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Abstract 
In this work, we present final solving Millennium Prize Problems formulated by Clay Math. Inst., 
Cambridge. A new uniform time estimation of the Cauchy problem solution for the Navier-Stokes 
equations is provided. We also describe the loss of smoothness of classical solutions for the Navi-
er-Stokes equations. 
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1. Introduction 
In this work, we present final solving Millennium Prize Problems formulated by Clay Math. Inst., Cambridge in 
[1]. Before this work, we already had first results in [2]-[4]. The Navier-Stokes existence and smoothness prob-
lem concerns the mathematical properties of solutions to the Navier-Stokes equations. These equations describe 
the motion of a fluid in space. Solutions to the Navier-Stokes equations are used in many practical applications. 
However, theoretical understanding of the solutions to these equations is incomplete. In particular, solutions of 
the Navier-Stokes equations often include turbulence, which remains one of the greatest unsolved problems in 
physics. Even much more basic properties of the solutions to Navier-Stokes have never been proven. For the 
three-dimensional system of equations, and given some initial conditions, mathematicians have not yet proved 
that smooth solutions always exist, or that if they do exist, they have bounded energy per unit mass. This is 
called the Navier-Stokes existence and smoothness problem. Since understanding the Navier-Stokes equations is 
considered to be the first step to understanding the elusive phenomenon of turbulence, the Clay Mathematics In-
stitute in May 2000 made this problem one of its seven Millennium Prize problems in mathematics. In this paper, 
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we introduce important explanations results presented in the previous studies in [2]-[4]. We therefore reiterate 
the basic provisions of the preceding articles to clarify understanding them. First, we consider some ideas for the 
potential in the inverse scattering problem, and this is then used to estimate of solutions of the Cauchy problem 
for the Navier-Stokes equations. A similar approach has been developed for one-dimensional nonlinear equa-
tions [5]-[8], but to date, there have been no results for the inverse scattering problem for three-dimensional 
nonlinear equations. This is primarily due to difficulties in solving the three-dimensional inverse scattering 
problem. This paper is organized as follows: first, we study the inverse scattering problem, resulting in a formu-
la for the scattering potential. Furthermore, with the use of this potential, we obtain uniform time estimates in 
time of solutions of the Navier-Stokes equations, which suggest the global solvability of the Cauchy problem for 
the Navier-Stokes equations. Essentially, the present study expands the results for one-dimensional nonlinear 
equations with inverse scattering methods to multi-dimensional cases. In our opinion, the main achievement is a 
relatively unchanged projection onto the space of the continuous spectrum for the solution of nonlinear equa-
tions that allows focusing only on the behavior associated with the decomposition of the solutions to the discrete 
spectrum. In the absence of a discrete spectrum, we obtain estimations for the maximum potential in the weaker 
norms, compared with the norms for Sobolev’s spaces. 

Consider the operators ( )xH q x= −∆ +  and 0 xH = −∆  defined in the dense set ( )2 3
2W R  in the space  

( )3
2L R ; let q be a bounded fast-decreasing function. The operator H is called the Schrödinger’s operator. We 

consider the three-dimensional inverse scattering problem for the Schrödinger operator: the scattering potential 
must be reconstructed from the scattering amplitude. This problem has been studied by a number of researchers 
[9] [11] [12] and references therein. 

2. Results 
Consider Schrödinger’s equation: 

( ) 2 ,    x q x k k C−∆ Ψ + Ψ = Ψ ∈ .                                (1) 

Let ( ), ,k xθ+Ψ  be a solution of (1) with the following asymptotic behavior: 

( ) ( ) 1, , , , ,     
i k x

ik x ek x e A k o x
x x

θθ θ θ+

 
′Ψ = + + →∞  

 
                     (2) 

where ( ), ,A k θ θ′  is the scattering amplitude and 2,  x x Sθ θ′ = ∈  for { }Im 0k C k+∈ = ≥  

( ) ( ) ( )3

1, , , , d .
4π

ik x
R

A k q x k x e xθθ θ θ ′−
+′ = Ψ∫                             (3) 

Let us also dene the solution ( ), ,k xθ−Ψ  for { }Im 0k C k−∈ = <  as ( ) ( ), , , ,k x k xθ θ− +Ψ = Ψ − −  
As is well known [9]: 

( ) ( ) ( ) ( )2, , , , , , , , d ,     .
4π S

kk x k x A k k x k Rθ θ θ θ θ θ+ − −′ ′ ′Ψ −Ψ = − Ψ ∈∫                (4) 

This equation is the key to solving the inverse scattering problem, and was first used by Newton [10] [11] and 
Somersalo et al. [12]. 

Equation (4) is equivalent to the following: 

S+ −Ψ = Ψ                                       (5) 

where S is a scattering operator with kernel ( ),S k l , ( ) ( ) ( )3, , , d .
R

S k l k x l x x∗
+ −= Ψ Ψ∫  

The following theorem was stated in [9]: 
Theorem 1. (The energy and momentum conservation laws) Let q∈ℜ . Then, ,  SS I S S I∗ ∗= = , where I is 

a unitary operator. 

Definition 1. The set of measurable functions ℜ  with norm defined by ( ) ( )
6 2 d d

R

q x q y
q x y

x yℜ
=

−
∫  is recog-

nized as being of Rollnik class. 
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As shown in [13], ( ),k x±Ψ  is an orthonormal system of H eigenfunctions for the continuous spectrum. In 
addition to the continuous spectrum there are a finite number N of H negative eigenvalues, designated as 2

jE−  
with corresponding normalized eigenfunctions 

( ) ( )2,     1,j jx E j Nψ − =  

where 

( ) ( )2 3
2, .j jx E L Rψ − ∈  

We present Povzner’s results [13] below: 
Theorem 2. (Completeness) For both an arbitrary ( )3

2f L R∈  and for H eigenfunctions, Parseval’s identity 
is valid. 

( ) ( )
2

2 , ,
C CD D A ALf P f P f P f P f= +  

( ) ( ) ( )2
2

0
1

, ,     , , d d
C

N

D j j j A S
j

P f f x E P f s f s s x sψ θ θ
∞

+
=

= − = Ψ∑ ∫ ∫                  (6) 

where f  and jf  are Fourier coefficients for the continuous and discrete cases. 
Theorem 3. (Birman-Schwinger estimation). Let q∈ℜ . Then, the number of discrete eigenvalues can be es-

timated as: 

( )
( )

( ) ( )
3 32 2

1 d d .
4π R R

q x q y
N q x y

x y
≤

−
∫ ∫                             (7) 

This theorem was proved in [14]. 
Let us introduce the following notation: 

( ) ( ) ( ) ( )2 2, , d    for   , , ,     , , , , d
S S

NA A k f k x Df A k f k xθ θ θ θ θ θ θ θ′ ′ ′ ′ ′= =∫ ∫           (8) 

( ) ( ) ( )( )0 , , ,     , , , ,i z x i z xz x e z x z x eθ θφ θ θ θ+′ ′= Φ = Ψ − ∆                  (9) 

where 

( ) ( )
1

.
N

j j
j

k iE k iE
=

 ∆ = + − ∏  

We define the operators ,  T T±  for ( )1
2f W R∈  as follows: 

( ) ( )
Im 0 Im 0

1 1lim d ,   Im 0;     lim d ,   Im 0
2π 2πz z

f s f s
T f s z T f s z

i s z i s z
∞ ∞

+ −−∞ −∞→ →
= > = <

− −∫ ∫        (10) 

( )1 .
2

Tf T T f+ −= +                                    (11) 

Consider the Riemann problem of finding a function Φ , that is analytic in the complex plane with a cut 
along the real axis. Values of Φ  on the upper and lower sides of the cut are denoted +Φ  and −Φ  respec-
tively. The following presents the results of [15]: 

Lemma 1. 

1 1 1 1 1,   ,   ,   ,   
4 2 2 2 2

TT I TT T TT T T T I T T I+ + − − + −= = = − = + = −                (12) 

Theorem 4. Let q∈ℜ , g + −= Φ −Φ ; then 
.T g± ±Φ =                                       (13) 

The proof of the above follows from the classic results for the Riemann problem. 
Lemma 2. Let ( ) ( ),  , , ,  , ,q g g z x g g z xθ θ+ −∈ℜ = = −  
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Then, 

( ) ( ) ( ) ( ), , ,     , , .i z x i z xz x T g e z x T g eθ θθ θ −
+ + + − − −Ψ ∆ = + Ψ ∆ = +               (14) 

The proof of the above follows from the definitions of ,  ,  g + −Φ Φ  and ,  + −Ψ Ψ . 
Lemma 3. Let ( ) ( ),  , , ,  , ,q A A z x A A z xθ θ+ −∈ℜ = = −  
Then, 

( ) ( ), , .A k T A Aθ θ + + −′ ∆ = ∆ − ∆                                (15) 

The proof of the above again follows from the definitions of the functions ,  ,  g + −Φ Φ  and ,  + −Ψ Ψ . 
Lemma 4. Let q .∈ℜ  Then, 

( ).NA NT DA+ + −∆ = ∆                                   (16) 

The proof of the above follows from the definitions of ,  ,  g + −Φ Φ  and ,  + −Ψ Ψ  and Theorem 1. 
Lemma 5. Let q .∈ℜ  Then, 

( ) 2 .NT A NA+ +≤                                    (17) 

The proof of the above follows from the definitions of ,  ,  g + −Φ Φ  and ,  + −Ψ Ψ  and Lemma 4 and disper-
sions relations for analytics functions. 

Definition 2. Denote by TA the set of functions ( ), ,f k θ θ ′  with the norm 

( ), ,sup .kf Tf fθ θ ′ΤΑ
= + < ∞  

Definition 3. Denote by ( )I T D−−ℜ the set of functions g  such that ( )g I T D f−= − , for any f ∈ΤΑ . 

Lemma 6. Suppose 1A α
ΤΑ

< < . Then, the operator ( )I T D−− , defined on the setTA has an inverse de-
fined on ( )I T D−−ℜ . 

The proof of the above follows from the definitions of ,  D T−  and the conditions of Lemma 6. 
Lemma 7. Let q∈ℜ , and assume that ( ) 1I T D −

±−  exists. Then, 

( ) ( )1 1
0 0 0

1,     ,     .g T g T g T g I T D T D I T D T Dφ φ φ− −
+ − − − − − − − −= − = − Ψ = − +

∆
           (18) 

The proof of the above follows from the denitions of ,  ,  g + −Φ Φ  and ,  + −Ψ Ψ  and Equation (4). 
Lemma 8. Let ℜ∈q , and assume that ( ) 1I T D −

±−  exists. Then, 

0 0 3
1

1 1 1 1 1 1 1,     
i

i
T D T D T D T D T D T D T D Qφ φ

∞

− − − − − − − −
=

 Ψ = − + + = + + ∆ ∆ ∆ ∆ ∆ ∆ ∆ 
∑          (19) 

where 3Q  represents terms of highest order of T D− . 
The proof. Using 

( ) ( ) ( ) ( ) ( ) ( )3 3 0 0, , d ,     , , d
R R

x k x l x k l x k x l x k lδ φ φ δ− −Ψ ∗Ψ = − ∗ = −∫ ∫  

and (18) we get proof. 
Lemma 9. Let ℜ∈q . Then, 

[ ]0lim .
z

q H − −→∞
= Ψ Ψ                                   (20) 

The lemma can be proved by substituting ,  + −Ψ Ψ  into Equation (1). 
Lemma 10. Let ℜ∈q , and assume that ( ) 1I T D −

−−  exists. Then, 

( ) ( )1 1
0 0 0 0 0

1 1lim .
z

q N I T D T DH N I T D T DH Nφ φ φ− −
− − − −→∞

    = − − +    ∆ ∆    
          (21) 

The proof of the above follows from the definitions of ,  ,  N + −Ψ Ψ  and Lemma 7. 
Lemma 11. Let ℜ∈q . Then 2.D ≤  
The proof of the above follows from the definition of D and the unitary nature of S. 



A. A. Durmagambetov, L. S. Fazilova 
 

 
92 

Lemma 12. Let ( )3
4q L R∈ℜ∩ . Then, 

( )3

22 dj jR
E q x xψ≤ ∫                                  (22) 

( ) ( )3
2

max 2 .j j L Rx
x qψ ψ≤                                 (23) 

The proof of the above follows from the definitions of 2 ,  j jE ψ , and (1). 
Lemma 13. Let ( )3

2q L R∈ℜ∩ , and 1A α
ΤΑ

< < . Then, 

( )0 00 1
.

i

kx i
q C NA

∞

± ==
=

Ψ  ≤  ∑                               (24) 

To prove this result, one should calculate ,  + −Ψ Ψ  using (18). 
q± ±Ψ = ∆Ψ                                       (25) 

Using the notation that: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
3 3 3

, , ,d ,   d ,   di k x i k l x i k l x

R R R
q k q x e x q k l q x e x Qq q x e x− −= − = =∫ ∫ ∫ 

 

( ) ( ) ( )3 2
, d ,   , , d .i k l x

E R Sk l
Q q q x e x NQq Qq k θ θ θ−

=
′= =∫ ∫  

For ( ), ,f f k xθ ′=  

( ) ( )2 , , , , d .
S

Df k A k f k xθ θ θ θ′ ′ ′= ∫                             (26) 

Lemma 14. Let ( )3
2q L R∈ℜ∩ , and 1α

ΤΑ
ΤΑ < < . Then, 

2 2 2 2
,     .L L L LTNA C TQq NA C Qq< <                         (27) 

To prove this result, one should ,  + −Ψ Ψ  using Lemma 7. 
.q ± ±= ∆Ψ Ψ                                      (28) 

Using Lemma 7. 
Lemma 15. Let ( )3

2q L R∈ℜ∩ , and 1A α
ΤΑ

< < . Then, 

( )00 0
1

i

x k
i

q C TNA
∞

± = =
=

Ψ ≤ ∑                               (29) 

( )00 0
1

.
i

x k
i

q C TQq
∞

± = =
=

Ψ ≤ ∑                               (30) 

To prove this result, one should calculate A using Lemma 7. 
Lemma 16. Let ℜ∈q  and 

max .
k

q < ∞  

Then, 

( ) ( ) ( )3 3 2

2

2 d d max .LR R k

q x q y
x y C q q

x y
≤ +

−
∫ ∫                         (31) 

A proof of this lemma can be obtained using Plancherel’s theorem. 
Lemma 17. Let ( )3

2q L R∈ℜ∩  and 

2
max 1.L k

q q α+ < <  

Then, 
( )0 1 1x α α± =

Ψ > − −                                  (32) 
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( )00 0
1

.
i

x k
i

q C TQq
∞

= =
=

≤ ∑                                 (33) 

To prove this result, one should calculate 
0x± =

Ψ . 

3. Cauchy Problem for the Navier-Stokes Equation 
Numerous studies of the Navier-Stokes equations have been devoted to the problem of the smoothness of its so-
lutions. A good overview of these studies is given in [16]-[20]. The spatial differentiability of the solutions is an 
important factor, this controls their evolution. Obviously, differentiable solutions do not provide an effective 
description of turbulence. Nevertheless, the global solvability and differentiability of the solutions has not been 
proven, and therefore the problem of describing turbulence remains open. It is interesting to study the properties 
of the Fourier transform of solutions of the Navier-Stokes equations. Of particular interest is how they can be 
used in the description of turbulence, and whether they are differentiable. The differentiability of such Fourier 
transforms appears to be related to the appearance or disappearance of resonance, as this implies the absence of 
large energy flows from small to large harmonics, which in turn precludes the appearance of turbulence. Thus, 
obtaining uniform global estimations of the Fourier transform of solutions of the Navier-Stokes equations means 
that the principle modeling of complex flows and related calculations will be based on the Fourier transform 
method. The authors are continuing to research these issues in relation to a numerical weather prediction model; 
this paper provides a theoretical justification for this approach. Consider the Cauchy problem for the Navi-
er-Stokes equations: 

( ) ( ), , ,     div 0tq v q q q p f x t q− ∆ + ∇ = −∇ + =                         (34) 

( )00tq q x
=
=                                      (35) 

in the domain ( )3 0,TQ R T= × , where: 

0div 0.q =                                       (36) 

The problem defined by (34), (35), (36) has at least one weak solution ( ),q p  in the so-called Leray-Hopf 
class [16]. 

The following results have been proved [17]: 
Theorem 5. If 

( ) ( )1 3
0 2 2,     Tq W R f L Q∈ ∈                               (37) 

there is a single generalized solution of (34), (35), (36) in the domain 
1TQ , [ ]1 0,T T∈ , satisfying the following 

conditions: 

( )2,  ,  .t Tq q p L Q∇ ∇ ∈                                 (38) 

Note that 1T  depends on 0q  and f . 
Lemma 18. Let ( ) ( )1 3

0 2 2,  Tq W R f L Q∈ ∈ . Then, 

( ) ( ) ( ) ( )3 3 3
2 2 22

22 2
000

sup d .
T

t

L R L R L QL R
t T

q q q fτ
≤ ≤

+ ∇ ≤ +∫                    (39) 

Our goal is to provide global estimations for the Fourier transforms of the derivatives of the solutions to the 
Navier-Stokes Equations (34)-(36) without requiring the initial velocity and force to be small. We obtain the 
following uniform time estimation. 

Statement 1. The solution of (34), (35), (36) according to Theorem 5 satisfies: 

( ) ( )( )2

30 dv k t

R
q q e q q Fτ τ− −  = + ∇ + ∫  

                          (40) 

where .F p f= −∇ +  
This follows from the definition of the Fourier transform and the theory of linear differential equations. 
Statement 2. The solution of (34), (35), (36) satisfies: 
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2 2
,

i j i
i j i

i j i

k k k
p q q i f

k k
= +∑ ∑ 

                                (41) 

and the following estimations: 

( ) ( ) ( )3 3 3
2 2 2

3 2 1 23L R L R L Rp q q≤ ∇                             (42) 

( )3
2

2
2

2

1 3 .L R

fq
p f q

k kk
∇ ≤ + + ∇ + ∇







                          (43) 

This expression for p  is obtained using div and the Fourier transform presentation. 
Lemma 19. The solution of (34), (35), (36) in Theorem 5 satisfies the following inequalities: 

( ) ( ) ( ) ( )3 332 222

2 22 2
000

sup   d .
T

t

L R L QL RL Rt T
NQq k NQq NQq Qfτ

≤ ≤
+ ≤ +∫                (44) 

Proof this follows from the a priory estimation of Lemma18 and conditions of Lemma 19. 
Lemma 20. Let ( ) ( )1 3

0 2 2,  TQq W R f L Q∈ ∈  Then, the solution of (34), (35), (36) in Theorem 5 satisfies 2 
the following inequalities: 

( ) ( ) ( ) ( )3 332 222
0

2 22 2
00, sup

sup   d sup .
T

t T

t

L R L QL RL R
Qq k Qq Qq f

θ θ
τ

≤ ≤

   + ≤ +     ∫               (45) 

Proof this follows from the a priory estimation of Lemma18 and conditions of Lemma 20. 
Lemma 21. The solution of (34), (35), (36) in Theorem 5 satisfies the following inequalities: 

3 3 3 3

2 2 2 2 4 2 4 2

0 0
d d d const,     d d d const

t t

R R R R
x q x x q x x q x x q xτ τ+ ∇ ≤ + ∇ ≤∫ ∫ ∫ ∫ ∫ ∫      (46) 

or 

( ) ( )3 3 332 2

222 22 2
0 0

d d const,     d d const.
t t

L R R RL R
q k q k q k q kτ τ∇ + ∇ ≤ ∇ + ∇ ≤∫ ∫ ∫ ∫ 

          (47) 

Proof this follows from the a priory estimation of Lemma18, conditions of Lemma 19, the Navier-Stokes eq-
uations. 

Lemma 22. The solution of (34), (35), (36) satisfies the following inequalities: 

( ) ( )3 3
2 2

2 2
0 00

max max sup d
2

t

L R L Rk k t T

Tq q q q τ
≤ ≤

≤ + + ∇∫                        (48) 

( ) ( )3 332 2

2 2
0 00

max max sup d d
2

t

L R L RRk k t T

Tq q q k q k τ
≤ ≤

∇ ≤ ∇ + ∇ + ∇∫ ∫                     (49) 

( ) ( )33 3
2 2

222 2 2 2
0 00

max max sup d d .
2

t

RL R L Rk k t T

Tq q q k q k τ
≤ ≤

∇ ≤ ∇ + ∇ + ∇∫ ∫                   (50) 

Proof this follows from the a priory estimation of Lemma 18, conditions of Lemma 22, the Navier-Stokes eq-
uations. 

Lemma 23. The solution of (34), (35), (36) according to Theorem 5 satisfies ( )const,  0, 2, 4iC i≤ = , where: 

( )
22 2 2

0 1 1 2 1 4 10 0 0
d ,   , ,   d ,   d .

t t t
С F F q q F С F С Fτ τ τ= = ∇ + = ∇ = ∇∫ ∫ ∫                (51) 

Proof this follows from the a priory estimation of Lemma18, the Navier-Stokes equations. 
Lemma 24.Weak solution of problem (34), (35), (36) from Theorem 5 satisfies the following inequalities: 

2

1 2 32,    ,    NQq NQqNQq zM zM zM
z z

∂ ∂
≤ ≤ ≤

∂ ∂
 

where 1 2 3,  ,  M M M  are limited. 
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Let is prove the first estimate. These inequalities 

( ) ( )( )π 2π
10 0

, , d 2π max
2 k p p k

zQq z t q z e e t e z q zM≤ − ≤ ≤∫ ∫    

where 1 const.M =  
Proof now this follows from the a priori estimation of Lemma 18, conditions of Lemma 24, the Navier-Stokes 

equations. 
The rest of estimates are proved similarly. 
Lemma 25. Suppose that q∈ℜ  and max

k
q < ∞  

Then,
 ( ) ( ) ( )3 3 2

2

2 d d max .LR R k

q c q y
x y C q q

x y
≤ +

−
∫ ∫   

Proof. Using Plansherel’s theorem, we get the statement of the lemma. 
This proves Lemma 25. 
Lemma 26. Weak solution of problem (34), (35), (36) from Theorem 5 satisfies the following inequalities 

11
22 0

0
1
2 k

C
Qq Qq

v z e eλ
 ≤ +   − 

                               (52) 

where 

( )
2

0 1 10
d ,     , .

t
С F F q q Fτ= = ∇ +∫   

Proof. From (40) we get 

( ) ( )( )
22

0 10
, dk

t z e e t
kQq Qq e F z e eλν τ

λ τ τ− − −≤ + −∫                       (53) 

where 

( )1 , .F q q F= ∇ +  

Using the notation 

( ) ( )( )
22

10
, dk

t z e e t
kI e F z e eλν τ

λ τ τ− − −= −∫   

taking into account Holder’s inequality in I we obtain: 

( )22

1 1

10 0
d dk

p qp qt tz e e tI e Fλν τ τ τ− − −   ≤    
  

∫ ∫                          (53) 

where p  and q  satisfies the equality 1 1 1p q+ = . Suppose 2p q= = . Then 
1

2 2
1

102
d

1 .
2

t

k

F
I

v z e eλ

τ 
    ≤   − 

∫ 

 

Taking into consideration the estimate I in (53), we obtain the statement of the lemma. 
This proves Lemma 26. 
Lemma 27. Weak solution of problem (34), (35), (36) from Theorem 5 satisfies the following inequalities 

1 11 1 2
2 22 20 0 2 1

22 0

1 14 ,   where  d .
2

t

kk

Qq C C FQq C
z z v v z e e zz e e λλ

α τ
∂ ∂∂    ≤ + + =   ∂ ∂ − ∂−    ∫



      (54) 
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Proof. The underwritten inequalities follows from representation (40) 

( ) ( ) ( )( )

( ) ( )( )

22

22

20
10

1
0

2 , d

               , d ,

k

k

t z e e t
k k

t z e e t
k

QqQq z e e t e F z e e
z z

Fe z e e
z

λ

λ

ν τ
λ λ

ν τ
λ

ν τ τ τ

τ τ

− − −

− − −

∂∂
≤ + − − −

∂ ∂

∂
+ −

∂

∫

∫





 

Let us introduce the following denotation 

( ) ( ) ( )( )
222

1 10
2 , dk

t z e e t
k kI z e e t e F z e eλν τ

λ λν τ τ τ− − −= − − −∫   

( ) ( )( )
22 1

2 0
, dk

t z e e t
k

FI e z e e
z

λν τ
λ τ τ− − − ∂

= −
∂∫


 

then 

0
1 2 .

QqQq I I
z z

∂∂
≤ + +

∂ ∂
 

Estimate I1 by means of 

sup m t

t
t e α− <  

where 0>m  we obtain 

( )( )
22

2
1 10

4 , d .k
tz e et

kI e F z e e
z

λ
τν

λ
α τ τ

−
− −

≤ −∫   

On applying Holder’s inequality, we get 

22

1
1

2
1 10 0

4 d dk
p pt qvz e e qt t

I e F
z

λ
τα τ τ
−

− −    ≤      
∫ ∫   

where p, q satisfies the equality 1 1 1p q+ = . 
For 2p q= =  we have 

1 11 1 2
2 22 20 2 1

1 2 22 0

1 14 ,    ,    d .
2

t

kk

C C FI I C
v v z e e zz e e λλ

α τ
∂   ≤ ≤ =    − ∂−    ∫


 

Inserting 1 2,  I I  in to 
q
z
∂
∂


 

we obtain the statement of the lemma. 
This completes the proof of Lemma 27. 
Lemma 28. Weak solution of problem (34), (35), (36) from Theorem 5 satisfies the following inequalities 

,   ,   ,   ,   ,   

,   ,   
E

E E E

NQq C TNQq C Qq C TQq C NQ q C

TNQ q C Q q C TQ q C

≤ ≤ ≤ ≤ ≤

≤ ≤ ≤
               (55) 

where constC =  
Lemma 25. Let q∈ℜ  and 

max .
k

q < ∞  

Then, 
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( ) ( ) ( ) ( )3 3 2

2

2 d d max .LR R k

q x q y
N q x y C q q

x y
≤ ≤ +

−
∫ ∫                       (56) 

A proof of this lemma can be obtained using Plancherel’s theorem. 
We now obtain uniform time estimations for Rollnik’s norms of the solutions of (34), (35), (36).The follow-

ing (and main) goal is to obtain the same estimations for max
k

q —velocity components of the Cauchy problem 
for the Navier-Stokes equations. 

Let’s consider the influence of the following large scale transformations in Navier-Stokes’ equation on 

1
2

1
2

0
0 21

2
0

,   ,   ,   .
4π

Fv vK t tA v F
A A

v CC
′ ′ ′= = = =

−

 

Statement 3. Let  

( )
1 2
3 30

4 8,   then  .
7

1
A K

v CC
= ≤

+

 

Proof. By the definitions C  and 0C  we have 
11 1 11 12 2 0 02 2

2 3 2

4π 4π 8 .
7

CC CCv vK v v
A A A A

−
−       = − = − <             

 

This proves Statement 3. 
Theorem 6. Let 

( ) ( ) ( ) ( ) ( ) ( ) ( )2 3 2 3 3 2 3
0 2 0 2 2 1 2 1 2,   ,   ,   ,   T T Tq W R q L R f L Q f L Q L R f L Q L R∈ ∇ ∈ ∈ ∈ ∩ ∇ ∈ ∩ 

  

and 

2 22 20 0max const,   max const,   max const,   max const.E EL LL Lk k k k
Qq Qf Q q Q f≤ ≤ ≤ ≤  

Then, there exists a unique generalized solution of (34), (35), (36) satisfying the following inequality:  
3

1
max max constit xi

q
=

≤∑  

where the value of const  depends only on the conditions of the theorem. 
Proof. It suffices to obtain uniform estimates of the maximum velocity components iq , which obviously fol-

low from max ix
q  because uniform estimates allow us to extend the local existence and uniqueness theorem 

over the interval in which they are valid. To estimate the velocity components, Lemma 22 can be used: 

( )
( )

3
2

2
0 0 10 2

3 30

4d 1 ,     .
1

T
i i x L Rv q q t A A

v CC

 = + + = 
 

+
∫  

Using Lemmas (25)-(29) for 

( )3
2

2
00

d 1
T

i i x L Rv q q t A = + + 
 ∫  

we can obtain 1iA α
ΤΑ

< <  where iA  is the amplitude of potential iv  and ( ) 1iN v < . That is, discrete so-
lutions are not significant in proving the theorem, so its assertion follows the conditions of Theorem 6, which 
defines uniform time estimations for the maximum values of the velocity components. 

( ) ( ) ( )3 33 32 2 2

2
0 0

d d const max d .
t t

L R L RR L R
v v k v v vτ τ∇ + ∇ ≤ + ∇ ∇∫ ∫ ∫             (57) 

Theorem 6 asserts the global solvability and uniqueness of the Cauchy problem for the Navier-Stokes equa-
tions. 
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Theorem 7. Let 

( ) ( ) ( ) ( ) ( )2 3 2 3 3
0 2 0 2 2 1 2,   ,   ,   T Tq W R q L R f L Q f L Q L R∈ ∇ ∈ ∈ ∈ ∩

  

( )3
20

lim .L Rt t
q

→
∇ = ∞                                   (58) 

Then, there exists ,  i j  and 0x  

( ) ( )
0 0

0lim ,    or   lim .j jt t t t
x t N qψ

→ →
= ∞ = ∞                           (59) 

Proof. A proof of this lemma can be obtained using i Ac i D iq P q P q= +  and uniform estimates .Ac iP q . 
Theorem 7 describes the loss of smoothness of classical solutions for the Navier-Stokes equations. 
Theorem 7 describes the time blow up of the classical solutions for the Navier-Stokes equations arises, and 

complements the results of Terence Tao [17]. 

4. Conclusion 
New uniform global estimations of solutions of the Navier-Stokes equations indicate that the principle modeling 
of complex flows and related calculations can be based on the Fourier transform method. 
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