Fluid Loaded With Swimming Pins of  
Kind (D) 

 
The rate of heat transfer from the heated surface (per unit 
cross-sectional area normal to x’-axis) is given by: 

 
1

*

0 0

1
*

0 0

1
1 d

d

d
f d

Cx

d
effD

x

T
k x

x A

T
k x

x

  q 




   
        

 
    




   (76) 

Therefore, keffD can be obtained and it is equal to 

   
 

2

2

1

1effD f
f

f

k k mL
Pe

k k mL B Pe
 

  
        

  (77) 

Based on maximum effective pin index, Equation (76) 
is reducible to 

 1 0.99effD f
f

k k
Pe

k k
 

 
    

 
       (78) 

 
3. Discussion of the Results 
 
Figure 3 shows the variation of the dimensionless rate of 
heat transferred from the fluid to the pin A with the 
pin thermal length mL, pin Peclet number Pef and di-
mensionless time t* for case A-swimming pins. Heat 
transfer to the swimming pin is expected to increase as 
mL increases however, the dominator of Equation (8) 
increases largely with the increase of hPL. The latter 
quaintly increases linearly with . As such, A



 2
mL   

is shown to decrease as mL increases. The initial value of 

A  is found from Figure 3 to be equal to 0.5. This 
value coincides with the value obtained by integrating 
Equation (11c) over the whole range of x* as given by 
Equation (8). This validates the obtained closed form 
solutions. As t* increases, A  is found to increase at 
lower values of mL while at large values of mL, A


  is 

unaffected with the time variable. Increasing the value of 
Pef causes an increase in A . This is because pins 
swimming at larger U-values (larger Pef-values) reach to 
the fluid volumes with larger temperatures in a shorter 
period of time. Thus, the temperature difference between 
the fluid and the pin increases causing an increase in the 
rate of the heat transfer to the pin.  

Factors that increases the convection heat transfer to 
the pin such as increasing the values of Pef and mL and  
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Figure 3. Effects of mL, Pef and t* on ΘA. 
 
decreasing the time variable t* tend to increases the ef-
fective thermal conductivity, keffA, of the flu-
id/swimming-pins system. These trends are quite recog-
nizable in Figure 4. It can be recommended from Figure 
4 to have swimming pins with mL > 10 so that keffA be 
less sensitive to the variation of mL. Figure 5 shows the 
variation of the performance indicator  and effective 
thermal conductivity of the fluid/swimming-pins system, 
keffB, with the pin thermal length mL for case 
B-swimming pins. It is noticed that the values of  is 
almost independent on mL when mL < 0.65. In addition, 
it can be noticed that keffB increases as mL increases until 
it becomes independent on mL when mL > 11. Moreover, 
it can be seen that as the swimming pins volume ratio 
increases, the effective thermal conductivity keffB in-
creases. 

Figure 6 shows the effects of the pin thermal length 
mL, pin Peclet number Pef and dimensionless fluid tem-
perature variation index B on the maximum dimen-
sionless rate of heat transferred from the fluid to the pin 

 for case C-swimming pins. The role of mL 
and Pef on 

maxC  is similar to their role on A

 maxC 
     

which are discussed previously. For small B-values, the 
pin encounters a larger temperature difference between 
its temperature and the fluid temperature for a larger pe-
riod of time as compared to cases with larger B-values. 
Thus, heat transfer to the swimming pin is expected to 
increase as B decreases. As such, 

maxC  increases 
as B decreases. The effective thermal conductivity keffC is 
found to be highly affected by Pef and less affected by B 
at large mL-values as can be seen from Figure 7. Ac-
cording to this figure, the values of the effective thermal 
conductivity keffC can be larger than those for keffA and 
keffB at the same mL-values. Figure 8 shows that the case 
D-swimming pin maximum heat transfer is highly af-
fected by the fluid temperature increase along the pin 
length. However, the effective thermal conductivity of 
the fluid/swimming-pins system, keffD, is noticed to be 

independent on that temperature increase as given by  

  

 

Figure 4. Effects of mL, U/um and t* on keffA/k. 
 

 

Figure 5. Effects of mL on  an, mL and  on keffB/k. 
 

 

Figure 6. Effects of mL, Pef and B on .  max
 C

 
Equation (77) and seen from Figure 9. According to 
Figure 10, it is noticed that the maximum dimensionless 
effective pin index mL is always larger than 95 and that 
the values of mL correspond to case C is always greater 
than those correspond to case A.  

Furthermore, the values of mL of case C decreases as 
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B decreases and it converges to the values of mL of case  

 

Figure 7. Effects of mL on  an, mL and  on keffB/k. 
 

 

Figure 8. Effects of mL, Pef and B2 on .  max
D

 

 

Figure 9. Effects of mL, Pef and B1 on keffD/k. 
 
A as B approaches zero.  
 
4. Conclusions 
 
In this work, heat transfer to pins swimming inside 
no-isothermal fluid was theoretically analyzed. Four dif-

ferent types of swimming pins were considered: [A] Pins  

 

Figure 10. Effects of Pef and B on mL. 

 
swimming longitudinally in flowing fluid having con-
stant temperature gradient, [B] Pins aligned transversely 
and swimming in flowing fluid having constant tem-
perature gradient, [C] Pins swimming longitudinally to-
wards a heated surface, and [D] Pins moving transversely 
towards the heated surface. Appropriate unsteady energy 
transport equations were identified, dimesionlaized and 
solved theoretically. Closed form solutions for the pin 
temperature and the heat transfer rates to the pins or 
through the pins were obtained for each case. Accord-
ingly, the effective thermal conductivities of the fluid/ 
swimming-pins systems were computed.  

The following main findings were reported: 
 Heat transfer to the swimming pin increases as the 

pin thermal length increases. 
 Heat transfer to the swimming pin increases as the 

pin Peclet number increases. 
 Heat transfer to the swimming pin increases as the 

fluid temperature index decreases. 
 Heat transfer to the swimming pin increases as the 

temperature difference along the pin length increases. 
 The fluid/swimming-pins system effective thermal 

conductivity increases as both pin thermal length and 
Peclet number increase. 

 It can be recommended that swimming pins of case A 
have thermal lengths larger than 10 so that the system 
effective thermal conductivity be less responsive to 
the thermal length. 

 Swimming pins of case B with thermal lengths larger 
than 11 produce system effective thermal conductiv-
ity independent on the variation of the thermal length. 

 Swimming pins of case C produces system effective 
thermal conductivities larger than those of cases A 
and B. This trend agrees with the finding of Khaled 
and Vafai [23] that boundary arrangement of the dis-
persive elements produce substantial enhancements in 
heat transfer compared to other arrangements. 
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 Swimming pins of case D produces system effective 
thermal conductivities independent on temperature 
difference along the pin length. 

Finally, the closed form solutions derived in this work 
can form a basis for constructing and modeling super 
convective fluidic systems that can be used in cooling of 
electronic components. 
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Nomenclature 
 
A1-A3 steady state particular solutions; Equations 

(17a), (53a) & (65a) 
AC  pin cross-sectional area 
ACo  pipe cross-sectional area 
B, B1, B2 exponential functions dimensionless indices 
b, b1, b2 exponential functions indices 
C1-C8 steady state general solutions coefficients; 

Equations (17b, c), (53b, c) & (65b, c) 
cp  pure fluid specific heat [J/kgK] 
Ea, En homogenous solution coefficients; Equation 

(19a, b) 
Fn homogenous solution coefficients; Equation 

(37) 
g transformed dimensionless temperature; Equa-

tion (9) & Equation (31) 
gs transformed dimensionless steady state tem-

perature; Equation (12) & Equation (35) 
h convection heat transfer coefficient between 

the pin and the fluid [W/m2K] 
k  pure fluid thermal conductivity [W/m.K] 
keff  Effective fluid-swimming pins thermal con-

ductivity; Equation (70), (72), (75) & (77) 
kf  pin thermal conductivity [W/m.K] 
L  pin length [m] 
m  pin index [m] 
n  Integer (n = 1, 2, 3, , )  
nf  number of swimming pins 
PeA  Peclet number for case A (PeA =cpum2ro/k) 
Pef   pin Peclet number (Pef = fcfUL/kf) 
qf-d total convection heat transfer rate from the pin 

to the fluid [W] 
qf pin maximum conduction heat transfer rate 

[W] 
r  radius axis [m] 
ro  inner radius of the pipe [m] 
s1-s8 steady state general solutions exponential di-

mensionless indices; Equations 17(d, e), 53(d, 
e) & 65(d, e)  

Td  pin surrounding fluid temperature [K] 
Td,i pin surrounding fluid temperature at the pipe 

inlet [K] 
Tf   pin temperature [K] 
Ts  heated surface temperature [K] 
Tso  reference heated surface temperature [K] 
T  outer fluid free stream temperature [K] 
t  time variable [s] 
t* Dimensionless time; Equation (3b) & Equa-

tion (23) 
U  swimming pin velocity [m/s] 
um Mean fluid velocity inside the pipe for cases 

(A) and (B) [m/s] 
V Fluid and swimming pins volume per pin 

length (V = ACoL) 
Vsf  Volume of single pin (Vsf = ACL) 
x  pin axial coordinate [m] 
x'  pin leading edge position vector [m] 
xo  pin leading edge initial position vector [m] 
x*  dimensionless x-coordinate (x*=x/L) 
 
Greek symbols 
 
 dimensionless pin convection heat transfer; 

Equations (8), (30), (48) & (63) 

1 2,   characteristic functions; Equation (5c) & Equ-
ation (27a) 

 pin maximum dimensionless conduction heat 
transfer for case B; Equation (40) 

  Swimming pins to fluid volume ratio 
 f sfn V V   

1, 2 pin to fluid temperature difference ratios times 
pin Peclet number; Equations (27b) (59d) 

  pin dimensionless temperature; Equation (3c) 
& Equation (44) 

  inner fluid density [kg/m3] 
 homogenous solution; Equation (16) & Equa-

tion (36) 
 
Subscripts 
 
A, B, C, D  cases A, B, C and D 
s   steady state 
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